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Abstract—Consider transmission of a polar code of block
length N and rate R over a binary memoryless symmetric channel
W with capacity I(W ) and Bhattacharyya parameter Z(W )
and let Pe be the error probability under successive cancellation
decoding. Recall that in the error exponent regime, the channel
W and R < I(W ) are fixed, while Pe scales roughly as 2−

√
N . In

the scaling exponent regime, the channel W and Pe are fixed,
while the gap to capacity I(W ) − R scales as N−1/µ, with
3.579 ≤ µ ≤ 5.702 for any W . We develop a unified framework
to characterize the relationship between R, N , Pe, and W . First,
we provide the tighter upper bound µ ≤ 4.714, valid for any W .
Furthermore, when W is a binary erasure channel, we obtain
an upper bound approaching very closely the value which was
previously derived in a heuristic manner. Secondly, we consider a
moderate deviations regime and we study how fast both the gap to
capacity I(W )−R and the error probability Pe simultaneously
go to 0 as N goes large. Thirdly, we prove that polar codes are
not affected by error floors. To do so, we fix a polar code of block
length N and rate R, we let the channel W vary, and we show
that Pe scales roughly as Z(W )

√
N .

Keywords—Polar codes, error exponent, scaling exponent, mod-
erate deviations, error floor.

I. INTRODUCTION

The exact characterization of the relationship between the
rate R, the block length N , the block error probability Pe,
and the quality of the transmission channel W (which can
be quantified, e.g., by its capacity I(W ) or its Bhattacharyya
parameter Z(W )) is a formidable task. It is easier to study
the scaling of these parameters in various regimes, namely
by fixing some of them and by considering the relationship
among the remaining ones. To be concrete, consider the plots
in Figure 1 which represent the performance of a family of
codes C with rate R = 0.5. Different curves correspond to
codes of different block length N . The codes are transmitted
over a family of channels W parameterized by z, which is
represented on the horizontal axis. On the vertical axis we
represent the error probability Pe. The error probability is an
increasing function of z, which means that the channel gets
“better” as z decreases. The parameter z indicates the quality
of the transmission channel W as measured by, e.g., Z(W ) or
1− I(W ). Let us assume that there exists a threshold z∗ such
that, if z < z∗, then Pe tends to 0 as N grows large, while if
z > z∗, then Pe tends to 1 as N grows large. For example,
if the family of codes C is capacity achieving, then we can
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Figure 1. Performance of the family of codes C with rate R = 0.5 transmitted
over the family of channels W with threshold z∗ = 0.5.

think to the threshold z∗ as the channel parameter such that
I(W ) = R. In the example of Figure 1, we have that z∗ = 0.5.

The oldest approach to analyze the performance of the
family C is known under the name of error exponent. We fix
a channel parameter z < z∗ and we compute how fast the
error probability tends to 0 as the block length goes large.
This corresponds to consider the blue vertical cut in Figure 1.
The best possible scaling is given by Pe = e−NE(R,W )+o(N),
where E(R,W ) is the so-called error exponent [1]. Another
approach is known under the name of scaling exponent. We
fix a target error probability Pe and we compute how fast the
gap to the threshold z∗−z tends to 0 as the block length goes
large. This corresponds to consider the red horizontal cut in
Figure 1. As a benchmark, the smallest possible block length
N required to achieve a gap to the threshold z∗ − z with a
fixed error probability Pe is s.t. [2], [3]

N ≈ V (Q−1(Pe))
2

(z∗ − z)2
, (1)

where Q(·) is the tail probability of the standard normal
distribution and V is referred to as channel dispersion. In
general, if N is Θ (1/(z∗ − z)µ), we say that the family of
codes C has scaling exponent µ. From (1) we deduce that the
most favorable scaling exponent is µ = 2 and it is achieved by
random codes. To sum up, the error exponent regime studies
Pe as a function of N when z∗− z is fixed, while the scaling
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Figure 2. Performance of the family of (3, 6)-regular LDPC codes transmitted
over the binary erasure channel with erasure probability z.

exponent regime studies z∗−z as a function of N when Pe is
fixed. Then, a natural question is to ask how fast both Pe and
z∗ − z scale as functions of N . This intermediate approach is
named moderate deviations regime and it is studied for random
codes in [4]. The last scaling approach we consider concerns
the so-called error floor. We fix a code of assigned block length
N and rate R. Then, we compute how the error probability Pe

behaves as a function of the channel parameter z. This is a
notion that became important when iterative coding schemes
were introduced [5]. For such schemes it was observed that
frequently the individual curves Pe(z) show an abrupt change
of slope from very steep to very shallow when going from bad
channels to good channels (see, e.g., Figure 2). The region
where the slope is very shallow was dubbed the error floor
region. In this paper, we are going to adopt an alternative
characterization that is easier to pin down mathematically: in
the error floor region the slope of Pe(z) does not depend on
N . We will show that this phenomenon does not happen for
polar codes. In this sense we will say that polar codes do not
have an error floor.

Polar codes have recently attracted the interest of the
scientific community, since they provably achieve the capacity
of a large class of channels, including any binary memoryless
symmetric channel (BMSC), with low encoding and decoding
complexity. Since their introduction in the seminal paper
[6], the performance of polar codes has been extensively
studied in different regimes. As concerns the error exponent
regime, in [7] it is proved that the block error probability
under successive cancellation (SC) decoding behaves roughly
as 2−

√
N . This result is further refined in [8], where it is

shown that log2(− log2 Pe) scales as log2N/2 +
√

log2N/2 ·
Q−1 (R/C) + o(

√
log2N). This last result holds both under

SC decoding and under optimal MAP decoding. As concerns
the scaling exponent regime1, the value of µ depends on the
particular channel taken into account. Universal bounds on
µ valid for any BMSC under SC decoding are presented in
[10]: the scaling exponent is lower bounded by 3.579 and it
is upper bounded by 6. It is also conjectured that the lower
bound on µ can be increased up to 3.627, i.e., up to the value

1In [9], the scaling exponent is defined as the value of µ s.t.
limN→∞,N1/µ(C−R)=z Pe(N,R,C) = f(z) for some function f(z).
However, it is an open question to prove that such a limit exists.

heuristically computed in [9] for the binary erasure channel
(BEC) . The upper bound on µ is further refined to 5.702
in [11]. In addition, the scaling exponent of list decoders is
considered in [12] and in [13] it is proved that there exists
a scaling exponent even if we let the error probability scale
as 2−N

0.49

. As concerns the error floor regime, in [14] it
is proved that the stopping distance of polar codes scales
as
√
N , which implies good error floor performance under

belief propagation (BP) decoding, and simulation results have
shown no sign of error floors for transmission over the BEC
and over the binary additive white Gaussian noise channel
(BAWGNC). However, even for the BEC, the existing results
cannot rigorously exclude the existence of an error floor region.

This paper provides a unified view on the performance
analysis of polar codes and it presents several results about the
scaling of the parameters of interest, namely, the rate R, the
block length N , the error probability under SC decoding Pe,
and the quality of the channel W . In particular, the contribu-
tions of this work concern the scaling exponent, the moderate
deviations, and the error floor regimes. First, we derive a
new universal upper bound on the scaling exponent: we show
that µ ≤ 4.714 for any BMSC and that µ ≤ 3.639 for the
BEC. Basically, this result improves by 1 the previous upper
bound valid for any BMSC and it approaches closely the value
3.627 which was heuristically computed in [9] for the BEC.
Secondly, we consider the joint scaling of error probability and
gap to capacity: we describe a trade-off between the speed of
decay of Pe and the speed of decay of I(W )−R as functions
of N . In the limit in which the gap to capacity is arbitrarily
small but independent of N , this trade-off recovers the result of
[7] for the error exponent regime. Thirdly, we prove that polar
codes are not affected by error floors, i.e., that the slope of the
error probability as a function of the Bhattacharyya parameter
of the transmission channel increases in modulus with N . To
do so, we fix a polar code of block length N and rate R
designed for transmission over a channel W ′. Then, we look
at the performance of this code over other channels W which
are “better” that W ′ and we study the error probability Pe as
a function of the Bhattacharyya parameter Z(W ). Note that
the code is fixed and the channel varies, which means that we
do not choose the optimal polar indices for W . In particular,
we prove that Pe scales roughly as Z(W )

√
N , in accordance

with the error exponent regime. This suffices to conclude that
polar codes are not affected by error floors, because the slope
of Pe(Z(W )) increases in modulus as N gets larger. The rest
of the paper is organized as follows. After the review of some
preliminary notions in Section II, Section III presents the new
upper bound on the scaling exponent, Section IV concerns the
moderate deviations regime, and Section V proves that polar
codes are not affected by error floors. Section VI concludes
the paper presenting some directions for future research. Due
to space limitation, we only focus on the statement of our
original results. All the proofs, together with a more detailed
presentation, are provided in the longer version [15].

II. PRELIMINARIES

Let W be a BMSC with capacity I(W ) and Bhattacharyya
parameter Z(W ). The basis of channel polarization consists in
mapping two identical copies of W into (W 0,W 1) s.t. W 0 is



a “worse” channel and W 1 is a “better” channel than W :

Z(W )
√

2− Z(W )2 ≤ Z(W 0) ≤ 2Z(W )− Z(W )2, (2)
Z(W 1) = Z(W )2, (3)

which follow from Proposition 5 of [6] and from Exercise 4.62
of [5]. In addition, when W is a BEC, we have that W 0 and
W 1 are also BECs and Z(W 0) = 2Z(W )− Z(W )2 [6]. By
repeating n times this operation, we map 2n identical copies
of W into the synthetic channels W (i)

n (i ∈ {1, · · · , 2n}).

Given a BMSC W , for n ∈ N, define a random sequence
of channels Wn, as W0 = W , and

Wn =

{
W 0
n−1, w.p. 1/2,

W 1
n−1, w.p. 1/2.

(4)

Let Zn(W ) = Z(Wn) be the random process that tracks the
Bhattacharyya parameter of Wn. Then, from (2) and (3) we
deduce that, for n ≥ 1,

Zn

{
∈
[
Zn−1

√
2− Z2

n−1, 2Zn−1 − Z2
n−1

]
, w.p. 1/2,

= Z2
n−1, w.p. 1/2.

(5)
When W is a BEC with erasure probability z, then the process
Zn has a simple closed form. It starts with Z0 = z, and, for
n ≥ 1,

Zn =

{
2Zn−1 − Z2

n−1, w.p. 1/2,
Z2
n−1, w.p. 1/2.

(6)

Consider transmission over W of a polar code of block
length N = 2n and rate R and let Pe denote the block error
probability under SC decoding. Then, by Proposition 2 of [6],

Pe ≤
∑
i∈I

Z(i)
n , (7)

where Z(i)
n denotes the Bhattacharyya parameter of W (i)

n and I
denotes the information set, i.e., the set containing the positions
of the information bits.

III. NEW UNIVERSAL UPPER BOUND ON THE SCALING
EXPONENT

First, we relate the value of the scaling exponent µ to the
sup of some function. Then, we provide a provable bound on
this sup, which gives us a provably valid choice for µ, i.e.,
µ = 4.714 for any BMSC and µ = 3.639 for the BEC.

Theorem 1 (From function to scaling exponent): Assume
that there exists a function h(x) : [0, 1] → [0, 1] s.t.
h(0) = h(1) = 0, h(x) > 0 for any x ∈ (0, 1), and, for some
µ > 2,

sup
x∈(0,1),y∈[x

√
2−x2,2x−x2]

h(x2) + h(y)

2h(x)
< 2−1/µ. (8)

Consider transmission over a BMSC W with capacity I(W )
using a polar code of rate R < I(W ). Fix pe ∈ (0, 1) and
assume that the block error probability under SC decoding is
at most pe. Then, it suffices to have a block length N s.t.

N ≤ β1
(I(W )−R)µ

, (9)

where β1 is a universal constant which does not depend on
W , but it depends only on pe. If W is a BEC, a less stringent
hypothesis on µ is required for (9) to hold: the condition (8)
is replaced by

sup
x∈(0,1)

h(x2) + h(2x− x2)

2h(x)
< 2−1/µ. (10)

Theorem 2 (Valid choice for scaling exponent): Consider
transmission over a BMSC W with capacity I(W ) using a
polar code of rate R < I(W ) and assume that the block error
probability under SC decoding is at most pe ∈ (0, 1). Then,
(9) holds with µ = 4.714 and, if W is a BEC, it holds with
µ = 3.639.

The proof of these results is contained in Section III-B and
III-C of the longer version [15]. Note that Theorem 1 provides
an upper bound on the scaling exponent which depends on
the choice of h(x). The proof of Theorem 2 consists in the
derivation and the analysis of a good choice of h(x). In the
remainder of this section, we focus on a heuristic interpretation
of the function h(x). First, let W be a BEC and consider the
operator TBEC defined as

TBEC(g) =
g(z2) + g(2z − z2)

2
, (11)

where g(z) is a bounded and real valued function over [0, 1].
The relation between the Bhattacharyya process Zn and the
operator TBEC is given by

E [g(Zn)|Z0 = z] =

n times︷ ︸︸ ︷
TBEC ◦ TBEC ◦ · · · ◦ TBEC(g) = TnBEC(g),

(12)
where the formula comes from a straightforward application
of (6). A detailed explanation of the dynamics of the functions
TnBEC(g) is provided in Section III of [10]. In short, a simple
check shows that λ = 1 is an eigenvalue of the operator TBEC

with eigenfunctions v0(z) = 1 and v1(z) = z. Let λ∗ be the
largest eigenvalue of TBEC other than λ = 1 and define µ∗
as µ∗ = −1/ log2 λ

∗. Then, the heuristic discussion of [10]
leads to the fact that µ∗ is the largest candidate that we could
plug in (10). For this choice, the function h(x) represents the
eigenfunction associated to the eigenvalue λ∗, namely,

h(x2) + h(2x− x2)

2
= 2−1/µ

∗
h(x). (13)

A numerical method for the calculation of this second eigen-
value was originally proposed in [9] and it yields µ∗ = 3.627.
Furthermore, in Section III of [10] it is also heuristically
explained how µ∗ = 3.627 gives a lower bound to the scaling
exponent of the BEC.

Now, let W be a BMSC and consider the operator TBMSC

defined as

TBMSC(g) = sup
y∈[x

√
2−x2,2x−x2]

g(z2) + g(y)

2
. (14)

The relation between the Bhattacharyya process Zn and the
operator TBMSC is given by

E [g(Zn) | Z0 = z] ≤ TnBMSC(g), (15)

where the formula comes from a straightforward application of
(5). Similarly to the case of the BEC, λ = 1 is an eigenvalue



of TBMSC and we write the largest eigenvalue other than λ = 1
as 2−1/µ

∗
. Then, the idea is that µ∗ is the largest candidate

that we could plug in (8) and, for this choice, the function
h(x) represents the eigenfunction associated to the eigenvalue
2−1/µ

∗
, namely,

sup
y∈[x

√
2−x2,2x−x2]

h(x2) + h(y)

2
= 2−1/µ

∗
h(x). (16)

In Section IV of [10] it is proved that the scaling exponent µ is
upper bounded by 6: this result is obtained by showing that the
eigenvalue is at most 2−1/5, i.e., µ∗ ≤ 5 and, then, that µ∗+1
is an upper bound on the scaling exponent µ. Furthermore, it
is conjectured that µ∗ is a tighter upper bound on the scaling
exponent µ. A more refined computation of µ∗ is proposed
in [11], which yields µ∗ ≤ 4.702, and, therefore, µ ≤ 5.702.
Theorem 1 solves the conjecture of [10] by proving that µ∗
is an upper bound on the scaling exponent µ. In addition,
we show an algorithm which guarantees a provable bound on
the eigenvalue, thus obtaining µ ≤ 4.714 for any BMSC and
µ ≤ 3.639 for the BEC.

IV. MODERATE DEVIATIONS: JOINT SCALING OF ERROR
PROBABILITY AND GAP TO CAPACITY

In the scaling exponent regime, Pe is fixed and we study
how fast I(W )−R tends to 0 as a function of N . In Section III-
A of [15], we also point out that Pe can go to 0 polynomially
fast in N , without changing the scaling between I(W )−R and
N . The following theorem, whose proof is in Section IV-B of
[15], shows that, by allowing a less favorable scaling between
I(W )−R and N , Pe goes to 0 sub-exponentially fast in N .

Theorem 3 (Joint scaling: exponential decay of Pe):
Assume that there exists a function h(x) which satisfies the
hypotheses of Theorem 1 for some µ > 2. Consider
transmission over a BMSC W with capacity I(W )
using a polar code of rate R < I(W ). Then, for any
γ ∈ (1/(1 + µ), 1), the block length N and the block error
probability under successive cancellation decoding Pe are s.t.

Pe ≤ N · 2−N
γ·h(−1)

2 ( γ(µ+1)−1
γµ )

,

N ≤ β3
(I(W )−R)µ/(1−γ)

,
(17)

where β3 is a universal constant which does not depend on W
or on γ, and h(−1)2 is the inverse of the binary entropy function
defined as h2(x) = −x log2 x − (1 − x) log2(1 − x) for any
x ∈ [0, 1/2]. If W is a BEC, the less stringent hypothesis (10)
on µ is required for (17) to hold.

In short, formula (17) describes a trade-off between gap to
capacity and error probability as functions of the block length
N . Indeed, let γ go from 1/(1 +µ) to 1: on the one hand, the
error probability goes faster and faster to 0, since the exponent
γ ·h(−1)2

(
γ(µ+1)−1

γµ

)
is increasing in γ; on the other hand, the

gap to capacity goes slower to 0, since the exponent µ/(1−γ)
is increasing in γ.

As concerns the possible choices for µ in (17), by con-
structing a function h(x) as in the proof of Theorem 2, we
immediately obtain the valid choices µ = 4.714 for any BMSC
and µ = 3.637 for the special case of the BEC.

Note that by picking γ close to 1, we recover the result [7]
concerning the error exponent regime: if the gap to capacity
is fixed and independent of N , then Pe is O(2−N

β

) for any
β ∈ (0, 1/2)2. On the other hand, it is not possible to recover
from Theorem 3 the result of Theorem 1 concerning the scaling
exponent regime. Indeed, pick γ close to 1/(1 + µ). Then,
γ · h(−1)2

(
γ(µ+1)−1

γµ

)
tends to 0, i.e., the error probability is

fixed and independent of N , but N is O
(
1/(I(W )−R)µ+1

)
instead of O (1/(I(W )−R)µ) as in (9).

Finally, let us add the dependency on the Bhattacharyya
parameter Z(W ) to this picture: under the hypotheses of
Theorem 3, it is possible to prove that

Pe ≤ N · Z(W )
1
2 ·N

γ·h(−1)
2 ( γ(µ+1)−1

γµ )
,

N ≤ β4
(I(W )−R)µ/(1−γ)

,
(18)

where β4 is a constant which does not depend on W or on γ.
In short, Pe scales as Z(W ) raised to some power of N , where
the exponent follows the trade-off of Theorem 3. To see that
this is a meaningful bound, consider the case of transmission
over the BEC in the error exponent regime. On the one
hand, formula (18) gives that Pe is roughly upper bounded
by Z(W )

√
N . On the other hand, Pe ≥ maxi∈I Z

(i)
n , where

Z
(i)
n is a polynomial in Z(W ) whose minimum degree scales

roughly as
√
N because of minimum distance considerations.

V. ABSENCE OF ERROR FLOORS

Let C be the polar code with information set I designed
for transmission over the BMSC W ′ with Bhattacharyya
parameter Z(W ′). Then, the actual channel over which trans-
mission takes place is the BMSC W with Bhattacharyya
parameter Z(W ). In the error floor regime, the code C is
fixed and W varies, and we study the scaling between the
error probability Pe and the Bhattacharyya parameter Z(W ).
Note that when we have analyzed the dependency between
Pe and Z(W ) at the end of the previous section, the polar
code changed according to the channel. More specifically,
Theorem 4 relates the Bhattacharyya parameter Z(i)

n (W ) of
the i-th synthetic channel obtained by polarizing W to the
Bhattacharyya parameter Z(i)

n (W ′) obtained by polarizing W ′.
From this, Corollary 5 relates the sum of the Bhattacharyya
parameters at the information positions obtained by polar-
izing W , i.e., P̃e(W ) ,

∑
i∈I Z

(i)
n (W ), to the sum of

Bhattacharyya parameters obtained by polarizing W ′, i.e.,
P̃e(W

′) ,
∑
i∈I Z

(i)
n (W ′). The indices of the information

positions are the same in both sums, since the set I is fixed.
The proof of Theorem 4 is in Section V-B of [15].

Theorem 4 (Scaling of Z(i)
n (W )): Consider two BMSCs

W and W ′ with Bhattacharyya parameter Z(W ) and Z(W ′),
respectively. For n ∈ N and i ∈ {1, · · · , 2n}, let Z(i)

n (W )

be the Bhattacharyya parameter of the channel W (i)
n obtained

from W via channel polarization and let Z(i)
n (W ′) be similarly

2Theorem 3 contains as a particular case also the result in [13], where the
authors prove that N scales polynomially fast in 1/(I(W )−R) and, at the
same time, Pe is upper bounded by 2−N

0.49
.



obtained from W ′. If Z(W ) ≤ Z(W ′)2, then

Z(i)
n (W ) ≤ Z(i)

n (W ′)
log2 Z(W )
log2 Z(W ′) . (19)

If W and W ′ are BECs, then (19) holds if Z(W ) ≤ Z(W ′).

Corollary 5 (Scaling of P̃e(W )): Let W ′ be a BMSC
with Bhattacharyya parameter Z(W ′) and let C be the polar
code of block length N = 2n and rate R for transmission
over W ′. Denote by P̃e(W

′) the sum of the Bhattacharyya
parameters at the information positions obtained by polarizing
W ′, i.e., P̃e(W

′) ,
∑
i∈I Z

(i)
n (W ′), where I is the informa-

tion set of the polar code C. Now, consider transmission over
the BMSC W with Bhattacharyya parameter Z(W ) using the
polar code C and let P̃e(W ) be the sum of the Bhattacharyya
parameters at the information positions obtained by polarizing
W , i.e., P̃e(W ) ,

∑
i∈I Z

(i)
n (W ). If Z(W ) ≤ Z(W ′)2, then

P̃e(W ) ≤ P̃e(W
′)

log2 Z(W )
log2 Z(W ′) . (20)

If W and W ′ are BECs, then (20) holds if Z(W ) ≤ Z(W ′).

Now, let us discuss how the results above imply that polar
codes are not affected by error floors. Denote by Pe(W ) the
error probability under SC decoding for transmission of C over
W and recall from (7) that Pe(W ) ≤ P̃e(W ). Hence, formula
(20) implies that

Pe(W ) ≤ Z(W )
log2 P̃e(W

′)
log2 Z(W ′) . (21)

Note that the upper bound (18) on Pe comes from an identical
upper bound on the sum of the Bhattacharyya parameters P̃e.
Thus, by taking γ ≈ 1 in (18), we have that P̃e(W

′) scales
roughly as Z(W ′)

√
N . Therefore, from (21) we conclude that

Pe(W ) scales roughly as Z(W )
√
N . This fact excludes the

existence of an error floor region, since it proves that the
slope of the error probability increases in modulus with N .
Furthermore, in the discussion at the end of Section IV, we
pointed out that Pe(W ) scales as Z(W )

√
N when W is fixed

and, consequently, the polar code can be constructed according
to the actual transmission channel. Since in the error floor
regime the code cannot depend on the transmission channel,
in terms of the scaling between Pe and Z(W ) nothing is
lost by considering a “mismatched” code. On the other hand,
considering a “mismatched” code yields a loss in rate. Indeed,
if W and W ′ are BECs, then Z(W ) ≤ Z(W ′) implies that
I(W ) ≥ I(W ′). If W and W ′ can be any BMSC, one can
prove that Z(W ) ≤ Z(W ′)2 implies that I(W ) ≥ I(W ′).
Recall that the rate of a polar code for W ′ is s.t. R < I(W ′),
and the rate of a polar code for W is s.t. R < I(W ). As
I(W ) ≥ I(W ′), by constructing a polar code for W , we can
transmit reliably at larger rates.

VI. CONCLUDING REMARKS

Let us summarize the main results contained in this work,
along with directions for future research. First of all, we prove
a new upper bound on the scaling exponent for any BMSC
W . Possibly the most interesting open question concerning
the performance of polar codes consists in improving such a
scaling exponent by changing the construction of the code and
by devising better decoding algorithms. One promising method
interpolates between a polar and a Reed-Muller code and

employs a successive cancellation list decoder [16]. Secondly,
we prove a trade-off between the speed of decay of the error
probability and that of the gap to capacity, which recovers the
existing result for the error exponent regime. Thirdly, we prove
that polar codes are not affected by error floors. However,
when W and W ′ are any BMSC, the results (19) and (20)
hold only if Z(W ) ≤ Z(W ′)2. It remains an open question
whether similar but perhaps less tight bounds still hold for
Z(W ) ∈ (Z(W ′)2, Z(W ′)]. Finally, let us point out that the
techniques described in this paper can be useful in the analysis
of polar codes with general `× ` kernels [17].
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