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Abstract—Arıkan’s polar coding technique is based on the
idea of synthesizing n channels from the n instances of the
physical channel by a simple linear encoding transformation.
Each synthesized channel corresponds to a particular input
to the encoder. For large n, the synthesized channels become
either essentially noiseless or almost perfectly noisy, but in total
carry as much information as the original n channels. Capacity
can therefore be achieved by transmitting messages over the
essentially noiseless synthesized channels. Unfortunately, the set
of inputs corresponding to reliable synthesized channels is poorly
understood, in particular how the set depends on the underlying
physical channel. In this work, we present two analytic conditions
sufficient to determine if the reliable inputs corresponding to
different discrete memoryless channels are aligned or not, i.e. if
one set is contained in the other. Understanding the alignment
of the polarized sets is important as it is directly related to
universality properties of the induced polar codes, which are
essential in particular for network coding problems. Finally we
show that these conditions imply that the simple quantum polar
coding scheme of Renes et al. [Phys. Rev. Lett. 109, 050504 (2012)]
requires entanglement assistance for general channels, but also
show such assistance to be unnecessary in many cases of interest.

I. INTRODUCTION

In Arıkan’s celebrated polarization phenomenon [1], apply-
ing a specific linear transformation called the polar transform
to n instances of a binary-input output-symmetric discrete
memoryless channel (DMC) W induces n synthesized chan-
nels which become either ideal or useless channels as n
grows large. More precisely, when assigned with an index,
the n induced synthesized channels can be classified into two
categories, defining two index sets: the set D(W) of indices
corresponding to good channels and the set R(W) of indices
that belong to bad channels. Polarization is the property that
the sizes of these sets satisfy limn→∞

1
n |D(W)| = I(W) and

limn→∞
1
n |R(W)| = 1 − I(W), and this ensures that polar

codes are capacity achieving [1].
However, the structure of D(W) and R(W) is poorly

understood. In particular, the dependency on W is difficult
to analyze in general. For V a binary-input output-symmetric
DMC different from W, it is unclear if D(W) and D(V) are
aligned or not, i.e. whether D(W) ⊆ D(V) or D(W) ⊇ D(V).
An exception is the case when V is assumed to be a degraded
version of W which implies that D(V) ⊆ D(W) [2]. The
methods introduced in [3] can be used to detect nonalignment
of D(W) and D(V), but not their alignment.

Understanding the structure (and the relation) of the polar-
ized sets D(W) and D(V) is important in several respects.
First, this is directly linked to the universality of polar codes,

if one fixed code can be used for reliable communication over
each member of a given class of channelsW . Universal codes
are important in different coding scenarios, for instance when
the statistics of the actual channel are not known precisely.
Second, several different channels are simultaneously involved
in network coding tasks such as wiretap or broadcast channels,
and alignment is helpful in designing efficient polar coding
schemes. Third, knowledge of the structure and relation of
polarized sets can be helpful in other aspects of polar coding,
e.g. in the construction of polar codes (see [4, Chapter 5]).

Polar coding with successive cancellation (SC) decoding
is not universal in general [3]. However, universality holds
for certain classes of channels with a specific ordering, such
as less noisy comparable channels as explained in [5]. There
has been recent progress in slightly modifying standard polar
codes such that they become universal, however at the cost of
larger blocklengths [6], [7]. Therefore it is of interest to have a
computationally efficient way to determine if for a given class
of channels W standard polar codes using SC decoding are
universal on W or not.

Contributions.— In this article, we introduce a condition
for alignment (Theorem 5) and a condition for nonalignment
(Theorem 3) of two arbitrary binary input symmetric channels.
Applied to several examples of interest, we show that these
conditions are sometimes close in the sense that it can be con-
clusively determined if there is an alignment of the polarized
sets or not. The proof of the alignment bounds is based on the
uncertainty principle of quantum mechanics.

Since aligned polarized sets imply that the corresponding
polar codes are universal with SC decoding, our conditions can
be used to determine if for a given set of DMCs polar codes are
universal or not. We also discuss how the alignment bounds
derived in this paper can be used to determine if quantum
polar codes [8] require entanglement assistance or not.

Notation.— Let [k] := {1, . . . , k} for k ∈ Z+. For x ∈ Zk
2

and I ⊆ [k] we have x[I] = [xi : i ∈ I], xi = [x1, . . . , xi]
and xij = [xj , . . . , xi] for j ≤ i. For two sets A,B ⊆ [n]

we write A ·
⊆ B meaning that A is essentially contained in

B or more precisely |A\B| = o(n). The complement of a
set A ⊆ [n] is denoted by Ā := [n]\A. All logarithms in
this article are with respect to the basis 2. For α ∈ [0, 1],
Hb(α) := −α logα − (1 − α) log(1 − α) denotes the binary
entropy function. We denote the Bhattacharyya parameter of a
binary-input discrete memoryless channel W : {0, 1} → Y by
Z(W) :=

∑
y∈Y

√
W(y|0)W(y|1) ∈ [0, 1]. For some binary



string b ∈ {0, 1}k we denote its binary complement by b̄. The
logical and is denoted by ∧ and the logical or by ∨. The binary
symmetric channel with transition probability α ∈ [0, 1

2 ] is
abbreviated by BSC(α) and the binary erasure channel with
erasure probability β ∈ [0, 1] is denoted by BEC(β). The space
of all Hermitian operators on a finite dimensional Hilbert space
H is denoted by H. We denote the set of density operators on a
Hilbert spaceH by S(H) := {ρ ∈ H : ρ ≥ 0, tr[ρ] = 1}. For a
density operator ρ ∈ S(H) we define its von Neumann entropy
by H(ρ) := −tr[ρ log ρ]. The Pauli matrices are denoted by
σX , σY and σZ . For a matrix A ∈ Cm×n the trace norm is
defined as ‖A‖tr := tr[

√
A†A]. For two maps Φ : A→ B and

Θ : B → C the map Θ◦Φ : A→ C denotes the concatenation
of Φ with Θ.

II. PRELIMINARIES

Given a binary-input output-symmetric DMC W : {0, 1} →
Y , following [1] we define a channel splitting map (W,W)→
(W0,W1) where the synthesized channels W0 : {0, 1} → Y2

and W1 : {0, 1} → {0, 1} × Y2 are given by

W0(y1, y2|u1) =
∑

u2∈{0,1}

1

2
W(y1|u1 ⊕ u2)W(y2|u2) (1)

and

W1(y1, y2, u1|u2) =
1

2
W(y1|u1 ⊕ u2)W(y2|u2), (2)

where u1, u2 are (for symmetric channels) assumed to be i.i.d.
Bernoulli( 1

2 ) distributed. The channel splitting map outputs
two synthesized channels where W0 is more noisy and W1

more reliable than the original channel W. By applying the
transform k = log n times we get n synthesized channels such
that in the limit n → ∞ essentially all synthesized channels
are either almost noiseless or very noisy [1]. A recursive
application of the channel splitting can be visualized in a
polarization tree that defines the notation of the synthesized
channels (cf. Figure 1).
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Fig. 1. Polarization tree up to level 2.

Let Xn be a vector with i.i.d. Bernoulli(p) distributed entries
for p ∈ [0, 1] and n = 2k with k ∈ N. Then, define Un =

GnX
n, where Gn := ( 1 1

0 1 )
⊗ log n denotes the polarization (or

polar) transform. Furthermore, let Y n = WnXn, where Wn

denotes n independent uses of a DMC W : X → Y and let
Zn = VnXn, where V : X → Z denotes another DMC. For

any ε ∈ (0, 1) we consider the four sets

Dn
ε (W) :=

{
i ∈ [n] : Z(Wb(i−1)) ≤ ε

}
(3a)

Rn
ε (W) :=

{
i ∈ [n] : Z(Wb(i−1)) ≥ 1− ε

}
(3b)

Dn
ε (V) :=

{
i ∈ [n] : Z(Vb(i−1)) ≤ ε

}
(3c)

Rn
ε (V) :=

{
i ∈ [n] : Z(Vb(i−1)) ≥ 1− ε

}
, (3d)

where b(i) for i ∈ [n] denotes the binary representation of
the integer i with log n bits. The sets Dn

ε (W) and Dn
ε (V)

define a polar code for W respectively V that is reliable using
SC decoding. Within this article the parameter ε ∈ (0, 1)
can be arbitrary. As discussed in [1] the error probability
of the polar codes for W and V will decay faster for small
ε. Therefore this parameter should be chosen as small as
possible. As a result, for most applications it is convenient
to assume that ε = O(2−n

ν

) for some ν < 1
2 . We note that

in general for an arbitrary DMC W and ε ∈ (0, 1
2 ) we have

Dn
ε (W) = Rn

1−ε(W) ) Rn
ε (W).

Recall that we call two sets, e.g., Dn
ε (W) and Dn

ε (V) being
aligned if Dn

ε (W) ⊆ Dn
ε (V) or Dn

ε (W) ⊇ Dn
ε (V). We say that

these two sets are essentially aligned if Dn
ε (W)

·
⊆ Dn

ε (V) or
Dn

ε (W)
·
⊇ Dn

ε (V).

III. ALIGNMENT OF POLARIZED SETS

In this section we will state and prove our main results
(Theorems 3 and 5), which are two sufficient conditions
for the sets Dn

ε (W) and Dn
ε (V) being aligned or being not

aligned (not even essentially). The conditions can be applied
to arbitrary DMCs W and V. The first criterion, that is derived
in Section III-A and can be used to conclude that Dn

ε (W)
and Dn

ε (V) are not aligned, is based on a simple counting
argument using the polarization phenomenon. The second cri-
terion derived in Section III-C that implies that two polarized
sets Dn

ε (W) and Dn
ε (V) are aligned, is more elaborate and

uses a particular property of the polarization transformation
together with an uncertainty relation from quantum mechanics
for which the (classical) channel has to be embedded into a
quantum-mechanical channel as explained in Section III-B.

For this reason we have to introduce some basic quantum
information theoretic concepts and notations. For a general
overview, see [9]. A binary-input classical-quantum (cq) chan-
nel W : {0, 1} 3 x 7→ ρx ∈ S(H) prepares a quantum
state ρx at the output, depending on a classical input bit
x. The analog of the Bhattacharyya parameter for classical
channels is the fidelity of a cq channel that is defined as
F (W) :=

∥∥√ρ0
√
ρ1

∥∥
tr

. The symmetric Holevo information
is defined as I(W) := H( 1

2 (ρ0 + ρ1))− 1
2 (H(ρ0) + H(ρ1)).

It is straightforward to verify that in case W is a classical
binary-input discrete memoryless channel F (W) = Z(W)
and that the symmetric Holevo information coincides with
the symmetric mutual information. The polarization process
for cq channels works similarly as for classical DMCs [10].
We can define a channel splitting map (W,W)→ (W0,W1),
where the synthesized channels W0 : {0, 1} → S(H⊗H) and
W1 : {0, 1} → {0, 1} ⊗ S(H ⊗ H) are properly defined in
[10].



Proposition 1. For two binary-input cq channels W and V
such that F (W) + F (V) ≤ 1 we have F (W0) + F (V1) ≤ 1
and F (W1) + F (V0) ≤ 1.

Proof: See [5].
Applying Proposition 1 recursively to the polarization tree

given in Figure 1 proves the following corollary.

Corollary 2. Consider two binary-input cq channels W and
V such that F (W) + F (V) ≤ 1. Then F (Wb) + F (Vb̄) ≤ 1
for all b ∈ {0, 1}log n.1

Remark 1. For two binary-input discrete memoryless chan-
nels W and V such that 1 − I(W) + I(V) ≥ 1, we have
|Rn

ε (W) ∩ Dn
ε (V)| = Ω(n).

Remark 1 follows by the polarization phenomenon [1],
[11] which ensures that n(1 − I(W)) = |Rn

ε (W)| + o(n)
and nI(V) = |Dn

ε (V)| + o(n). By replacing W and V the
same argument shows that I(W) + 1 − I(V) ≥ 1 implies
|Dn

ε (W) ∩Rn
ε (V)| = Ω(n).

A. Sufficient conditions for nonalignment

Let W and V be two binary-input discrete memoryless
channels. Remark 1 can be used to derive sufficient conditions
for |Rn

ε (W)∩Dn
ε (V)| = Ω(n) and |Dn

ε (W)∩Rn
ε (V)| = Ω(n).

In the following we will state the conditions for |Rn
ε (W) ∩

Dn
ε (V)| = Ω(n) as the conditions for |Dn

ε (W) ∩ Rn
ε (V)| =

Ω(n) follow by the same argument by swapping W and V. We
can derive conditions on every level of the polarization tree.

Theorem 3 (Level k condition for no alignment). Let k ∈ N0

and ε ∈ (0, 1). If 1−I(Wb)+I(Vb) ≥ 1 for some b ∈ {0, 1}k,
then |Rn

ε (W) ∩ Dn
ε (V)| = Ω(n).

Proof: The level 0 statement follows directly from Re-
mark 1. Remark 1 can be applied at every step of the
polarization tree which proves the assertion.

Remark 2 (Criterion for nonalignment cannot get worse for
higher levels). Using the identiy I(W0) + I(W1) = 2I(W)
we obtain 2 (1− I(W) + I(V)) = 1− I(W0) + I(V0) + 1−
I(W1)− I(V1), which shows that if the conditions that imply
no alignment (cf. Theorem 3) at level k are satisfied they are
also satisfied for all levels ` ≤ k.2

B. Counterpart of a channel

In order to prove the sufficient conditions for alignment of
the polarized sets given in Theorem 5, we need the concept of
a quantum counterpart of a DMC. The quantum counterpart
is useful because its information tranmission capabilities are
directly related to those of the original channel by uncertainty
relations. Such counterpart channels were defined generally in
[12, Sec. IIA] and we give a slightly different presentation
here.

1Recall that for some binary string b ∈ {0, 1}k , we denote its complement
by b̄.

2The opposite is not true. Oftentimes the criterion for no alignment becomes
strictly better by considering higher levels.

Suppose we are given a binary-input DMC W : {0, 1} → Y
characterized by the transition probabilities PY |X(y|x) for
x ∈ {0, 1} and y ∈ Y . To the input and output alphabets
we may associate orthonormal bases of finite-dimensional
vector spaces, which we regard as the state spaces of quantum
systems. Let the input alphabet correspond to the basis |x〉A
of system A and the output alphabet correspond to the basis
|y〉B of system B. By defining the quantum states ϕx =∑

y∈Y PY |X(y|x) |y〉 〈y|B , it is always possible to embed W
into a quantum channel as

W : |x〉 〈x|A 7→ ϕB
x .

Indeed, there are many quantum channels with this action,
as we have not specified the mapping for quantum states
not diagonal in the basis {|x〉}. Since we are modelling a
classical channel, the output at B should always be a convex
combination of the states ϕB

x , a condition we will take care
to enforce in the construction below.

Once in the quantum setting, we may consider the
description of W in terms of the Stinespring dilation
(see [9, Chap. 8]). Let C and D be additional quan-
tum systems isomorphic to B and define the states
|ϕx〉BC

=
∑

y∈Y
√
PY |X(y|x) |y〉B |y〉C , which satisfy

ϕB
x = trC

(
|ϕx〉 〈ϕx|BC

)
. Then, a Stinespring dilation of W

is the partial isometry UA→BCD
W from A to B ⊗C ⊗D such

that

UA→BCD
W |x〉A = |ϕx〉BC |x〉D . (4)

The action of the channel can be expressed in terms
of the dilation as mapping any quantum state ρ to
trCD[UA→BCD

W ρA(UA→BCD
W )†]. The presence of the addi-

tional |x〉D ensures that the output states at B are convex
combinations of the ϕx, as required.

Using UA→BCD
W we can define the quantum counterpart to

W as

Wc : {0, 1} → S(H)

x 7→ σCD
x := trB

(
UA→BCD
W |x̃〉 〈x̃|A(UA→BCD

W )†
)

(5)

for |x̃〉 = 1√
2

∑
z∈{0,1}(−1)xz |z〉. These are the same output

states defined in [12, Eq. 6]. The isometry is not unique,
but all possible isometries are related by isometries involving
the additional systems C and D only, and therefore these
isometries do not change the distinguishability of the outputs
of the counterpart channel. Up to this freedom, the counterpart
channel is essentially unique. An equivalent means of defining
the counterpart is via the channel state. Define the quantum
state

|ψW〉 = 1√
2

∑
z∈{0,1}

|z〉A |ϕz〉BC |z〉D (6a)

= 1√
2

∑
x∈{0,1}

|x̃〉A |σx〉BCD
, (6b)

and denote the associated density operator by simply ψABCD
W .

In the second expression we have used |σx〉BCD
=



1√
2

∑
z(−1)xz |ϕz〉BC |z〉D for the purification |σx〉BCD

of σCD
x . Then the outputs of W are just ϕB

z =
2trACD[|z〉 〈z|A ψW

ABCD], while the outputs of the coun-
terpart Wc are σCD

x = 2trAB [|x̃〉 〈x̃|A ψW
ABCD].

Although defined completely independently, the counterpart
and channel synthesis operations in fact have a particular
relation to each other. This relation is the basis of the quantum
polar coding technique of [8], [12]. For n systems, consider
the channel state

|ξW〉 = 1√
2n

∑
zn∈{0,1}n

|zn〉A |ϕGnzn〉
BC |Gnz

n〉D (7a)

= 1√
2n

∑
xn∈{0,1}n

|x̃n〉A
∣∣σGTnxn〉BCD

. (7b)

The action of Wb is zj → 1
2n−1

∑
z̄i

∣∣∣zj−1
1

〉〈
zj−1

1

∣∣∣Aj−1
1

⊗
ϕB
Gnzn

for the j ∈ [n] such that the binary expansion of
j + 1 is b, where the summation runs over all zk ∈ {0, 1} for
k 6= j [12]. Observe that the output is obtained from ξW by
projecting the jth system of A onto |zj〉, tracing out An

j+1CD
but keeping the first j−1 systems of A. In [8], [12] it is shown
that the polar transform is transposed for the counterpart,
which has the effect of reversing the ordering of inputs. That is,
the same position j corresponds to (Wc)b̄, and the discussion
subsequent to Equation 25 of [12] shows that its action
is xj → 1

2n

∑
x̄j

∣∣x̃nj+1

〉 〈
x̃nj+1

∣∣Anj+1 ⊗ UD
encσ

CD
GTnx

n(UD
enc)†,

where Uenc is the polar transform as a unitary operation:
Uenc |zn〉 = |Gnz

n〉. Up to this unitary, which is irrelevant
for the counterpart channel, this output is obtained from ξW
by projecting system Aj onto |x̃j〉, measuring the subsequent
n− j systems of A in the |x̃〉 basis and tracing out Aj−1

1 B.
On the other hand, the counterpart of Wb involves the

mapping

|x̃j〉 → 1√
2n

∑
zn∈{0,1}n

(−1)xzj
∣∣∣zj−1

1

〉Aj−1
1
∣∣∣zj−1

1

〉Dj−1
1

⊗

|zj〉Dj
∣∣znj+1

〉Dn
j+1 |ϕGnzn〉

BC (8)

where systems Aj−1
1 B are the outputs of the original channel

and CD are the outputs of the counterpart. The output of the
counterpart can be obtained from ξW by again projecting Aj

onto |x̃j〉, tracing out Aj−1
1 B, but now leaving the remaining

A systems untouched rather than measuring them. This shows
that (Wc)b̄ is a degraded version of (Wb)

c, since we can
measure the systems An

j+1 of the latter to obtain the former.
A useful uncertainty relation constrains the fidelities of the

two channels:

Proposition 4. Let W be a binary-input discrete memoryless
channel and Wc be its counterpart as defined above. Then for
every b ∈ {0, 1}log n we have F (Wb) + F ((Wc)b̄) ≥ 1.

Proof: See [5].

Remark 3. In [5] we explain in detail how to derive the
counterpart for three classical DMCs. In particular, we show
that

(i) the counterpart of a W = BEC(β) with β ∈ [0, 1] is
Wc = BEC(1− β) and therefore F (Wc) = 1− β.

(ii) for W = BSC(α) with α ∈ [0, 1
2 ], F (Wc) = 1− 2α.

(iii) for W = BEC(β) ◦BSC(α) with (α, β) ∈ [0, 1
2 ]× [0, 1],

F (Wc) = (1− β)(1− 2α).

C. Sufficient conditions for alignment

Given two binary-input discrete memoryless channels W
and V we can use Corollary 2 and Proposition 4 to de-
rive sufficient conditions for Rn

ε (W) ⊆ Rn
ε (V) or similarly

Rn
ε (W) ⊇ Rn

ε (V) by swapping the role of W and V. We can
derive such conditions on every level of the polarization tree.
With Vc we denote the counterpart of channel V as defined in
Section III-B.

Theorem 5 (Level k condition for alignment). Let k ∈ N0

and 0 < ε < 1. If F (Wb) +F ((Vc)b̄) ≤ 1 for all b ∈ {0, 1}k,
then Rn

ε (W) ⊆ Rn
ε (V).

Proof: Consider n ≥ k and suppose d ∈ {0, 1}n is such
that the synthesized channel Wd is noisy, i.e. F (Wd) ≥ 1− ε.
According to Corrolary 2 together with the assumption of the
theorem this implies that F ((Vc)d̄) ≤ ε. Proposition 4 then
ensures that F (Vd) ≥ 1 − ε. This implies that Rn

ε (W) ⊆
Rn

ε (V).

Remark 4 (Criterion for alignment cannot get worse for
higher levels). Suppose the sufficient conditions at level 1 in
Theorem 5 are satisfied. Then using the inequality F (W0) ≤
2F (W)−F (W)2 and the identity F (W1) = F (W)2 [13, Prop.
17] and 0 ≤ F (W) ≤ 1, we obtain

F (W) + F (Vc) ≤
√
F (W1) + 1−

√
1− F (Vc

0) ≤ 1, (9)

where the last inequality uses F (W1) + F ((Vc)0) ≤ 1 which
is given by assumption. This argument can be applied to each
level and thus shows that if the assumptions in Theorem 5 at
level k are satisfied they are also satisfied for all levels ` ≤ k.

Remark 5 (No improvement after level 0 for BECs). In case
W or V is a BEC, the sufficient conditions in Theorem 5 cannot
be improved by going to higher levels than level 0. Let W be a
BEC(α). The level 0 condition requires that α ≥ F (Vc). One
condition of the first level is Z(W0) + F ((Vc)1) ≤ 1. Since
W is a BEC we know that Z(W0) = 2Z(W) − Z(W)2 =
1− β2. Moreover F ((Vc)1) = F (Vc)2 and thus as β ∈ [0, 1]
the condition from level 1 coincides with the one from level
0. This argument carries over to higher levels. Note that in
case V is a BEC the same justification can be applied as the
counterpart channel of a BEC is a BEC again (see Remark 3).

In [5] it is explained how to apply the alignment bounds
for DMCs with a non-uniform input distribution.

IV. APPLICATIONS

In this section we demonstrate the performance of Theo-
rem 3 and Theorem 5 on the example of a BSC/BEC pair with
a uniform input distribution. Let W : X → Y be a BSC(α)
for α ∈ [0, 1

2 ] and V : X → Z be a BEC(β) for β ∈ [0, 1].



Consider a uniform input distribution, i.e., X ∼ Bernoulli
(

1
2

)
.

According to [14, Ex. 5.4, p. 121] and [5, Prop. 2.2] we know
that for β ≤ 4α(1 − α) the channel V is less noisy than
W and hence Dn

ε (W)
·
⊆ Dn

ε (V) and Rn
ε (W)

·
⊇ Rn

ε (V). To
determine a region where Rn

ε (W) ⊆ Rn
ε (V) we can use the

technique derived in Section III-C which ensures that this is
the case if Z(W) − Z(Vc) ≤ 1. (This is the condition at
level 0.) Recalling that Vc = BEC(1 − β) (see Remark 3)
then gives β ≥ 2

√
α(1− α). As discussed in Remark 5 this

criterion cannot be improved by considering higher levels as
the channel V is a BEC. Using the technique explained in
Section III-A (cf. Theorem 3) we can determine regions where
|Rn

ε (W) ∩ Dn
ε (V)| = Ω(n) or |Dn

ε (W) ∩ Rn
ε (V)| = Ω(n).

Figure 2 summarizes the results about the alignment properties
of the polarized sets Rn

ε (W), Rn
ε (V), Dn

ε (W), and Dn
ε (V) for

all pairs (α, β) ∈ [0, 1
2 ]× [0, 1].

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

α

β

Rn
ε (W) ⊆ Rn

ε (V) (level 0)
|Rn

ε (W) ∩ Dn
ε (V)|=Ω(n) (level 4)

I(X,Y ) = I(X,Z)

|Dn
ε (W) ∩Rn

ε (V)|=Ω(n) (level 3)

Dn
ε (W)

·
⊆Dn

ε (V), Rn
ε (W)

·
⊇Rn

ε (V)

Dn
ε (W)

·
⊆ Dn

ε (V)

Rn
ε (W)

·
⊇ Rn

ε (V)

Rn
ε (W) ⊆ Rn

ε (V)

Fig. 2. Alignment of the polarized sets defined in (3) for W = BSC(α), V =
BEC(β) with α ∈ [0, 1

2
] and β ∈ [0, 1] and a uniform input distribution. The

black line shows the region where the two channels have the same capacity,
β = Hb(α). In the blue region, V is less noisy than W and hence [5,
Prop. 2.2] ensures Dn

ε (W)
·
⊆ Dn

ε (V) and Rn
ε (W)

·
⊇ Rn

ε (V). The remaining
colored regions are determined using the conditions given in Theorems 3 and
5 evaluated for different levels.

In [5] we explain how the alignment bounds (i.e., Theo-
rems 3 and 5) can be applied to the setup of a BSC-BEC and
a BEC-BSC wiretap channel. We further discuss a BSC/BEC
broadcast channel.

V. ENTANGLEMENT ASSISTANCE FOR QUANTUM POLAR
CODES

Recently, the polarization phenomenon has been used to
construct efficient codes, quantum polar codes, for transmitting
quantum information. These codes inherit several desirable
features of (classical) polar codes. In particular, quantum
polar codes achieve high rates while allowing for an efficient
encoding and decoding [8], [10]. An important open question
regards the necessity of preshared entanglement: Specifically,

whether the coding scheme requires the sender and receiver
to share a nonzero amount of maximally entangled states
before the protocol begins. In [5], we show that the alignment
bounds derived in this paper can be used to determine whether
quantum polar codes require entanglement assistance or not.
We provide examples of quantum channels where no preshared
entanglement is needed (e.g., a low-noise BB84 channel) and
examples where entanglement assistance provably is needed
(e.g., a high-noise depolarizing channel).

VI. CONCLUSION

We derived two analytical conditions that can be used to
determine the alignment of polarized sets between different
DMCs. The condition of Theorem 3 that recognizes situa-
tions where there is no alignment (not even essentially) uses
a simple counting argument. The condition of Theorem 5,
which identifies scenarios where there is an alignment of the
polarized sets, is based on the uncertainty principle of quantum
mechanics.
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