
Depth-Workload Tradeoffs for Workforce Organization

Hoda Heidari and Michael Kearns
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, Pennsylvania 19104

{hoda,mkearns}@cis.upenn.edu

Abstract

We introduce and consider the problem of effectively or-
ganizing a population of workers of varying abilities. We
assume that arriving tasks for the workforce are homoge-
neous, and that each is characterized by an unknown and one-
dimensional difficulty value x ∈ [0, 1]. Each worker i is char-
acterized by their ability wi ∈ [0, 1], and can solve the task
if and only if x ≤ wi. If a worker is unable to solve a given
task it must be forwarded to a worker of greater ability. For a
given set of worker abilitiesW and a distribution P over task
difficulty, we are interested in the problem of designing effi-
cient forwarding structures forW and P . We give efficient al-
gorithms and structures that simultaneously (approximately)
minimize both the maximum workload of any worker, and
the number of workers that need to attempt a task. We iden-
tify broad conditions under which workloads diminish rapidly
with the workforce size, yet only a constant number of work-
ers attempt each task.

1 Introduction
In crowdsourcing applications and many other settings, a
large workforce is available for a series of relatively homo-
geneous tasks — for instance, labeling images for the pres-
ence or absence of a particular object such as cars. Most ex-
isting crowdsourcing systems treat the tasks as if they were
of uniform difficulty, treat the workers as if they were of
uniform ability, and simply assign the next task to the next
available worker 1. In reality, it is quite natural to assume
there may be significant variation in both task difficulty and
worker ability, and to incorporate this variation into the de-
sign of the system.

We thus consider the problem of effectively organizing
a population of workers of varying abilities. We consider
a simple model in which we assume that arriving tasks for
the workforce are homogeneous, and that each is character-
ized by an unknown and one-dimensional 2 difficulty value
x ∈ [0, 1]. Each worker i is characterized by their ability

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See (Salek, Bachrach, and Key 2013) for an exception that is
directly related to the models we examine here.

2The important generalization to the multi-dimensional case
carries a number of definitional and technical challenges, and is
left to future work.

wi ∈ [0, 1], and can solve the task if and only if x ≤ wi If a
worker is unable to solve a given task then it must be passed
or forwarded to a worker of greater ability. We assume that
the worker abilities wi are known (perhaps via prior obser-
vation or experience)3.

Our primary interest is in the design of efficient forward-
ing structures for a given workforce. While the problem of
efficiently incentivizing a workforce (Horton and Chilton
2010; Ho et al. 2012; Ghosh and McAfee 2012) is also inter-
esting and important, we separate it from our concerns here.
It is perhaps fair to think of our results as applicable to set-
tings where workers are either salaried employees willing to
attempt the tasks given to them, or are paid a fixed amount
per task, as is common on Amazon’s Mechanical Turk. In
the latter case we can view a worker’s ability value as a con-
flation of their true underlying ability, and their willingness
to perform quality work at the offered rate.

For our notion of efficient workforce organization, we
consider a bicriteria approach. More specifically, we seek
to find forwarding structures that simultaneously keep both
maximum workload and depth small. Maximum workload
measures the largest workload of any worker in the work-
force under a given forwarding structure, while depth mea-
sures the number of forwarding steps required before a task
is solved. Small maximum workload ensures that no single
worker is (unnecessarily) overburdened, and can be viewed
as a sign of efficient use of a large workforce — we might
hope (and indeed shall show) that under natural assump-
tions, individual workloads can diminish rapidly with the
workforce population size n, meaning that the system is
scaling well. Small depth is motivated by the desire to solve
individual tasks as rapidly as possible by keeping forwarding
chains short (which also minimizes expenditures if workers
are paid per task). We note that these two criteria may be
in tension with each other, leading to tradeoffs. For exam-
ple, if we optimize only for depth we would choose to give
all tasks to our best worker, who would then have the high-
est possible workload. It is also easy to create examples in
which optimizing the workload results in large depth. We are
interested in the problem of designing forwarding structures

3For example, by standard arguments if we drawO(log(n)/ε2)
tasks at random and give them to all n workers, we can estimate all
the wi to within an additive ε, which suffices for our results.

that approximately minimize both workload and depth, and
the types of structures required to do so.

We consider two variants of the framework above that dif-
fer in precisely how they measure workloads. In the Pay-to-
Forward (P2F) model, the only way for workers to discover
whether they are able to solve a given task is to attempt it,
which then counts against their workload. In other words, in
the P2F model, attempting a task and failing is just as oner-
ous as solving it. In the Free-to-Forward (F2F) model, we
assume that workers are able to quickly assess whether they
are able to solve a given task without actually attempting it,
and thus tasks they must forward do not count against their
workload. Mathematically, in the P2F model a given task is
charged against the workload of every worker along the for-
warding chain that ends in a worker able to solve it, whereas
in the F2F model only this final successful worker’s load is
charged.4. We note that a number of our results are the same
or similar in both models, but there are sufficient differences
that it is worth identifying them separately.

As more concrete motivations for these two variants,
first consider a crowdsourcing system in which workers are
asked to locate specific objects in images (Salek, Bachrach,
and Key 2013). While task difficulty and worker ability may
vary considerably, no worker can simply glance at an im-
age and immediately determine whether they will succeed
or fail — a certain amount of time must be spent studying
and scanning the image either way. In this example the P2F
model is appropriate. In contrast, consider a system in which
workers are asked to judge the accuracy of technical articles.
A worker whose specialty is computer science might be able
to immediately see that they have been assigned an article on
organic chemistry, and know they cannot solve the task be-
fore investing any effort. In this case the F2F model seems
more fitting.
Results: Omniscient Workload. We begin our results by
considering the optimization of the maximum workload, re-
gardless of depth.5 We first consider the optimal omniscient
algorithm for task assignment that is allowed to observe the
actual difficulty x of each arriving task, and assign it to
any worker in the worker population W capable of solv-
ing it; since workloads in the weaker P2F and F2F models
can clearly only be higher, the optimal omniscient algorithm
provides an important baseline or lower bound. For any W
and task difficulty distribution P , we give a precise char-
acterization of the optimal omniscient maximum workload
MW,P , and give an efficient algorithm for computing its for-
warding policy.
Results: P2F and F2F Workloads. We then consider how
closely MW,P can be approximated in the P2F and F2F
models, and by what types of forwarding structures. Follow-
ing a preliminary result showing that it always suffices to
consider probabilistic DAGs as the forwarding structure in
both models, we then show that in the F2F model,MW,P can
always be achieved, and give an efficient algorithm for com-

4Note that the acronyms could equally well stand for “Pay to
Fail” and “Free to Fail”.

5As noted above, optimizing depth alone is trivial, since we can
simply assign every task to the best worker.

puting the witnessing DAG. We also show that the weaker
forwarding structure of trees cannot always achieve MW,P

in F2F in general, and thatMW,P cannot always be achieved
in the P2F model regardless of the structure.
Results: Near-Optimal Depth-Workload Tradeoffs. We
conclude by giving our main positive approximation results
for both models in the bicriteria setting. More specifically,
we show that by hierarchically arranging the workers in bal-
anced b-ary trees, we can simultaneously come within a mul-
tiplicative factor of b2 ofMW,P in terms of maximum work-
load, with a resulting depth of log(n)

log(b) in both the P2F and F2F
models. Thus, if b = 2 we obtain a 4-approximation to the
optimal omniscient workload with only log(n) depth. More
generally, we can tune b to decrease the depth at the expense
of workload. We also provide a lower bound for this class
of structures, showing that maximum workloads must be at
least

√
bMW,P in the worst case. We apply the upper bound

to the natural model where worker abilities are distributed as
a power law, and show that the maximum workload dimin-
ishes with the population size, even for constant depth.

We freely acknowledge that the models studied here make
a variety of strong and simplifying assumptions that prevent
their immediate applicability to real-world crowdsourcing
systems and other labor organization problems. These in-
clude:
• One-dimensional task difficulty; surely in reality most set-

tings demand a multi-dimensional notion.
• Lack of detailed treatment of incentive issues.
• No modeling of variable costs for forwarding tasks.
• No modeling of weaker workers being able to solve any

task, but with greater effort.
• No modeling of imperfect task completion.
Despite these simplifications, we shall see that there is al-
ready a fair amount to say in our streamlined model; we
leave the consideration of the important extensions above
(some of which we suspect are both conceptually and tech-
nically nontrivial) to future work.

1.1 Related Work
To our knowledge, this work is the first to study a model of
a workforce with varying ability, and to examine workload-
depth tradeoffs and associated algorithmic and representa-
tional issues. There are, however, several tangentially related
strands of existing research that study labor organization de-
sign and various other tradeoffs.

Organizational Design and Hierarchical Structures:
There is a large body of work on the design and architecture
of organizations; see (Hax and Majluf 1981) for a survey. In
most of these works, hierarchical organizational structures
are considered and their properties are studied. In (Garicano
2000) the focus is on the tradeoff between communication
and knowledge acquisition costs. In (Cremer, Garicano, and
Prat 2007), a theory of optimal organizational languages is
developed, and a tradeoff between facilitating internal com-
munication and encouraging communication with other or-
ganizations is identified. The authors study the optimal com-
munication structure and language, and the organizational

structure that supports them. (Ferreira and Sah 2012) stud-
ies organizations with individuals whose expertise differ in
content and breadth, and derives implications for the trade-
off between specialization of knowledge and communica-
tion costs, the role of top and middle managers, and the op-
timal design of hierarchies. (Prat 1997) studies the proper-
ties of a hierarchy of processors where the organization must
pay each employed processor a wage which is an increasing
function of the processor’s capacity.

Crowdsourcing: While our models are not specifically
limited to crowdsourcing settings, they are related to the
growing literature on this subject, as we too study efficient
ways of organizing and utilizing a large pool of workers. We
discuss some of the works more relevant to our interests.
In (Salek, Bachrach, and Key 2013), the authors employ a
model that shares our emphasis on the variability of task
difficulty and worker ability. They propose a probabilistic
graphical model to localize objects in images based on re-
sponses from the workforce, and improve upon natural ag-
gregation methods by simultaneously estimating the diffi-
culty and skill levels. In (Ho and Vaughan 2012), the goal is
to assign tasks to a set of workers with unknown skill sets
in a way that maximizes the benefit to the crowdsourcing
system. The authors show that the algorithm they propose to
this end is competitive with respect to the optimal offline al-
gorithm which knows the skill levels when the number of
workers is large. This model differs from ours in that its
focus is on workers with unknown skill levels who arrive
in an online fashion, and does not consider depth-workload
tradeoffs. In (Horton and Chilton 2010) the authors study
the reservation wage one needs to offer to a workforce to
incentivize them to perform the task. In (Ho et al. 2012),
incentive mechanisms are devised to discourage workers
from putting in as little effort as possible, and crowdsourcers
from denying payments. In (DiPalantino and Vojnovic 2009)
and (Ghosh and McAfee 2012), a game-theoretic model of
crowdsourcing is proposed, in which workers act strategi-
cally and seek to maximize their total benefit. (Karger, Oh,
and Shah 2011) studies achieving a desired level of reliabil-
ity cheaply, using the fact that crowdsourcers often increase
their confidence in the result of crowdsourcing by assigning
each task multiple times and combining the results. (Zhang
et al. 2012) studies mechanisms for task routing that aim to
harness people’s abilities to both contribute to a solution and
to route tasks to others, who they know can also solve and
route. See also (Law and Ahn 2011) for a thorough discus-
sion of different task routing methods.

Load Balancing. Somewhat indirectly related to our work
is the literature on load balancing, where the goal is to dis-
tribute jobs among a set of machines to optimize the over-
all performance of the system; for instance, see (Azar et al.
1999; Adler et al. 1995; Ghosh et al. 1999). Our model dif-
fers from these works in that task assignments are driven by
worker abilities, while in the load balancing scenario, the
decision to assign a task to a machine is usually based on
its current workload only. Also, in our model there are no
arrival and departure times defined for the tasks, rather they
stay in the system until they are solved.

2 Workforces with Varying Abilities: Models
In our model, an organization will consist of a set of nwork-
ers W = {1, 2, . . . n}, where the ability of worker i is de-
noted by wi ∈ [0, 1]; we use i and wi interchangeably to
denote workers. The ability of a worker determines the diffi-
culty of the tasks she is capable of solving: a worker with
ability w can solve all the tasks with difficulty less than
or equal to w 6. We assume without loss of generality that
w1 ≤ w2 ≤ ... ≤ wn = 1, and the difficulty of every task
lies in [0, 1]; the best worker wn can thus solve any task.

Any task given to the organization has an unknown dif-
ficulty denoted by x ∈ [0, 1] and sampled from a known
distribution P . Without loss of generality, we may repre-
sent the task distribution P by 〈A1, A2, ..., An〉 where Ai =
Prx∼P [wi−1 < x ≤ wi] is the mass of tasks solvable by wi
but not by wi−1 (where we define w0 = 0).

In order to solve a given task, an algorithm assigns it to
one of the workers, who attempts to solve it. If the worker
is unsuccessful, the algorithm forwards it to another worker
of greater ability. This chain of forwarding continues un-
til the task is solved by the first worker of sufficient abil-
ity. Note that the most general notion of forwarding would
allow an arbitrary, centralized algorithm that (probabilisti-
cally) decides which worker to forward the task to, given
the sequence of failures so far. However, as we shall show,
it turns out that such an algorithm can always be repre-
sented by a decentralized probabilistic DAG over the work-
ers themselves, and that in many cases near-optimal perfor-
mance is possible with even simpler decentralized forward-
ing schemes, such as trees over the workers.

In this paper, we are interested in algorithms and represen-
tations for task forwarding, and their performance according
to two criteria: workload and depth. We discuss and define
workload first.

In the Pay-to-Forward (P2F) model, we assume that any
worker who receives a task along a forwarding chain has
their workload charged for attempting that task. Thus, for
any algorithmA that determines how to forward tasks forW
and P , we define the workload `i of worker i to be the prob-
ability that i receives a task drawn from P and forwarded
according to A. In the Free-to-Forward (F2F) model, we as-
sume that only the worker who actually solves the task is
charged, and thus define the workload `i of worker i to be the
probability that i is the last worker to receive a task drawn
from P and forwarded according to A. Clearly for any A all
workloads `i in the P2F model are greater than or equal to
those in the F2F model.

As noted in the Introduction, the P2F model is appropri-
ate for settings in which the only way workers can determine
whether they are able to solve a task is to attempt it, which
consumes the same effort whether they succeed or fail; and
the F2F model is appropriate for settings in which, despite
the actual task difficulty value x being unobservable, work-

6Our notion of ability can also incorporate some unobservable
mixture of a worker’s actual ability, and the quality of work they are
willing to do at a given rate — for instance, a high-ability worker
may choose to be lazy at the given rate and do no or low-quality
observed work.

ers can immediately assess whether they have the requisite
skills to solve a problem, and forward it if not.

In both the P2F and F2F models, we define the depth of a
forwarding algorithmA as the maximum number of workers
in any forwarding chain of A under W and P . Our interests
here are in forwarding algorithms and schemes that simul-
taneously achieve small maximum workload and depth. As
noted in the Introduction, these two criteria may often be in
conflict with each other, necessitating the tradeoffs that we
study here. In general, we are most interested in cases in
which workloads diminish rapidly with n, with depth grow-
ing only very slowly with n (logarithmic or even constant);
we shall eventually see this is possible under fairly broad
conditions.

3 The Omniscient Model
Regardless of W and P , it is clear how to minimize depth
alone in task forwarding: simply assign every task to wn =
1, who can solve all tasks (at the expense of the worst pos-
sible maximum workload of 1). In contrast, if we ask what
the smallest possible maximum workload is, the answer de-
pends strongly on W and P , and is far from obvious. Since
we need to compare the workload performance of algo-
rithms in the P2F and F2F models to some baseline, we con-
sider an idealized omniscient model, in which a forwarding
algorithm is actually allowed to observe the true task diffi-
culty x ∼ P , and immediately assign it to any worker ca-
pable of solving the task. Obviously workloads in the P2F
and F2F models, where x is not observed, can only be worse
than the workload-minimizing algorithm in the omniscient
model. We now give a precise characterization of the optimal
maximum workload in the omniscient model, and show that
it can be computed efficiently. Perhaps surprisingly, later we
shall see that this ideal can actually be achieved or well-
approximated in the P2F and F2F models under fairly gen-
eral circumstances.

Theorem 1 In the omniscient model (and therefore in both
the P2F and F2F models), any algorithm for task assign-
ment has maximum workload greater than or equal to
maxi

∑n
j=i Aj

n−i+1 .

Proof Every task x > wi−1, must eventually be solved
by one of the workers i, i + 1, ..., n. So at least one of
these (n − i + 1) workers, say w, must have workload
greater than or equal to Pr[x>wi−1]

n−i+1 = (Ai+...+An)
n−i+1 . The

maximum workload among all workers cannot be less than
w’s workload, therefore we have maxj `j ≥ (Ai+...+An)

n−i+1 .
This holds for any i, therefore we can conclude maxj `j ≥
maxi

(Ai+...+An)
n−i+1 .

We next show that in the omniscient model, there is an
efficient algorithm for assigning the tasks that achieves this
lower bound.

Theorem 2 In the omniscient model, there is a task as-
signment algorithm whose maximum workload is equal to
maxi

∑n
j=i Aj

n−i+1 , and the assignment policy used by this algo-
rithm can be computed in time O(n2).

Figure 1: Workload-optimizing assignment in the omni-
scient model.

We omit the full proof due to space considerations but we
sketch the algorithm here. The algorithm uses a policy that
determines how to distribute tasks among workers, that is, it
computes the probability with which a task wi−1 < x ≤ wi
is given to worker j (j ≥ i ≥ 1). It does this inductively
from the hardest to easiest tasks, always maintaining the in-
variant that the workloads of workers above the current diffi-
culty level are equal. Note that the (pre-)computation of this
policy occurs only once, and then is used to assign arriving
tasks.

The policy computation first sets all the workloads to 0. If
a task is in (wn−1, wn], there is no choice other than giv-
ing it to worker n. So the current workload of worker n
is increased to An. Now if a task is in (wn−2, wn−1], ei-
ther worker n or worker n − 1 must eventually solve it. If
An−1 ≤ An, the task is given to worker n − 1 with proba-
bility 1, making its current workload An−1. If not, in order
to minimize the maximum current workload, we split An−1
between these two workers such that their current workload
becomes equal. Similarly at each step when we are deciding
how to distribute a task in (wi−1, wi], we do it in a way that
the maximum current workload is minimized. This contin-
ues until all the tasks assignment probabilities are computed.
In Figure 1, a visualization of this procedure is given.

For the remainder of the paper, we denote the maxi-
mum workload of the omniscient algorithm on a distribu-
tion P , by MW,P , which we have established is equal to
maxi

(Ai+...+An)
n−i+1 .

4 F2F and P2F: DAGs Suffice
In this section, we present a useful result that we shall
employ in the subsequent sections. We show that in both
the F2F and P2F models, the class of arbitrary randomized
forwarding algorithms is no more powerful than the class
of probabilistic DAGs, with respect to both workload and
depth.

We require the following notation. In a DAG (and there-
fore a tree) structure, we denote the probability that a task is
initially assigned to worker i by Ii, and thus

∑n
i=1 Ii = 1. In

addition, the weight on edge uv, denoted by pu,v , specifies
the probability that worker u forwards a given task to v, in
the case she fails to solve it herself. Thus

∑n
v=u+1 pu,v =

1. Note that throughout, when talking about a “structure”,
whether DAG or tree, we not only refer to the specific net-

work structure, we also consider the edge weights (if appli-
cable) and initial probabilities on the vertices to be part of
the structure.

Theorem 3 In both the F2F and P2F models, for any ran-
domized task forwarding algorithm A, there is a probabilis-
tic DAG G such that the workload of every worker, and the
depth, are the same in A and G.

Proof Observe that upon initialization, A has no informa-
tion about the value of the given task x, and therefore it must
have a fixed distribution P0 over the first worker the task is
given to. Now consider the point where A has forwarded the
task to k ≥ 1 workers wi1 < wi2 < ... < wik , they have all
failed, and A must decide who to forward the task to in the
next step.

Note that the only information A has about x so far is
that x ∈ (wik , wn] and is distributed with respect to P in
that range, since the information previous workers provided
about x by failing is subsumed by the fact that wik failed to
solve it, that is:

Prx∼P [x | (x > wi1) ∧ (x > wi2) ∧ ... ∧ (x > wik)] =
Prx∼P [x | (x > wik)]

So A has to forward the task based on a fixed distribution,
call it Pik , over wik+1, wik+2, ..., wn. It is now easy to see
that A can be represented as a DAG: Let G be a complete
DAG7 in which for every worker u and every worker v with
higher ability than u, the weight on edge uv is the probabil-
ity that A forwards a task to v right after u’s failure. This
probability can be easily obtained from the fixed distribu-
tion Pu. Also the probability that a node gets selected in the
initial step can be obtained from P0. It is clear that on any
given task, G and A have exactly the same forwarding be-
havior, and therefore the workload of every worker and the
depth are the same in both of them.

5 Workload-Minimizing Structures
We now consider the optimization of workload alone in the
P2F and F2F models. We compare the workloads of optimal
DAGs and trees with the omniscient algorithm, and show
that in the F2F model there always exists an efficiently com-
puted DAG with maximum workload equal to MW,P . We
show that that the same is not possible for trees. For the P2F
model, we show that even the class of DAGs cannot always
achieve maximum workload equal to MW,P . We then pro-
ceed to consider workload-depth tradeoffs in Section 6.

5.1 The F2F Model
We first show that in the F2F model, there is a DAG that
achieves maximum workload equal to the omniscient opti-
mal MW,P .

Theorem 4 In the F2F model, there always exists a DAG G
whose maximum workload is equal to MW,P . In addition,
there is an efficient algorithm for constructing G.

7A DAG is complete if in its topological sort, each node points
to all the nodes with higher indices.

Proof Consider the smallest index, say j, for which we
have (Aj+...+An)

n−j+1 = maxi
(Ai+...+An)

n−i+1 . If there exists a
DAG with maximum workload equal to MW,P , then in that
DAG, wj , ..., wn should never get any task with difficulty
x ≤ wj−1, otherwise at least one of them will have work-
load larger than (Aj+...+An)

n−j+1 = maxi
(Ai+...+An)

n−i+1 , resulting
in max workload larger than MW,P . An immediate conse-
quence is that the initial probability of workers j, ..., n, i.e.
Ij , ..., In must be zero and the only node that can have edges
with non-zero probability to them is worker (j − 1).

That being said, if j > 1, in order to build the optimal
DAG, we do the following: first we build the optimal DAG
G1 for w1, ..., wj−1 and 〈A1, .., Aj−1〉, then build the opti-
mal DAG G2 for wj , ..., wn and 〈Aj , ..., An〉. To combine
G1 and G2, we use the initial probability of vertex i ≥ j in
G2 as edge weight on the edge from worker (j−1) to i, and
we set Ii to 0. It is easy to see that combining the two DAGs
this way results in the optimal DAG for w1, ..., wn and P .

This suggests a recursive procedure for building the opti-
mal DAG when j > 1. However, we still need to deal with
the case where j = 1 and the workload must be divided
equally among all workers.

For this remaining case w1, ..., wn and 〈A1, ..., An〉 are
such that the omniscient algorithm gives every worker the
same workload, equal to (A1+...+An)

n . Algorithm 1 (which
we call WED) presents an efficient procedure with run-
ning time O(n2) that generates a DAG with max workload
(A1+...+An)

n for this case.

ALGORITHM 1: Algorithm WED for Computing the
Workload Equalizing DAG in the F2F Model

Data: A task distribution P = 〈A1, A2, ..., An〉 with
MW,P = (A1+...+An)

n
Result: A weighted DAG G

I1 ← (A1+A2+...+An)
nA1

;
V (G)← {w1};
E(G)← ∅;
if n=1 then

return;
else

P ′ ← 〈(1− I1)A1 +A2, A3, ..., An〉;
H ←WED(P ′) i.e. the workload optimal DAG for
P ′;
for i← 2 to n do

I ′i ← the initial probability of worker i in H;
end
V (G)← V (G) ∪ V (H);
E(G)← E(H);
Add edges from w1 to every vertex in V (H);
for i← 2 to n do

p1,i ← I ′i;
Ii ← (1− I1)I ′i;

end
end

This algorithm is the recursive form of the following in-

ductive construction:
Induction statement: for k ∈ N workers, if P is such

that MW,P = (A1+...+Ak)
k , then there is a DAG G for which

the maximum workload in G is equal to MW,P .
Induction basis: For k = 1 workers, the optimal DAG is

trivial. It is a single node and we have to give all the work-
load A1 to the only worker available i.e. I1 = 1.

Induction step: Suppose for a set of k < n workers,
we know how to build the optimal DAG to have the work-
load of every worker equal to (A1+...+Ak)

k . Now suppose
we are given a set of n workers with ability w1, w2, ..., wn,
and the task distribution 〈A1, .., An〉 such that MW,P =
(A1+...+An)

n .
Note that in order to have a DAG in which everyone has

workload equal to (A1+...+An)
n , this must hold for w1 as

well. Since w1’s workload is equal to I1 × A1, I1 must be
equal to (A1+...+An)

nA1
then.

To build the rest of the optimal DAG, observe that for
workers w2, ..., wn, there is no difference between a task in
[0, w1] and one in (w1, w2] i.e. all of them can solve both.
Therefore we can assume the remaining mass on [0, w1] is
actually on (w1, w2] and find the optimal DAG for the re-
maining workers and task distribution.

According to the induction hypothesis, for the task distri-
bution 〈A1(1−I1)+A2, A3, ..., An〉, we can find the optimal
DAG say H , that gives equal workloads to w2, ..., wn. Sup-
pose the initial probability on node i inH is I ′i . Now we con-
structG, in the following way: Add a vertex forw1 toH and
set the initial probability of this vertex to (A1+...+An)

nA1
. Then

set the probability on the edge from w1 to wi, to I ′i . Also set
the initial probability of vertex i > 1 inG to Ii = I ′i(1−I1).

We claim that in G, w1, ..., wn all get equal workloads.
For w1 this obviously holds due to the way we chose I1.
For the nodes in H let’s look at the task distribution they
receive from outside of H , i.e. either initially or from w1.
With probability (1 − I1), a task is initially forwarded to
a node in H; we know that such task, has distribution
〈A1, ..., An〉. With probability I1 the task is forwarded ini-
tially to w1, and if w1 forwards the task to some one in
H , all we know about the task is that it is from the dis-
tribution 〈0, A2, ..., An〉. Combining the above distributions
with respect to the probability that each happens, we get the
distribution I1〈0, A2, ..., An〉+ (1− I1)〈A1, A2, ..., An〉 =
〈(1− I1)A1, A2, ..., An〉.

Now according to the induction hypothesis, H is optimal
for this task distribution, giving w2, ..., wn equal workload.
Therefore we can conclude G is giving equal workload to
everyone.

We next show that in the F2F model, the weaker class of
trees does not suffice to achieve maximum workload MW,P .

Theorem 5 In the F2F model, for n > 2 workers, there
are worker abilities W and a task distribution P for which
the maximum workload in any tree is strictly larger than
6
5MW,P .

Proof Let Pε = 〈A1, A2, A3〉 where A1 = 1
3 , and A2 =

(13 + ε) and A3 = (13 − ε) with 0 < ε ≤ 1
3 . We claim

that for this task distribution the optimal DAG is unique, and
because this unique DAG is not a tree, we conclude that there
exists no tree with the same (optimal) max workload.

Obviously MW,P = 1
3 in this case. To have a DAG with

the same max workload, we must initially give every task to
worker 1. So the workload of worker 2 is p1,2(13 + ε) which
must be equal to 1

3 , therefore p1,2 = 1/3
1/3+ε < 1, and as a

result p1,3 > 0, meaning that the optimal DAG is not a tree.
It is easy to see that for P 1

3
, the maximum workload of the

optimal tree is 2
5 , proving the claimed lower bound.

The above theorem confirms that in the F2F model, the
class of trees is not as powerful as the class of DAGs in terms
of the maximum workload. One question we would like to
address is how large this gap can be. Later in Section 6, we
will see that for any task distribution P , we can find a tree T
such that the maximum workload in T is less than or equal
to 4MW,P , yielding a constant-factor approximation to the
optimal DAG.

5.2 The P2F Model
We next see that for the P2F model, even the optimal DAG
cannot always achieve the omniscient optimal maximum
workload. This already holds for a very simple case of two
workers, and the task distribution P = 〈 12 ,

1
2 〉.

Theorem 6 In the P2F model, there are worker values W
and a distribution P for which the maximum workload of the
optimal DAG is strictly larger than 4

3MW,P .

In Section 6 we will see that in the P2F model, for any
task distribution P , the maximum workload in the optimal
tree (and as a result optimal DAG), is less than or equal to
4MW,P .

6 Near-Optimal Depth-Workload Tradeoffs
Armed with a firm understanding of workload-only opti-
mization in the omniscient model, and for DAGs and trees in
the P2F and F2F models, we now finally turn our attention to
workload-depth tradeoffs. We shall need the following defi-
nition:

Definition A well-balanced b-ary tree T is a tree with
branching factor b (1 ≤ b ≤ n− 1), such that:

1. Worker n is located at the root (first layer); the next b best
workers are direct children of worker n; the next b2 best
workers are the children of the nodes in second layer, and
so on. The worst workers are the leaves in the tree.

2. If we sort the nodes in any layer, say d, in a decreasing
order, and then sort the children of each of those nodes in
a decreasing order as well, it must be case that nodes in
layer (d+ 1) are properly sorted in a decreasing order.

Less formally, we simply take a balanced b-ary tree, and
place the workers from best to worst in a top-to-bottom, left-
to-right fashion. It is easy to see that the depth of the well-
balanced b-ary tree is logn

log b . One example of a well-balanced
b-ary tree is illustrated in Figure 2 for b = 3.

Unless otherwise specified, we assume that only leaves
have non-zero probabilities of being initially assigned a task,

Figure 2: The b-ary tree structure with b = 3. Vertices are
ordered by worker index, from the best (n, wn = 1) down to
the worst (1).

and that these probabilities are such that every node at the
same depth has the same probability of having a task initially
assigned to a worker in their subtree.

We show that in a well-balanced b-ary tree of size n, not
only do we achieve a depth that increases very slowly with n,
the maximum workload we get is a constant factor approxi-
mation of MW,P . The intuition for why such trees provide a
good trade-off is that for a given depth, they (approximately)
minimize the difference in ability between the task sender
and the immediate receiver. In this way we avoid the pos-
sibility of missing too many qualified workers in between,
which in turn could result in large maximum workload.

Theorem 7 In the F2F and P2F models, for any task distri-
bution P , the maximum workload in a well-balanced b-ary
(b ≥ 2) tree of depth logn

log b is less than or equal b2MW,P .

Proof We prove the theorem for the P2F model. Since
workloads are only lower in the F2F model, the theorem
holds there as well.

Consider the well-balanced b-ary tree T where the only
nodes with non-zero initial probabilities are the leaves. Note
that here we assume n = bm+1−1

b−1 (m ∈ N), i.e. the last layer
of the well-balanced tree is complete. If it is not the case, we
can add sufficient number of workers with ability zero to the
set of workers to make n of the desired form. Note that by
doing so, we may at most multiply the number of workers
by a factor b, but as those additional workers cannot solve
any task, MW,P remains the same. We also set the initial
probability on every leaf to 1

bm .
We claim that for any P , in this tree the workload of each

worker is less than or equal b2MW,P . First note that our
claim holds for the leaves in T . The workload of each leaf
say l is equal to Il. Since Il = 1

bm ≤
b
n ≤ bMW,P , we have

`l ≤ b2MW,P . Note that here we used the fact MW,P ≥ 1
n

which holds by definition of MW,P .
We shall make use of the following assertion.

Proposition 8 In the P2F model, the workload of worker i
in a tree T is equal to:

`i = Ii +
∑
j→i

Hj × Prx∼P [wj < x]

whereHj is the probability that a task x is initially assigned
to a worker in the subtree rooted at node j, and j → k
means node j is a direct child of node k.

Observe that according to Proposition 8, for a non-leaf
worker i, we can write the following:

`i =
∑
j→i

(Hj × Prx∼P [wj < x])

≤ max
k→i

Prx∼P [wk < x]×
∑
j→i

Hj

= Prx∼P [wk∗ < x]×
∑
j→i

Hj

= Pr[wk∗ < x]×Hi

where k∗ = argmink→i wk.
Using the above inequality, we next find an upper bound

for the workload of a node at depth d in T . Note that at depth
d, Hi =

1
bd

. Also k∗ ≥ i− bd+1. So:

`i ≤ Hi × Pr[wk∗ < x] ≤ 1
bd
× Pr[wi−bd+1 < x].

Now note that since i has depth d, we have i ≥ n− (b1 +

b2 + ... + bd) = n − bd+1−1
b−1 + 1. Therefore i − bd+1 ≥

n− bd+2−b
b−1 , and we can write:

`i ≤
1

bd
× Prx∼P [wi−bd+1 < x]

≤ 1

bd
× Prx∼P [wn−bd+2 < x]

≤ b2
(

1

bd+2
× Prx∼P [wn−bd+2 < x]

)
≤ b2MW,P

where the last inequality follows from Theorem 1 since
we have:

MW,P = max
r

(Ar + ...+An)/(n− r + 1)

= max
r
Prx∼P [wr−1 < x]/(n− r + 1)

≥ Prx∼P [wn−bd+2 < x]/(bd+2)

This completes the proof.

In Figure 3 we illustrate the depth-workload tradeoff pro-
vided by Theorem 7. For a large value of n, each curve is
parameterized by the branching factor b — i.e. each curve
is traced out by varying b from n (smallest depth of 1) to 2
(largest depth of log(n). The x axis then measures the re-
sulting depths, and the y axis the corresponding maximum
workloads given by Theorem 7. The curves differ in the
value of MW,P that is assumed, ranging from 1/n (rapidly
diminishing omniscient optimal workload) to a constant in-
dependent of n. Clearly smaller workloads are desirable;
each curve can thus be thought of as providing an upper
bound on the Pareto optimal curve for the corresponding bi-
criteria problem. We see that for smallMW,P , there is essen-
tially threshold behavior of our bound — unless we choose a

Figure 3: Illustration of Theorem 7.

sufficiently large depth (small branching factor), our bound
is vacuous, but then rapidly falls to 0. At larger MW,P , the
decay of workload with depth is more gradual.

The maximum workload upper bound given in Theorem 7
degrades with the branching factor b at a rate of b2; it is not
clear in general whether any such dependence is necessary.
The following theorem, however, shows that at least

√
b de-

pendence is necessary within the class of balanced trees and
the P2F model.

Theorem 9 In the P2F model, for any n ∈ N and b =
2, ..., (n − 1), there is a task distribution P and a set of n
workersW for which any well-balanced b-ary tree results in
maximum workload greater than or equal

√
b

3 ×MW,P .

Proof (Sketch) Given n and b, let P be the uniform distribu-
tion and let wi = 0 for i ≤ (n−b−1) and wi =

(i−n+b+1)
(b+1) .

It is easy to see that in this case MW,P = 1
(b+1) . By solv-

ing a suitable optimization problem, it can be shown that for
P,W , a well-balanced b-ary tree results in maximum work-
load larger than 1

3
√
b
, even if we allow the initial distribution

of tasks over the leaves to be arbitrary, and also allow an
arbitrary probability that the root receives an assigned task
directly.

6.1 Constant Depth and Diminishing Workloads
We conclude with an application of Theorem 7 to a natural
parametric model of worker abilities that results in perhaps
the best tradeoff we could hope for. Consider the case where
MW,P = 1/nα for some constant 0 < α ≤ 1 — that is, the
maximum workload diminishes rapidly as a function of the
workforce size n. (We shall shortly give natural assumptions
onW for which this holds.) By choosing b = nβ , Theorem 7
yields maximum workload at most b2/nα = 1/nα−2β . Thus
as long as 2β < α, the well-balanced tree will also give an
inverse polynomial workload decay with n, while the depth
log(n)
log(b) = 1/β will only be constant.

For example, consider the case where wi = (in)
a for

some a ≥ 1, and P is the uniform distribution. In this para-
metric family for W , if a < 1 we get concave improve-
ment of workers with i, so successive workers are improv-

Figure 4: Worker ability as a function of index under the
model wi = (i/n)a for various a.

ing rapidly; while if a > 1 we have convex improvement,
so the best workers may be far better than the average. See
Figure 4 for examples.

Note that when a > 1 since {Ai}ni=1 is an increasing se-
quence here,MW,P is equal toAn. AndAn = 1−(n−1n)a ≈
a
n using the Taylor expansion of the function f(y) = ya.
Thus we can immediately apply the observations above to
obtain workloads bounded by O(1/n1−2β) with only con-
stant depth 1/β.

Also for the case where a < 1 since {Ai}ni=1 is a decreas-
ing sequence here, MW,P is equal to 1

n . Applying Theorem
7, we obtain workloads bounded by O(1/n1−2β) again with
depth only 1/β.

7 Future Directions
Here are some interesting generalizations and open ques-
tions raised by the results presented here.

• Perhaps the most important generalizations would address
all the unrealistic assumptions of our model mentioned
in the Introduction: multi-dimensional difficulty, incen-
tive issues, variable task forwarding costs, imperfect task
completion, and others.

• We showed that the optimal DAG in the P2F model is
not necessarily as efficient as the omniscient algorithm in
terms of maximum workload. One interesting problem is
to determine how large the gap can be.

• The gap between the b2 workload factor given in Theo-
rem 7 and the corresponding lower bound of

√
b given in

Theorem 9 is large; can it be closed or improved?

• It would be interesting to conduct behavioral experiments
designed to quantify the performance benefits of organi-
zational schemes like those suggested here.

Acknowledgements
We thank Sanjeev Goyal for early discussions of the prob-
lems studied here, and to the anonymous reviewers for help-
ful suggestions on the exposition. Research was supported
by ARO MURI no. W911NF-12-1-0509.

References
Adler, M.; Chakrabarti, S.; Mitzenmacher, M.; and Ras-
mussen, L. 1995. Parallel randomized load balancing. In
STOC, 119–130.
Azar, Y.; Broder, A. Z.; Karlin, A. R.; and Upfal, E.
1999. Balanced allocations. SIAM Journal on Computing
29(1):180–200.
Cremer, J.; Garicano, L.; and Prat, A. 2007. Language
and the theory of the firm. Quarterly Journal of Economics
122(1):373–407.
DiPalantino, D., and Vojnovic, M. 2009. Crowdsourcing
and all-pay auctions. In EC, 119–128.
Ferreira, D., and Sah, R. K. 2012. Who gets to the top?
generalists versus specialists in managerial organizations.
RAND Journal of Economics.
Garicano, L. 2000. Hierarchies and the organization of
knowledge in production. Journal of Political Economy
108(5).
Ghosh, A., and McAfee, P. 2012. Crowdsourcing with en-
dogenous entry. In WWW, 999–1008.
Ghosh, B.; Leighton, F. T.; Maggs, B. M.; Muthukrishnan,
S.; Plaxton, C. G.; Rajaraman, R.; Richa, A. W.; Tarjan,
R. E.; and Zuckerman, D. 1999. Tight analyses of two lo-
cal load balancing algorithms. SIAM Journal on Computing
29(1):29–64.
Hax, A. C., and Majluf, N. S. 1981. Organizational design:
A survey and an approach. Operations Research 29(3):417–
447.
Ho, C. J., and Vaughan, J. W. 2012. Online task assignment
in crowdsourcing markets. In AAAI.
Ho, C. J.; Zhang, Y.; Vaughan, J. . W.; and van der Schaar,
M. 2012. Towards social norm design for crowdsourcing
markets. In AAAI.
Horton, J. J., and Chilton, L. . B. 2010. The labor economics
of paid crowdsourcing. In EC, 209–218.
Karger, D. R.; Oh, S.; and Shah, D. 2011. Iterative learning
for reliable crowdsourcing systems. In NIPS, 1953–1961.
Law, E., and Ahn, L. 2011. Human Computation. Morgan
and Claypool Publishers.
Prat, A. 1997. Hierarchies of processors with endogenous
capacity. Journal of Economic Theory 77(1):214–222.
Salek, M.; Bachrach, Y.; and Key, P. 2013. Hotspotting – A
probabilistic graphical model for image object localization
through crowdsourcing. In AAAI.
Zhang, H.; Horvitz, E.; Chen, Y.; and Parkes, D. 2012. Task
routing for prediction tasks. In AAMAS, volume 2, 889–896.

