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Abstract— Robotic sensors are promising instruments for
monitoring spatial phenomena. Oftentimes, rather than aiming
to achieve low prediction error everywhere, one is interested in
determining whether the phenomenon exhibits certain critical
behavior. In this paper, we consider the problem of focusing au-
tonomous sampling to determine whether and where the sensed
spatial field exceeds a given threshold value. We introduce a
receding horizon path planner, LSE-DP, which plans efficient
paths for sensing in order to reduce our uncertainty specifically
around the threshold value. We report fully autonomous field
experiments with an Autonomous Surface Vessel (ASV) in an
aquatic monitoring setting, which demonstrate the effectiveness
of the proposed method. LSE-DP is able to reduce the uncer-
tainty around the threshold value of interest to 68% when
compared to non-adaptive methods.

I. INTRODUCTION

The analysis of both temporal and spatial dynamics of
environmental phenomena requires large data sets, which
have to be collected in potentially harsh conditions. Recent
advances in robotics facilitate the addition of mobility to
sensors and thus allow to collect data very specifically at
desired locations. The selection of measurement sites is
a difficult problem, which has been addressed in recent
research. In the simplest setting, the objective of such a
selection process is to get uniformly high confidence about
the observed process over a given area. However, in many
cases it might be preferable to set a specific focus on
particular aspects of the phenomenon, for example, where it
crosses a certain critical threshold value. With the targeted
investigation of a threshold value, the observed phenomenon
can be classified into areas that are lower or higher than the
threshold. In this paper we investigate this problem, propose
a solution and apply it to a real environmental monitoring
application. Handling large data sets is a problem in biology
[1], which suggests that focusing on interesting areas may
lead to more efficient analysis of complex ecosystems.

In particular, our work aims at monitoring level sets within
the spatial distribution of cyanobacteria in a lake. Concretely,
we study the distribution of Planktothrix rubescens in Lake
Zurich, which we sense using an Autonomous Surface Vessel
(ASV). P. rubescens is a toxic cyanobacteria, which is
common in pre-alpine lakes and usually blooms in late
summer and fall. Optimal conditions for P. rubescens growth
are a vertically stable water column and a low light regime.
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These are met within the metalimnion (stable layer of highest
temperature gradients), which is localized between 5 and
18 m depth in Lake Zurich [1]. Therefore, P. rubescens
forms a horizontal layer during summer and fall. A 40-year
study of its seasonal abundance in Lake Zurich has shown
that the biovolume of this toxic cyanobacteria has increased
significantly over the last decades [2], emphasizing the
importance of regularly collecting high-density data sets. We
collect measurements with the ASV Lizhbeth [3]. The robot
is equipped with a winch system that allows the user to lower
an aquatic sensor unit into the water (YSI 6600, hereinafter
referred to as probe), which measures the fluorescence of
phycoerythrin, the main pigment of P. rubescens, in relative
fluorescence units (RFU). The winch allows the robot to take
measurements down to a depth of 25 m while moving. The
cylindrical probe is carried in a custom, torpedo-like support
structure (see Figure 1), to minimize drag and ensure a stable
lateral position. Further details about the robotic system and
its applications are provided by Hitz et al. [3].

Fig. 1. The Autonomous Surface Vessel on Lake Zurich on a calm day.
The YSI probe is mounted inside the black and yellow torpedo situated in
between the hulls and is ready to be lowered into the water.

A. Related work

The review of Dunbabin and Marques [4] provides an
extensive overview of applications of robots as mobile
sensing agents. Whereas some applications build on the
passive circulation of agents (such as the Argo floats [5]),
the majority of works use active agents and aim at planning
optimal paths to retrieve the most useful measurements
from the environment. Krause et al. [6] discuss the sensor
placement problem, which consists of selecting the most
informative sites for a given number of sensors. This is a
related problem but it is slightly simpler as the selected sites



for sensors do not have to be connected to a feasible and
efficient path.

Aquatic monitoring projects, like ours, often deploy sub-
mersible robots (autonomous underwater vehicles, AUV).
For such systems, Binney et al. [7] describe a path planning
algorithm with the aim of reducing the overall uncertainty of
the scalar field of interest. In such a scenario, the path can be
planned offline, since the actual values of the measurements
do not influence the planning. Smith et al. [8] discuss
the problem of optimizing measurement resolutions while
considering ocean currents when designing coverage paths
for AUVs. Hollinger and Singh [9] describe an algorithm
to plan paths for multiple agents for searching a target in
a known environment. Their approach is similar to ours as
they also make use of a receding horizon planner to over-
come computational complexity. Decentralized methods to
deploy multiple robots for exploring environmental processes
are discussed by Low et al. [10]. In a different context,
Hollinger et al. [11] discuss the benefit of adaptively planning
measurements for robotic underwater ship inspection, which
is similar in the sense that the inspection robot needs to
adapt its path online. A data-adaptive planner targeted at the
estimation of boundaries is presented by Singh et al. [12].
Their work is similar to ours, however, in their approach
they separate the problem in a coarse coverage run and
a refinement run. Gotovos et al. [13] present the Level
Set Estimation (LSE) algorithm which specifically selects
sampling sites to estimate level sets. However they only
briefly discuss the problem of connecting the selected sites
to a path.

When doing robotic field experiments in a dynamic envi-
ronment, one difficulty arising is the missing ground truth
to compare results against. The NIMS project, which aimed
originally at observing light intensity within a forest canopy
[14] and aquatic environments [15], deals with that challenge
by generating static lighting conditions in a laboratory envi-
ronment in order to create dense ground truth measurements.
We reused the same methodology by doing coverage runs
before and after our experiments.

B. Contributions

In this paper, we propose an approach towards fully
autonomous robotic monitoring of critical thresholds in en-
vironmental phenomena. Our approach builds on the LSE
algorithm [13] and extends it with a path planner that
constrains the selected sites to lie on a feasible path for a
robot. In particular, we use a dynamic programming approach
with a receding horizon to plan a sampling path for the
probe within a predefined vertical transect plane. The core
contributions of this paper are:

1) A receding horizon path planner for the LSE algorithm
for choosing measurement sites on an efficient path.

2) A performance evaluation of the path planner in sim-
ulation and a discussion of reasonable parameters.

3) Results from fully autonomously executed field tests on
a lake, for which we also recorded comparative data
sets on a uniform grid.

II. PROBLEM STATEMENT AND BACKGROUND

We seek to infer knowledge about an unknown scalar
field f : Rd 7→ R (in this application the distribution
of P. rubescens) from samples Yt = {y1, . . . , yt} taken
at locations At = {x1, . . . , xt}, selected from a finite set
of potential measurement sites D ⊆ Rd. Given a constant
threshold h, we seek to classify all points x ∈ D into
either a superlevel set H = {x | f(x) > h} or a sublevel
set L = {x | f(x) < h}. Besides selecting sites xi at which
we require measurements yi, we want to visit these locations
along a path P = 〈x1, . . . , xt〉, ideally as short as possible,
which obeys the motion constraints of the robot.

A. Gaussian process

Gaussian processes (GP)1 offer a principled way to model
the unknown field f non-parametrically, while allowing to
encode certain assumptions about the smoothness of f in
the form of hyper-parameters. A mean function m(x) and
a covariance function (or kernel) k(x,x′) fully specify a
Gaussian process GP(m(x), k(x,x′)) [17]. Whereas the
mean function formulates prior knowledge about the values
of f(x), the kernel function encodes the smoothness of f .
Under the assumption of constant Gaussian measurement
noise with zero mean (yi = f(xi)+ei where ei ∼ N (0, σ2)),
we can formulate the mean, covariance matrix and variance
of the posterior over f as follows [17]:

µt(x) = kt(x)T
(
Kt + σ2I

)−1 Yt (1)

kt(x,x
′) = k(x,x′)− kt(x)T

(
Kt + σ2I

)−1
kt(x) (2)

σ2
t (x) = kt(x,x) (3)

where kt(x) = [k(x1,x), . . . , k(xt,x)]T

and Kt = [k(x, x′)]x,x′∈At

B. Level set estimation

Given a set of noisy measurements Yt at locations At, we
want to classify the set D into the two sets Lt (low) and Ht

(high) which are defined by the threshold value h. To this
end, we use the GP posterior mean µt(x) and variance σt(x)
and take the confidence bounds introduced by Gotovos et. al.
[13] into account:

Ht = {x |µt(x)− β σt(x) > h} (4)
Lt = {x |µt(x) + β σt(x) < h} (5)

Using the predictive variance of the GP ensures that we only
classify points x for which f is higher or lower than the
threshold with high certainty. The parameter β allows to
control the level of required confidence for classification.
In general, not all x ∈ D can be classified into Lt or Ht

leaving a set of remaining uncertain points:

Ut = D \ (Lt ∪Ht). (6)

Our goal is to efficiently gain enough information about
the points in Ut, to classify them according to Equations 4 or

1also called Kriging models in Geostatistics, where they are often used
to model spatial phenomena [16].



5. The LSE algorithm [13] defines the measure of ambiguity
for each unclassified point to assess the need for taking a
sample at its location. Gotovos et al. [13] also discuss differ-
ent measures such as mutual information. In addition to the
basic LSE algorithm, which selects single points sequentially,
they also discuss the batch processing version for the case
where multiple points have to be selected in a single iteration.
They apply a naive path planning scheme using a Traveling
Salesman Problem (TSP) formulation, which connects the
measurement sites selected in a batch. This is related to
our approach in the sense that the expected measurements
along a path are evaluated jointly in a batch. However in
the TSP version the resulting paths in each iteration are
optimal (depending on the applied TSP heuristic) but the
global path resulting from connecting paths of sequentially
selected batches can still be quite inefficient. This motivates
the development of our receding horizon planner.

III. PATH PLANNING

To plan a path within some operation space of dimension
d (usually 2D or 3D), we set up a graph G(V,E) with a set of
vertices V and edges E. In general, any graph could be used.
By adding constraints to its structure, motion limitations of
the robot and application-based restrictions can be encoded.
We discuss specifics of our implementation in Section IV-A.

To compare different measurement paths, a metric is
required to assess the “usefulness” of a path P with re-
spect to the already available measurements. We use the
conditional mutual information of a set A of equally spaced
measurements along P with respect to the already available
measurements Yt.

Ft(A) = MI(f ; yA|yt) =
1

2
log

(∣∣I + σ−2Kt
A

∣∣) (7)

The correlation of yA and yt is defined by Equation 2: Kt
A =

kt(x, x
′)x,x′∈A. Since we want to gain information about

the unclassified areas, we only take unclassified points into
consideration:

F̄t(A) = Ft(Ā) = MI(f ; yĀ|yt) with Ā = A ∩ Ut (8)

We use a dynamic programming approach with which we
plan a path for a receding horizon of fixed size hdp. At
iteration t, this results in a path Pt = 〈xt,1, . . . , xt,hdp

〉 of
which the robot executes the first segment from xt,1 to xt,2.
After that, we re-plan the path with xt+1,1 = xt,2. During
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Fig. 2. Schema of the planning procedure. The sets Vk , considered sequen-
tially, are arranged in columns. The vertices xi are processed in sequence.

each iteration t, the LSE-DP2 algorithm loops over hdp sets
of vertices {Vk}k=1,...,hdp

. The first set only consists of the
starting point xs and the following are built according to
Equation 9. They contain all vertices that are connected to
at least one of the vertices in the previous set. Here, we
assume that all edges have equal traveling cost, for reasons
of clarity3. The sets Vk are shown schematically in Figure 2.
For each vertex xi we initialize the best path p?i to the starting
point xt,1 as an empty sequence.

V1 = {xt,1}
Vk = {x ∈ D | (x′, x) ∈ E ∧ x′ ∈ Vk−1} (9)

p?i = 〈〉

We process the sets of vertices sequentially in a forward
direction. Starting at k = 2, we optimize paths for each
vertex x of Vk by evaluating the combinations of the edges
ex′,x to all possible predecessor x′ and their best paths p?x′ :

p?x = argmax
p∈Px′,x

(
F̄t(p)

)
(10)

Px′,x = {〈p?x′ , ex′,x〉| ex′,x ∈ E} , x′ ∈ Vk−1, x ∈ Vk
Figure 2 shows an example of this procedure schematically.
The part highlighted in blue is processed already, making V3

the set of vertices that is currently processed. The vertex x4 is
currently considered. The best path p?4 is the maximizer of the
mutual information along the three potential paths: 〈p?1, e1,4〉,
〈p?2, e2,4〉 and 〈p?3, e3,4〉. This procedure is very similar to
the Dijkstra algorithm [18]. However, we have to take into
account the diminishing returns property of the conditional
mutual information, which we use as an evaluation metric:
the ”usefulness” of an edge is not constant, but depends on
the other parts of the path. Thus we can not simply add up
the gains of separate edges, but have to re-evaluate the entire
path back to the initial vertex xs for the evaluation at each
vertex. The diminishing returns property is a consequence
of the submodularity of the mutual information function and
results in the following inequality for our example: F̄t(p

?
1)+

F̄t(e1,4) ≥ F̄t(〈p?1, e1,4〉).
During the initial setup of the graph, no information about

the boundaries of the level sets is available, meaning that
the initial setup of the graph might not give the desired
resolution in the unclassified regions (after a certain number
of iterations when |Ut| is relatively small). For this reason,
a predefined number of vertices can be added to the graph,
which lie in the unclassified regions. This can be done in
multiple ways. We discuss the method we implemented in
section IV-A.

The complete algorithm: Algorithm 1 describes the
overall procedure, which repeatedly plans a path and exe-
cutes the first step until all points in D are classified. In
practice, different stopping criteria might be required, for
example, limiting the number of iterations, or the maximal
number of remaining unclassified points.

2LSE-DP stands for Level Set Estimation with Dynamic Programming
3Our approach naturally extends to non-uniform edge lengths.



Algorithm 1 The LSE-DP algorithm
Input: Graph G, planning horizon hdp, starting vertex x0

Output: level sets H and L
1: L0 = ∅, H0 = ∅, U = D
2: t← 1
3: xs ← x0

4: while Ut−1 6= ∅ do
5: Gt ← add adaptive vertices(G,Ut)
6: p?t ← plan path(Gt, xs, hdp)
7: yt ← sample along(〈xs, p?t,1〉)
8: Ht, Lt, Ut ← classify(y1:t)
9: xs ← p?t,1, t← t+ 1

IV. EXPERIMENT SETUP

A. Implementation details

a) GP model details: For our application, we have
chosen an anisotropic squared exponential kernel of the
following form:

k(x, x′) = σf exp
(
−(x− x′)TL (x− x′)

)
, (11)

where L is a diagonal matrix with diagonal elements
(1/l1, . . . , 1/ld) and li is the length scale parameter for the
i-th dimension. The anisotropicity of this kernel function
accounts for the large differences in spatial dynamics that the
problem at hand exhibits. Furthermore, we used a constant
mean function m(x) = mgp. Since we operate in a two-
dimensional space, this yields a set of five hyper-parameters:
[mgp, σf , l1, l2, σ], which were optimized with respect to
the marginal likelihood based on data sets from an earlier
sampling campaign (during summer 2011, [1]).

b) Motion constraints: The robot operates in a two-
dimensional space and uses two different actuators to control
the position along each of the dimensions. The boat is
controlled along a predefined line on the lake with con-
stant speed. The maximal power of the motors and the
minimal speed that can be measured by differentiating GPS
measurements define the range [v̄h,min, v̄h,max] of applicable
speed v̄h along the horizontal axis ~eh. The vertical mo-
tion of the probe is controlled by the winch for which
the power of the motor imposes limits on the maximal
vertical speed: v̄v ∈ [−v̄v,max, v̄v,max]. We translate these
velocity constraints to connectivity constraints in the graph
by defining a range for the inclination that an edge can have:
me ∈ [−v̄v,max/v̄h,min, v̄v,max/v̄h,min].

To minimize the energy consumption of the robot, we
impose further constraints. Accelerating the boat, stopping
and turning around are energetically expensive operations.
Furthermore, a constant horizontal speed aids the control of
the depth of the probe. Since the probe is tethered via a
cable, the speed of the boat influences the depth due to drag
and lift forces (further details in [3]). Therefore, we constrain
the speed of the boat to a constant value: v̄h = v̄h,set and
minimize the number of stops by only allowing a change of
direction at the end of a transect.
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Fig. 3. The gray path shows the path that was previously executed,
along with the positions of samples (gray dots). The pink circles depict
the positions of the vertices and the gray circles the ones that are adaptively
added. The green line shows the planned path. The background is colored
according to the classes low (Lt), high (Ht) and unclassified (Ut).

c) Size constraints: We organize the vertices in the
graph in constantly spaced columns along the horizontal
axis. The example shown in Figure 3 illustrates the columns
of vertices as pink circles. Connections between vertices
are only allowed among neighboring columns and due to
the constraints on the inclination of edges me, vertices of
the same column can not be connected. There remain two
parameters for the density of the vertices: the horizontal and
vertical spacing of the nodes (sh and sv , respectively). The
controller of the boat uses a circle of 3 m radius around
the target point to detect the arrival at the target. Combined
with the positioning accuracy of the GPS receiver (∼ 0.5 -
2 m, depending on the speed of the boat) yields a theoretical
minimal value for sh of 5 m.

d) Adaptive vertices: As described above, we adap-
tively add vertices in each iteration to give the unclassified
areas more chances to be visited. We select their depth from
a uniform distribution over the entire height of the column
and keep them if they are in Ut. In the example of Figure 3,
these additional vertices are shown as gray circles.

Time

Controller

Planner

Model

Arrival at pt,2 Arrival at pt+1,2

dt dt+1

dt+1

Fig. 4. Schematic timeline. Planning is executed early enough to be com-
pleted before arriving at the next vertex. During this time, new measurements
(green circles) are buffered and only added to the model after planning has
completed.

e) Real-time implementation on the robot: With an
increasing number of samples, the planning iterations with
LSE-DP require more time. This has to be considered for
applying the planner in a real-time application on the lake.
Once the boat arrives at a vertex, it would be inefficient in
terms of time and energy to stop and wait for the new path to
be computed. Therefore, we want to finish the new planning
iteration by the time that we arrive at the next vertex, such
that the boat can directly continue with the updated path.
Since the boat is traveling at constant speed, we can estimate
the distance from the vertex at which we have to start the
planning. Thus, given the duration dt that the planner took



to compute the path at iteration t, we predict the duration
of the next planning step by an incremental linear factor:
d̂t+1 = k ·dt, with k ≥ 1. Assuming an exponential increase
is over-conservative, but ensures that the planning algorithm
finishes in time. Figure 4 shows a schematic representation of
the real-time implementation along a timeline. Once the boat
is close enough to the next vertex (closer than d̂t+1 · vh,set),
the new planning iteration is started. While a new path is
computed no measurements can be added to the model. We
buffer them and add them once the planning procedure is
completed.

B. Simulation experiments

We ran simulations on a data set that was previously
acquired in the lake. As dense ground truth, we considered
a GP posterior mean, conditioned on the real measurements.
In simulation, we compared our algorithm to three other
sequential methods to plan a path on the same graph.

1) Random: As a baseline for comparison, we imple-
mented a random selection scheme, which randomly
selects one of the connected vertices of the next
column at each iteration.

2) Greedy Ft: This planner uses mutual information over
all points as described in Equation 7. It does not use
a look ahead, meaning that it greedily plans one step
at a time.

3) Greedy F̄t This method uses the mutual information
of only unclassified points (Equation 8), but also plans
greedily. This is the LSE-DP planner with a horizon
of 1.

The planning horizon for the LSE-DP planner was set to 6.
Larger horizons did not show significant improvements in
our experiments. As the exact ground truth of the data was
available, we used the F1 score to evaluate the quality of the
classification on a dense grid of 10’000 points. Unclassified
points counted as wrongly classified.

C. Field tests

The experiments were conducted on Lake Zurich during
August 2013. Figure 5 shows the location of the experiment
transect, which is 500 m long. We selected the length of
the transect such that the robot can cover it up to 12 times
consecutively. This enabled us to collect data on a uniform
grid before and after the experiment, providing a comparison
data set for the evaluation of the adaptively planned path.
Thus, the experiment procedure consisted of three parts:
(1) Coverage on an uniform grid, (2) the adaptive level set
estimation experiment using the LSE-DP algorithm, (3) a
second coverage run along the same trajectory as the first
one. We assume that the temporal dynamics of P. rubescens
are slow enough to be neglected. Taking coverage data sets
before and after the adaptive run allowed us to validate this
assumption.

The experiments were executed fully autonomously by
the robot using the real-time strategy described above. In
total, we have carried out three experiments on different
days. Besides the initial configuration of the parameters,

500m

Experiment transect
Lake Zurich

Detailed map

Zurich

Fig. 5. Map of the testing area. The testing transect is indicated in orange.

no external input was given to the robot during the entire
run of the experiment. Table I gives an overview of the
parameters that were used during the experiments. The
length scale parameters of the P. rubescens distribution are
quite stable over the summer and the measurement noise
is mainly depending on the probe, which is the same for all
experiments. The constant mean value mgp and the threshold
value h have to be set according to the current density of
P. rubescens cells. Appropriate values were chosen based on
previous experimental work [1]. The planning horizon was
chosen higher than in the simulation experiments described
above as the expected computation times allow this slightly
more conservative choice.

TABLE I
OVERVIEW OF PARAMETERS

Parameter Value Description

M
od

el

l1 148.41 m Horizontal length scale of the GP kernel
l2 1.57 m Vertical length scale of the GP kernel
σf 4.06 RFU Signal noise of the GP kernel
σ 1.1 RFU Measurement noise of the GP kernel
mgp 4.4 RFU Mean function of the GP

G
ra

ph

v̄h,max 1.0 m/s Maximal boat speed
v̄h,set 0.6 m/s Target boat speed
v̄v,max 0.1 m/s Maximal winch speed
sh 55.5 m Horizontal resolution of G
sv 1.77 m Vertical resolution of G

Pl
an

ni
ng

ne 10 Number of samples per edge
nv 15 Number of adaptive vertices per column
h 8 RFU Threshold value for classification
hdp 8 Planning horizon

V. RESULTS

A. Simulation experiments

Figure 6 compares the performance of the different meth-
ods we implemented to plan sampling paths on the graph.
The left plot shows the median performance of each method
against the number of samples. On the right, the worst
case scenario is shown. Clearly and expectedly, the random
version performed worst. The fact that also the random
planner eventually achieves relatively good results after
adding many samples is due to the trellis structure of the
graph, which enforces it to traverse the entire transect.
Furthermore, the adaptive addition of vertices increases the
chances of randomly selecting one in the unclassified region.
Both greedy planners achieve relatively good results on
the long run. Again the structure of the graph works in
their favor. However, both greedy planners have specific



disadvantages when compared to the forward looking planner
(LSE-DP): The first greedy planner (greedy Ft) takes all
points into consideration and thus quickly gains information
about the entire distribution evenly. With increasing numbers
of samples, however, it does not focus on the boundary areas
(by design) and the performance plateaus. The second greedy
planner (greedy F̄t) only focuses on unclassified points. If
no point in the unclassified set can be reached in one step,
the next point has to be chosen blindly. This leads to similar
behavior as the random planner and the worst case shows
for instance that it requires almost three times as many
samples as the LSE-DP algorithm for a score of 0.6. The
LSE-DP planner shows the best performance for two reasons:
1) its score rises quickly, which corresponds to an efficient
classification of the majority of the points, 2) it focuses
best on the unclassified regions, resulting in the highest final
score.

B. Field experiments

In total, we have conducted three experiments and, for
each of them, we have conducted a coverage run before and
after the LSE-DP experiment. Figure 7 shows the results
from one of the experiments. The plot on the top shows
the posterior mean of the GP model inferred from the first
coverage run. The cyanobacterial layer was very stratified,
without a clear maximum along the horizontal direction.
This provided a rather simple instantiation of the problem,
since only two horizontal boundaries were present. However,
situations of thermal stratification are common in aquatic
ecosystems and our data sets are thus quite representative.
The other two experiments have similar distributions. The
second plot shows the classification resulting from the first
coverage run without taking into account the variance-based
confidence bounds (hence all points are classified). The last
plot shows the adaptively planned path with the resulting
classification. The second coverage run was done after the
adaptive run, but is not shown in Figure 7 as it is very similar.

The two coverage runs before and after the LSE-DP
experiment can be used to assess the temporal stability of
the field. In order to compare the two coverage runs, we
evaluated the GP mean on a dense grid of 10’000 points
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Fig. 6. Comparison of simulation results for different planning methods.
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Fig. 7. Results from the field experiment on Lake Zurich. Top: Samples
of the first coverage run with the mean of the GP posterior with the color
representing P. rubescens level in RFU. Middle: The resulting ground truth
classification with the path of the probe in gray. Bottom: Resulting path
from the LSE-DP experiment.

for each run separately. If there were no temporal changes,
the difference of the posterior means should be very small
(i. e., only depend on measurement noise). For the three
experiments, these differences yielded the following RMS
values relative to the maximal measurement value: 8.3%,
3.2% and 2.9%. This indicates temporally stable conditions
for experiment two and three. In the first experiment the
error value is higher. To assess if this had an influence on
the location of the threshold value, we classified the field
based both on the first and the second coverage run. The F1

score between the two classification results returned high
values for all three experiments (0.955, 0.968 and 0.976
respectively), which supports the assumption of temporally
stable conditions for all three experiments.

For comparing the performance of the adaptive LSE-
DP algorithm and the coverage runs, we applied a slightly
different metric: We looked at the variance of the points
having a mean value close to the threshold value. Thus,
we evaluated the GP posterior mean over a dense set Sd
of 10’000 points. From this, we extracted the set of points
which are close to the threshold: Sp = {x ∈ Sd |h− heval <
µ(x) < h + heval} with heval = 1. On these points, we
then evaluated the GP predictive variance. This gives a more
detailed evaluation of the regions around the threshold value,
which we want to focus on.

Figure 8 shows the median (bold) and the 10% and 90%
quantiles of the variance of Sp evaluated for both methods
after each full pass over the transect. The uniform coverage
runs outperform LSE-DP in the beginning as they cover the
space more efficiently. The adaptive planner however is able
to focus on the regions of interest more closely towards the
end of the runs. These results support two conclusions. First,
the uniform coverage runs decrease the uncertainty efficiently
over the entire field. Second, Figure 8 shows that the re-
duction in variance decreases, emphasizing the fact that the
uniform distribution of samples along the grid is not focusing



1 2 3 4

0.2

0.5

1

2

Pass

V
a
ri
a
n
ce

σ
t(
S
p
)

Experiment 1

1 2 3 4

Pass

Experiment 2

1 2 3 4

0.2

0.5

1

2

Pass

Experiment 3

LSE-DPuniform

Fig. 8. The graph shows the median of the predicted variance around the
threshold and the thin lines the 10% and 90% quantiles, respectively. Note:
logarithmic y-axis.

on the regions of interest. Only by specifically and adaptively
focusing on sampling the regions of interest enables LSE-DP
to decrease the variance further. Finally, LSE-DP decreases
the uncertainty around the boundary to 73%, 68% and 71%
for the three experiments when compared to the results of
the uniform coverage runs.

VI. CONCLUSION

In this paper, we addressed the problem of adaptively
estimating level set boundaries in a scalar field using a
mobile sensing agent. For this, we presented the LSE-DP
algorithm, which implements a receding horizon planning
scheme in order to plan non-myopically and overcome the
well-known problems of greedy path planners. Furthermore,
we applied our approach to a real environmental application,
which consists of the monitoring of a toxic cyanobacteria
in a lake using a robotic boat. We implemented the algo-
rithm on the robot and demonstrated the fully autonomous
execution of field experiments on the lake, during which
the planning software ran fully integrated on the boat. The
results from three field experiments over a total distance of
18 km demonstrated that the LSE-DP planner successfully
focuses exploration on the desired boundaries and achieves
higher confidence levels than simple coverage methods in
the same amount of time. In the context of the application
presented, our results will allows biologists to rapidly focus
their research efforts on a subpart of the lake with the boat
being able to identify in-situ regions of interest or punctual
events.

In the future we would like to generalize our approach to
higher dimensions and along with that loosen the constraints
on the planning graph. Furthermore it would be interesting
to incorporate temporal dynamics and conduct experiments
over longer time periods.
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