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Abstract
As the number of ad exchanges has grown, pub-
lishers have turned to low regret learning algo-
rithms to decide which exchange offers the best
price for their inventory. This in turn opens the
following question for the exchange: how to set
prices to attract as many sellers as possible and
maximize revenue. In this work we formulate
this precisely as a learning problem, and present
algorithms showing that by simply knowing that
the counterparty is using a low regret algorithm is
enough for the exchange to have its own low re-
gret learning algorithm to find the optimal price.

1. Introduction
A display ad exchange (e.g. DoubleClick, AdECN, and
AppNexus) is a platform that facilitates buying and selling
of display advertising inventory connecting multiple pub-
lishers and advertisers. Publishers can select an exchange
to serve an impression each time a user visits one of their
websites. Upon receiving an ad slot, the exchange sells
it to one of their advertisers—often by running an auction
among real-time bidding agents—and pays the publisher an
amount based on the revenue generated from the ad.

With the recent growth in the number of ad exchanges, one
important decision a publisher has to make is which one of
these exchanges to enlist in order to sell their inventory for
the highest price. Unlike traditional settings where prices
are posted, in display advertising the publisher cannot sim-
ply observe the offered prices in advance and choose the
highest paying exchange. There are multiple reasons be-
hind this constraint: First, on the exchange side each price
check often involves running an auction and allocating the
impression to the winner. As the result the publisher can-
not send the same item to multiple exchanges at the same
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time. This combined with the fact that there is very lim-
ited time—on the order of a few milliseconds—to serve an
ad to the user, forces the publisher to commit to using a
particular exchange before observing the prices.

Given that prices cannot be observed in advance, in order to
pick the highest paying exchange publishers have to rely on
experimentation, utilizing different exchanges and seeing
the payoffs realized from each over time. In recent years
great progress has been made to automate decision making
processes in such settings. The so called bandit algorithms
automatically explore between the multitude of available
options (here exchanges) and exploit the most profitable
ones. These algorithms are easy to implement, are incred-
ibly practical, and come with strong theoretical guarantees
on the regret of the operator (here publisher). Therefore,
from the point of view of the publisher, the situation is
largely resolved.

From the point of view of an exchange, however, it is far
from clear what strategy it must employ to maximize rev-
enue. In an ideal world the exchange could look at the
prices offered to the publisher by its competitors, and set
the offering price ever so slightly higher. Any strategic pub-
lisher (e.g. one minimizing regret) would then shift their
inventory towards this exchange, rewarding them for the
higher prices. In practice, however, these prices are not
publicly announced and there is no easy way to discover
them. For instance, because of cookie based targeting, it is
not possible for the exchange to simply find a ’similar’ im-
pression on one of the competing platforms and check its
price. Given that the exchange cannot observe the compet-
ing prices directly, the only way to infer and react to them
is through the actions of the publisher.

Faced with a publisher who selects among exchanges using
a no-regret algorithm, the operator of an exchange must
carefully decide what prices to offer. If the prices are too
low, the publisher will never select the exchange, and if the
prices are too high, the exchange is overpaying. Our goal
in this work is to design a no regret pricing algorithm for
the exchange.
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We assume the prices offered by the competitors is drawn
from an unknown distribution. As we will see in Section 5
this assumption is required for the existence of a no regret
pricing algorithm. Furthermore, we believe that this as-
sumption is in fact realistic: given that each exchange has a
large number of competitors, the response of an individual
exchange will not have a significant impact on the aggre-
gate distribution of the competing prices (this is similar to
the reasoning behind mean-field equilibria).

The first solution that comes to mind is to discretize the
price space and run an off-the-shelf no regret algorithm in
order to find the best price. As we will show in Section 7
this approach does not solve the problem. The main re-
sult of the current paper is a binary-search pricing algo-
rithm that guarantees the exchange pays only a little more
than the best price offered by its competitors, even though
it never observes these prices directly (Section 3,4).

1.1. Related Work

We study a setting in which a seller repeatedly interacts
with a group of buyers, deciding at each time step which
buyer to sell the next item to. In this setting a natural
choice for the seller is to employ low regret bandit learn-
ing algorithms (Lai & Robbins, 1985; Auer et al., 2002;
2003). Bandit algorithms are a popular solution to se-
quential decision making problems, as they require only
limited feedback and have low regret, i.e., they guarantee
performance comparable to the best single action in hind-
sight. While some of the earliest bandit algorithms were
index-based (Lai & Robbins, 1985; Auer et al., 2002), the
EXP family of algorithms (Auer et al., 2003) are designed
for bandit problems where the feedback is generated ar-
bitrarily, rather than stochastically. Bayesian bandit algo-
rithms based on Thompson sampling (Thompson, 1933)
have also been very successful empirically (Graepel et al.,
2010; Chapelle & Li, 2011).

The focus of the present paper is to design a no-regret pric-
ing scheme for a buyer who interacts with a strategic seller
over multiple time periods. The most closely related to our
work are the results in (Amin et al., 2013; 2014). These pa-
pers study a repeated posted-price auction setting consist-
ing of a single strategic buyer and a price-setting seller. The
main results in (Amin et al., 2013; 2014) are pricing algo-
rithms for the seller that guarantee no regret if the buyer’s
discounting factor is small. Compared to our work, Amin
et al. define regret with respect to different benchmarks.
Also in contrast to our model, they assume buyer’s valua-
tion is subject to time discounting, with non-trivial regret
achievable only when the discount rate is strictly less than
1.

Our work is also related to the broad literature on re-
peated auctions, where an auctioneer interacts with buy-

ers and sellers over multiple time steps. Repeated auc-
tions have been studied extensively and from various
angles (Bikhchandan, 1988; Thomas, 1996; Chouinard,
2006). Both empirical (Edelman & Ostrovsky, 2007) and
anecdotal evidence have suggested that in repeated auc-
tions agents use sophisticated algorithms to induce better
payoffs for themselves in the future. Indeed a growing
part of the literature has been dedicated to designing var-
ious strategies and algorithms to improve the future payoff
(Jofre-Bonet & Pesendorfer, 2000; Kitts & Leblanc, 2004;
Kitts et al., 2005; Cary et al., 2007; Lucier, 2009; Gummadi
et al., 2012). Our work is in particular concerned with the
study of pricing in repeated auctions. Some of the previous
papers on this topic are (Bar-Yossef et al., 2002; Kleinberg
& Leighton, 2003; Blum et al., 2003; Cesa-Bianchi et al.,
2013; Medina & Mohri, 2014). These papers mostly con-
sider a simplified setting, focus on the buyer (and not the
seller) side, and assume the buyer behaves in a naive man-
ner. Our work is also related to the study intertemporal
price discrimination, i.e. conditioning the price on buyer’s
past behavior in a repeated auction. Previous work, for in-
stance (Acquisti & Varian, 2005; Kanoria & Nazerzadeh,
2014) examine the conditions under which it is profitable
to engage in this form of pricing.

Finally, we remark that the current paper adds to the grow-
ing line of research in algorithmic game theory investigat-
ing the outcome of games in which players employ some
form of no-regret learning (Roughgarden, 2012; Syrgka-
nis & Tardos, 2013; Nekipelov et al., 2015). As opposed
to classic economics where players are assumed to have
reached an equilibrium, this recent body of work relies on
the weaker assumption that players utilize no regret learn-
ing to learn from their past observations and adjust their
strategies. This idea is compelling especially in online set-
tings, such as the one studied in this work, where players
repeatedly interact with one another in a complex and dy-
namic environment. Our work presents an algorithmic no-
regret response against a no-regret opponent in an auction
environment.

2. Model
We consider a setting where a seller repeatedly interacts
with a group of price-setting buyers, deciding at each time
step which buyer to sell the next item to. In the context of
display advertising, sellers and buyers correspond to pub-
lishers and ad exchanges, respectively; each time step rep-
resents an instance where a user visits the publisher’s web-
site and gives the publisher an advertising opportunity to
sell at any of the advertising exchanges. In practice, an
ad exchange is often an intermediary who runs an auction
among advertisers to allocate the ad, and then determines
how much to pay the publisher (typically based on the rev-
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enue generated from this auction). Nonetheless, by mod-
eling the exchange as a buyer we implicitly assume it has
full control over how much the publisher (seller) is paid.
We argue that this assumption is practical for multiple rea-
sons: First, the amount the exchange pays the publisher
does not have to be tied to the amount it receives from the
advertisers1. Second, even if two are closely related, e.g. if
the exchange decides to pay the publishers a fixed percent-
age of the revenue, it only needs to satisfy this constraint
in sum across all impressions2. Third, the exchange has
full control over the reserve price, which in practice often
directly affects the auction revenue.

Consider a seller selling one unit of an identical good at
each time step to a group of price-setting buyers. Time is
assumed to be discrete and indexed by positive integers.
We study the pricing problem from the perspective of a
buyer interested in this good. At each time step, the seller
must select whether to sell the good to us, or to one of the
outside options. If the seller does not select us, which out-
side option it chooses does not affect our revenue. There-
fore, without loss of generality, we represent the outside
option with a single buyer. Let us denote the price offered
by us (A) and by the outside option (B) for the good at
time t by pAt and pBt , respectively. We assume at each time
step the seller must select between A and B before see-
ing these prices. Once it picks a buyer, the seller will ob-
serve the price offered by that buyer. Note that while this
would be an odd assumption in standard marketplaces, as
noted earlier in the case of the online advertising market,
it is standard practice: First, the publisher cannot send the
same item to multiple exchanges at the same time. Second,
once a user requests a page on the publisher’s website, they
must quickly be served an ad, therefore the publisher sim-
ply does not have enough time to check prices at multiple
exchanges.

Since the seller cannot see the prices before selecting which
buyer to choose, it employs a low-regret strategy to select
the buyer that over time gives her a higher price. The regret
of the seller up to time T is defined as

R(T ) = max{
T∑
t=1

pAt ,

T∑
t=1

pBt } −
T∑
t=1

pXtt ,

where Xt ∈ {A,B} is the buyer chosen by the seller in
time step t. We assume the seller uses a (possibly random-
ized) low-regret3 algorithm to pick Xt’s. We need to be

1Of course, the amount collected from the advertisers deter-
mines the “value” that the exchange has for receiving the ad slot,
but this will be captured in our model by the parameter v, the
buyer’s value for the good.

2Specifically, the exchange can take on the arbitrage risk, by
promising the publisher a minimum price, and recouping the cost
later if needed.

3Or sublinear regret.

careful about the definition of low regret here: in our set-
ting we need the regret to be bounded not just in expec-
tation, but with high probability. We follow the definition
in (Bubeck & Cesa-Bianchi, 2012), and assume the seller’s
strategy satisfies the following: for every δ > 0, with prob-
ability at least 1− δ, seller’s regret up to time T is

R(T ) < cT γ log(δ−1), (1)

where c and γ < 1 are constants (independent of T and
δ). The standard adversarial multi-armed bandits algo-
rithms (Bubeck & Cesa-Bianchi, 2012) satisfy the above
bound with any γ > 1

2 .4

The pricing problem can be defined as follows: at each time
step t, we (as a buyer) would like to set a price pAt . All we
can observe at the end of each round is the actions of the
seller, i.e. whether we are selected or not. Note that in prac-
tice we cannot directly observe when the publisher chooses
our opponent (exchange A does not get a call every time the
publisher sends an impression to exchange B), nonetheless
it is relatively easy for exchange A to know the approxi-
mate amount of traffic the seller sends to other exchanges.
This can be done with either estimating the overall traffic
the publisher receives, or by randomly monitoring the pub-
lisher’s website and observing the fraction of times the ads
on the page are served by exchange A.

We assume the price of the outside option pBt is drawn
i.i.d. from an unknown distributionD with mean µ ∈ [0, 1].
Note that in large market places it is a common practice
(see for example the literature on mean field equilibrium) to
assume each player treats other players’ strategies as sam-
pled from a fixed distribution. Also as we will see in Sec-
tion 5 the assumption that pBt ’s are drawn stochastically
is necessary for the existence of a low regret pricing algo-
rithm. We don’t get to observe our competitor’s prices.

Let v be our value for each unit of the good (v can be
thought of as the value we can get from the advertisers in
our exchange for an advertising opportunity on this pub-
lisher). For simplicity, we treat v as a constant value, but
our results generalize to the case that v is a random vari-
able drawn i.i.d. from a distribution.5 A clairvoyant al-
gorithm that knows µ can simply offer a constant price
slightly higher than µ. At this price, the seller almost al-
ways selects us. So, if we value the good at v > µ, the total
utility earned by the clairvoyant algorithm after T rounds

4More precisely, the EXP3.P algorithm satisfies the regret
bound with γ = 1

2
and an additional polylog term on the right

hand side.
5Note that we are making the assumption that v is drawn each

time independently of other draws of v or other random variables
in the model. In particular, v has to be independent of the price
of the outside option. This assumption is realistic when the set of
goods that are offered for sale are homogeneous, e.g., ad slots on
a single web page on the publisher’s website.
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is asymptotically (v − µ)T . Our objective is to get a total
utility close to this quantity without knowing µ.

The loss of any pricing algorithm can be decomposed into
two components: number of times we are not selected by
the seller when we employ that algorithm, and the “extra”
payment (i.e., amount of payment over µ) we pay the seller
during the rounds we are selected. More formally, let’s de-
fine

not-selected =

T∑
t=1

1[Xt = B],

extra-payment =
T∑
t=1

1[Xt = A](pAt − µ).

The expected regret of the algorithm can be written as:

not-selected · (v − µ) + extra-payment. (2)

Our objective is to set the prices pAt in such a way that
both terms in the above expression are sublinear (o(T )).
Our main result is an algorithm that achieves a bound of
Õ(T

1+γ
2 ) for these regret terms, where γ < 1 is the expo-

nent in the regret bound (1) of the seller.

3. Algorithm
The idea behind our algorithm is simple: note that if we
offer a constant price, the lowest price at which the seller
still chooses us over the outside option without incurring
linear regret is µ. We run a binary search to estimate this
value. The subtlety here is that since the seller does not see
the prices and is allowed some regret, we need to repeat
offering the same price a number of times to accurately de-
cide whether the price is too high or too low. Furthermore,
if the price we offer is too close to µ, the seller can essen-
tially choose arbitrarily without violating the regret bound.
Therefore, the binary search will need to allow for some
margin of error.

For simplicity, we assume the total number of rounds T is
known, and we prove that at the end of the T rounds, our
regret is bounded. Our proposed algorithm is described in
Algorithm 1. The algorithm uses the function f(k) and
constant θ that will be fixed during the analysis. Also the
variable t in the algorithm is only for bookkeeping pur-
poses.

4. Analysis
The main result of this section is the following:

Theorem 1 Consider a run of Algorithm 1 for T steps, and
assume the seller follows a strategy that satisfies the regret
bound (1). Then, with probability at least 1 − O( log TT ),

Algorithm 1 Binary Search Pricing Algorithm
1: l0 ← 0, u0 ← 1, k ← 0, t← 0
2: while uk − lk > T−θ do
3: pk ← (lk + uk)/2
4: Offer the seller a price of pk for f(k) rounds
5: x← # of times the seller accepts the price of pk.
6: lk+1 ← lk, uk+1 ← uk
7: if x > f(k)/2 then
8: lk+1 = (2lk + uk)/3
9: else

10: uk+1 = (lk + 2uk)/3
11: end if
12: t← t+ f(k)
13: k ← k + 1
14: end while
15: Offer a price of uk + T−θ for the remaining rounds.

both the number of times we are not selected by the seller
and the extra payment to the seller are bounded by

O
(
T

1+γ
2 log T

)
.

Proof We start with a few notations. We call the steps
during the binary search while loop (lines 2–14 of Algo-
rithm 1) the exploration phase, and the steps after this loop
(line 1) the exploitation phase. The k’th iteration of the ex-
ploration while loop (with k starting from 0) is called the
k’th exploration phase, or simply phase k.

Since the length of the interval uk−lk decreases by a factor
of 2/3 in each phase, the number of phases of the algorithm
is at most O(log T ). Therefore, using the regret bound (1)
with δ = 1/T and the union bound, we know that with
probability at least 1−O( log TT ), at the end of every phase
(both exploration phases and the exploitation phase), we
have

R(t) < ctγ log(T ). (3)

Throughout the rest of the proof, we assume the above
event happens, and prove that the desired bounds on the
regret of our algorithm follow from this.

The argument is in two steps. First, we show that if the
function f(k) is properly chosen, with high probability, the
algorithm maintains the invariant that the value of µ lies in
the interval [lk, uk]. In particular, this means that at the end
of the exploration phases, the value of µ is at most uk and
is at least lk ≥ uk − T−θ. This implies that in each of
the steps in the exploitation phase, either the seller gets an
expected regret of at least T−θ by not accepting the price
of uk+T−θ, or she accepts and we make an extra payment
that is at most 2T−θ. The second step is to use this fact to
bound the total regret of the algorithm.
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We prove the invariant µ ∈ [lk, uk] by induction. Con-
sider a phase k, and assume µ ∈ [lk, uk]. We show that
the probability that this property does not hold in the sub-
sequent phase is small. To do this, we bound the regret
of the seller in this phase, and show that if the algorithm
makes the wrong decision about lk+1 or uk+1 in this phase,
seller’s regret must be too high.

First, consider the case that µ > (lk + 2uk)/3. We show
that in this case, with high probability the seller accepts the
price pk less than f(k)/2 times. Let x denote the num-
ber of times that the seller accepts the price pk during this
phase. Note that x is a random variable and can depend
on the draws of the price of the outside option as well as
the internal random bits of the seller’s algorithm. We com-
pare the expected total price the seller pays during phases
0 through k with the expected total price she would have
gotten had she always picked the outside option. The latter
value is simply

∑k
i=1 f(i)µ. The total price the seller gets

during phase k can be computed as follows: In x steps dur-
ing this phase, the seller gets a price of pk. In each of the
remaining (f(k) − x) steps, the seller gets a price that is
drawn from a distribution with mean µ. We define a mar-
tingale 0 = Y0, Y1, Y2, . . . , Yf(k) based on this process as
follows: For each i, if the seller selects us in step i of phase
k, we let Yi = Yi−1. Otherwise, we let Yi be Yi−1 plus
the price of the outside option in step i minus µ. Note that
this is in fact a martingale. The total price of the outside
option during this phase is precisely Yf(k) + (f(k)− x)µ.
Therefore, the total price that the seller receives during this
phase is

xpk+(f(k)−x)µ+Yf(k) ≤ f(k)µ−x ·
uk − lk

6
+Yf(k).

For each step in phase i (0 ≤ i ≤ k − 1), the expected
price the seller gets is at most max(µ, pi). Therefore, the
expected total price during these phases is at most

k−1∑
i=0

f(i)max(µ, pi) =

k−1∑
i=0

f(i)µ+

k−1∑
i=0

f(i)max(0, µ− pi)

≥
k−1∑
i=0

f(i)µ+

k−1∑
i=0

f(i) ·
ui − li

2

Therefore, the difference between the total price the seller
gets and the price she would have gotten had she always
picked the outside option is at least

x · uk − lk
6

−
k−1∑
i=0

f(i) · ui − li
2

− Yf(k)

The value of ui − li decreases by a factor of 2/3 in each
phase. Therefore, if x > f(k)/2, the regret of the seller is
at least:

Regret ≥
1

12
(2/3)

k
f(k) −

1

2

k−1∑
i=0

(2/3)
i
f(i) − Yf(k). (4)

This means that if we select f(k) in such a way that
the above value is more than the regret bound (1), the
above event cannot happen, and therefore, the algorithm
makes the right choice and maintains the property that
µ ∈ [lk, uk].

First, we use martingale inequalities to bound the term
Yf(k). Using Azuma’s inequality and the fact that prices are
bounded by 1, the probability that Yf(k) > ε(2/3)kf(k)

is at most 2 exp(−O(ε2(2/3)2kf(k))). In this case, the
regret of the seller is at least ( 1

12 − ε)(2/3)kf(k) −
1
2

∑k−1
i=0 (2/3)

if(i). We need to set f(k) in such a way
that this value is larger than the regret bound of the seller.

Assume f(k) is of the form f(k) = αβk for values α > 0
and β > 1 that will be fixed later. The lower bound (4) on
the regret of the seller can be written as

Regret ≥
α

12
(1 − ε)(

2β

3
)
k −

α

2

k−1∑
i=0

(
2β

3
)
i

=
α

12
(1 − ε)(

2β

3
)
k −

α

2
·
( 2β

3 )k − 1
2β
3 − 1

. (5)

On the other hand, since the value of t at the end of the
k’th phase is

∑k
i=0 f(i), the upper bound (3) on the regret

can be written as

Regret < c log(T )

(
k∑
i=0

f(i)

)γ

= cα
γ
log(T )

(
βk − 1

β − 1

)γ
. (6)

If we pick α =
(
c log(T )

λ

) 1
1−γ

for another constant λ that
will be fixed later, we would have

cαγ log(T ) = λ

(
c log(T )

λ

)1+ γ
1−γ

= λα.

Therefore, after combining lower and upper bounds (5)
and (6), we can cancel α from both sides of the inequality
and obtain:

1− ε

12
(
2β

3
)k − 1

2
·
( 2β

3
)k − 1

2β
3

− 1
< λ

(
βk − 1

β − 1

)γ
Assuming β > 3

2 , the above inequality implies
(

1 − ε

12
−

1

2( 2β
3 − 1)

)
(
2β

3
)
k
< λ

βγk

(β − 1)γ
(7)

We now fix the value of β to β = ( 32 )
1

1−γ . Note that this
value satisfies the assumption β > 3/2. We have:

2β

3
= (

3

2
)

1
1−γ−1

= βγ .

Therefore, inequality (7) reduces to

λ >

(
1− ε

12
− 1

2( 2β
3

− 1)

)
(β − 1)γ .
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This means that if we pick the value of λ to be the ex-
pression on the right-hand side of the above inequality, in-
equality (7) leads to a contradiction. Thus, with probability
at least 1−O( log TT )−2

∑
k exp(−O(ε2(2/3)2kf(k))), the

event “µ > (lk + 2uk)/3 but x > f(k)/2” does not hap-
pen in any phase k. An almost identical proof shows that
the event “µ < (2lk + uk)/3 but x < f(k)/2” does not
happen in these cases either. If these events happen, the al-
gorithm maintains the invariant that µ ∈ [lk, uk] throughout
the exploration steps. The probability that this is violated
is at most

O(
log T

T
) + 2

∑
k

exp(−O(ε2α(
4β

9
)k)).

It is not hard to see that with the above choice of the values
of α and β, the above expression tends to zero as T tends
to infinity.

Given this invariant, in each of the steps in the exploitation
phase (line 1), either the seller incurs a regret of at least
T−θ by not accepting the price of uk+T−θ, or she accepts
and we get a regret of at most 2T−θ. Let y denote the
number of times we are not selected by the seller during
the exploitation phase. We bound the total regret of the
seller compared to the strategy that always selects us using
a method similar to the first part of the proof. Since µ ∈
[li, ui] for every i, in each step during phase i, the price of
the option selected by the seller is at most ui, i.e., at most
ui−li

2 = 1
2 (2/3)

i higher than our price . In each of the y
steps that the seller chooses the outside option during the
exploitation phase, her regret is at least T−θ. Therefore,
the total regret of the seller is at least

yT−θ − 1

2

k∗−1∑
i=0

(2/3)if(i),

where k∗ is the value of k at the end of the algorithm.
Using the regret bound for the seller at the end of the T
steps, we get the following inequality:

yT−θ − 1

2

k∗−1∑
i=0

(2/3)if(i) < c log(T )T γ .

Replacing f(i) = αβi, we obtain:

yT−θ <
α

2

(
2β

3
− 1

)−1

(
2β

3
)k

∗
+ c log(T )T γ

Since uk − lk = (2/3)k, we have k∗ =
log(T−θ)/ log(2/3). Therefore,

(
2β

3
)k

∗
= (

3

2
)
γk∗
1−γ = T

θγ
1−γ

Therefore,

y <
α

2

(
2β

3
− 1

)−1

T
θ+ θγ

1−γ + c log(T )T γ+θ

Furthermore, the total length of the exploration phases is
α
∑k∗−1
i=0 βi < α

β−1T
θ

1−γ . Therefore, even assuming that
the seller never chooses us during the exploration phase,
the total number of times the seller does not chose us can
be written as

α

β − 1
T

θ
1−γ +

α

2

(
2β

3
− 1

)−1

T
θ

1−γ + c log(T )T γ+θ.

Since β is a constant and α = O((log T )1/(1−γ)), the
above expression is at most

O(log(T )T
max( θ

1−γ ,γ+θ)). (8)

Finally, we bound the amount of extra payment (i.e.,
payment beyond µ) made to the seller. By the invariant
µ ∈ [li, ui], we know that in each round in the i’th explo-
ration phase, this extra payment is at most 1

2 (ui− li). Also,
during the exploitation phase, the extra payment is at most
2T−θ per round. Therefore, the total extra payment made
to the seller can be bounded by

1

2

k∗−1∑
i=0

(2/3)
i
f(i) + 2T

−θ · T = O(αT
θγ

1−γ + T
1−θ

). (9)

Now, if we select θ = 1−γ
2 , both expressions (8) and (9)

will be at most O(log(T )T
1+γ
2 ).

5. Extensions
Here, we discuss some of the assumptions we made in our
model. In particular, we sketch how the assumptions that
the number of rounds T is known and that µ should be in
[0, 1] can be relaxed. We also show that the assumption that
the outside option is stochastic is necessary.

Unknown number of rounds The assumption that the
number of rounds T is known can be relaxed using a stan-
dard “doubling” trick. The main observation is that Theo-
rem 1 holds even if the number of rounds turns out to be
not precisely T but a constant multiple of T . Therefore,
we can start running the algorithm with a small value of
T as an estimate for the number of rounds, and each time
we discover that the actual number of rounds is more than
the current estimate, we multiply the estimate by a con-
stant and restart the algorithm from scratch. It is not hard
to show that this algorithm satisfies the same regret bounds
(with larger constants hidden in the O(·) notation).

Range of µ The assumption that the mean µ of the out-
side is between 0 and 1 can be relaxed by adding an initial
“doubling” stage to the binary search algorithm to find an
upper bound M on µ. A term containing the value the up-
per bound M will be added to the regret of the algorithm.
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Arbitrary buyer values If our value for the good offered
by the seller is v, the expression (2) gives the value of our
regret, assuming v > µ. This assumption can be relaxed
with a simple modification of Algorithm 1 that caps the of-
fered price at v. The proof is straightforward and is omitted
due to space constraints.

Non-stochastic outside option Since we offer prices
based on the observed behavior of the seller, it is reason-
able to ask why we assume that the prices offered by the
outside option are drawn i.i.d. from a fixed distribution D.
Consider an alternate model where the outside option can
offer arbitrary prices, and the goal is for our expected to-
tal utility to asymptotically approach (v − µT ) · T , where
µT = E

[
1
T

∑T
t=1 p

B
t

]
. Unfortunately, allowing the out-

side option this much flexibility makes our goal impossi-
ble.

To see this, consider an outside option that simulates our al-
gorithm and offers identical prices, so that the distribution
of pAt and pBt are the same (note that the outside option
can also observe the seller’s behavior, so this simulation is
feasible). Clearly one way for the seller to ensure that her
regretR(T ) = 0 is to select between us and the outside op-
tion via an independent coin toss in every round. However,
in this case our expected total utility will be

E

[
T∑
t=1

1[Xt = A] · (v − pAt )

]
=

T∑
t=1

1

2
· E[(v − pAt )]

=

T∑
t=1

1

2
· E[(v − pBt )]

=
1

2
(v − µT ) · T,

and thus the difference between (v − µT ) · T and our to-
tal utility is linear in T , disallowing the possibility that any
pricing algorithm can have low regret. One potential ap-
proach to get around this impossibility result is to assume
more information about the particular no-regret algorithm
the seller is using. We leave the analysis of this alternative
model as an interesting direction for future work.

6. A Heuristic Algorithm
The idea behind Algorithm 1 was to zero in on the small-
est price the seller is willing to sell her goods for. To do
this, we maintained the invariant that the target price is al-
ways within a shrinking interval around the price we of-
fered. Maintaining this invariant made it possible to theo-
retically analyze the regret of the algorithm: we could use
a simple union bound to handle the highly-correlated er-
ror events, and get around the complexity arising from the
sequential stochastic nature of the errors. This invariant,

however, came at a cost: we needed to offer the same price
many times to ensure that the average response of the seller
gives us a reliable signal about the target price, and make
the decision about the next step based on this reliable sig-
nal. An alternative approach is to forgo the invariant, and
adjust the price based on signals that are unreliable on their
own right, but stochastically lead us in the right direction.
This is what Algorithm 2 does.

There are a few subtleties in the process of updating prices
in Algorithm 2: To ensure that the prices eventually get
closer to the target price we need to update them in a way
that the changes become smaller and smaller as time goes
on. To do this, we update the prices by multiplying or di-
viding the current price by a time-dependent factor. Note
that to ensure our price remains above the target price sig-
nificantly more often than below it, we need to use different
factors for multiplication and division. So every time the
price is rejected we multiply it by a factor of (1 + t−α) for
some 0 < α < 1, and when it is accepted, we divide it by a
smaller factor (1 + t−β) (i.e., β > α). Aside from this, we
leave it to the simulation to determine the best values for
the parameters α and β.

Algorithm 2 Heuristic Pricing Algorithm
1: t← 0, pt ← 1

2
2: while true do
3: Offer the seller a price of pt
4: if the seller rejects then
5: pt+1 = (1 + t−α)pt
6: else
7: pt+1 = (1 + t−β)−1pt
8: end if
9: t← t+ 1

10: end while

While Algorithm 2 is simple and natural, and as we will see
in Section 7 performs well in practice, the fact that the se-
quence of errors it generates is correlated makes it difficult
to analyze its performance theoretically. In the next section
we evaluate the performance of the algorithm via simula-
tions, and leave its theoretical analysis for future work.

7. Simulations
In this section we empirically evaluate the performance of
Algorithm 1 and 2, and compare them with a baseline.

Baseline We compare our algorithms with a naive base-
line that works as follows: Given parameters 0 < ε < 1, it
discretizes the price space (i.e. [0,1]) into 1

ε equally spaced
prices and treats each of these prices as an arm. When the
algorithm offers the price pi the seller, the reward from the
corresponding arm is equal to pi if the seller chooses our
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Table 1. Regret values after T = 106 steps

ALGORITHM NOT SELECTED EXTRA PAYMENT REGRET

ALGORITHM 1 61110 32040 74817
ALGORITHM 2 8585 9227 15236
BASELINE 840149 -908 587196

buyer, and is 0 otherwise. The baseline simply runs the
algorithm EXP3.P (see (Bubeck & Cesa-Bianchi, 2012)).
Note that from a theoretical stand-point we don’t expect
this algorithm to perform well for the following reason:
Given that the seller is playing a no-regret algorithm, in
order for us to observe her eventual reaction to a particu-
lar price, we need to offer the same price to them multiple
times, i.e. long enough for their no-regret algorithm to re-
alize the price change and respond to it. The baseline fails
to do this, and as the result we expect its regret to be high.

Simulation setup The simulation setup is as follows: we
assume the price pBt of the outside option comes from a
uniform distribution on [0, 2µ] where µ = 0.3. For this
and other parameters, we experimented with other values
as well and did not observe any significant difference in the
outcome. For the seller, we use the algorithm EXP3.P (see
(Bubeck & Cesa-Bianchi, 2012)). We take T = 106 and
run both Algorithms 1, 2 with a range of values for their
free parameters (i.e. the function f and the value θ for Al-
gorithm 1, and the values α and β for Algorithm 2). We
track the number of rounds our exchange is not selected by
the seller, the extra payment to the seller, and the overall re-
gret. For the baseline ε = 0.001. The regret values reported
here use a value of v = 1 in the regret expression (2). Each
simulation is repeated 100 times, and the computed values
are averaged over these runs. Confidence intervals are very
small, hence omitted for better readability.

Optimal setting of the parameters For Algorithm 1, we
use the functional form f(k) = a · log(T )2βk (see Sec-
tion 4). A grid search over the ranges a ∈ [0.5, 2.5], β ∈
[1, 2.5], and θ ∈ [0.1, 0.3] reveals that the values a = 2,
β = 1.5, and θ = 0.2 result in the lowest regret. Observe
that the values of β and θ are close to the values derived in
the analysis. For Algorithm 2, a grid search over the range
0 < α < β ≤ 1 finds that the combination α = 0.1 and
β = 0.5 results in the lowest regret.

Comparison of the algorithms In Table 1 we present
the following quantities for each algorithm: The number
of times the price is not accepted by the seller, the extra
payment to the seller, and the overall regret. Figure 7 illus-
trates the total regret of each algorithm as a function of time

in the logarithmic scale. One can see that Algorithms 1 and
2 both significantly outperform the baseline in terms of the
total regret. Furthermore, the regret of Algorithms 1 and 2
are sublinear, while that of the baseline is growing linearly
with time. Also, interestingly algorithm 2 incurs less regret
than Algorithm 1.

Figure 1. Regret of Algorithms 1, 2, and the baseline as a function
of time.

8. Future Directions
We presented a binary search-style pricing algorithm for a
buyer facing a no-regret seller. Our main contribution was
the analysis of this algorithm and showing that it guaran-
tees the buyer vanishing regret. It remains an open ques-
tion whether the regret bound presented here is asymptot-
ically tight. Furthermore, we focused on the buyer side of
the market only and ignored the possibility of the seller re-
sponding strategically to our proposed algorithm. We leave
the equilibrium analysis and the study of the seller-side im-
plications of the algorithm for future work.



Pricing a Low-regret Seller

References
Acquisti, Alessandro and Varian, Hal R. Conditioning prices on

purchase history. Marketing Science, 24(3):367–381, 2005.

Amin, Kareem, Rostamizadeh, Afshin, and Syed, Umar. Learning
prices for repeated auctions with strategic buyers. In NIPS,
2013.

Amin, Kareem, Rostamizadeh, Afshin, and Syed, Umar. Re-
peated contextual auctions with strategic buyers. In NIPS,
2014.
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