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Abstract

How should we gather information to make ef-
fective decisions? We address Bayesian active
learning and experimental design problems,
where we sequentially select tests to reduce
uncertainty about a set of hypotheses. Instead
ofminimizing uncertainty per se, we consider a
set of overlapping decision regions of these hy-
potheses. Our goal is to drive uncertainty into
a single decision region as quickly as possible.

We identify necessary and sufficient condi-
tions for correctly identifying a decision region
that contains all hypotheses consistent with
observations. We develop a novel Hyperedge
Cutting (HEC) algorithm for this problem,
and prove that is competitive with the in-
tractable optimal policy. Our efficient imple-
mentation of the algorithm relies on comput-
ing subsets of the complete homogeneous sym-
metric polynomials. Finally, we demonstrate
its effectiveness on two practical applications:
approximate comparison-based learning and
active localization using a robotmanipulator.

1 Introduction

Bayesian active learning addresses the problem of
selecting a sequence of experiments, or tests, to
determine a hypothesis consistent with observations.
This fundamental problem arises in a wide range
of applications such as medical procedures, content
search, and robotics. It has been studied in several
domains, including machine learning (Dasgupta, 2004;
Balcan et al., 2006; Nowak, 2009), statistics (Lind-
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ley, 1956; Chaloner and Verdinelli, 1995), decision
theory (Howard, 1966), and others.

For instance, in automated medical diagno-
sis (Kononenko, 2001) we are presented with hy-
potheses about the state of a patient, and select
medical tests to infer their illness. In comparison-based
learning (Goyal et al., 2008; Karbasi et al., 2012), we
infer a target in a database by sequentially presenting
a user with pairs of candidates, and having the user
select which is closer. In robotic active localization,
the robot attempts to identify its own or an object’s
location by probing, e.g., with touch or vision (Fox
et al., 1998; Kollar and Roy, 2008; Hsiao et al., 2008;
Javdani et al., 2013). In general, the goal is to gather
the necessary information while minimizing test cost.

In this paper, we develop a general framework for
addressing these problems. Instead of indiscriminately
minimizing uncertainty about hypotheses directly, we
aim to reduce uncertainty in a structured way to facili-
tate decision making. We suppose the hypothesis space
is covered by a set of decision regions: Each region iden-
tifies the set of hypotheses for which it would succeed.
Our goal is to select tests that quickly concentrate all
consistent hypotheses in a single decision region.

Special cases of this general problem have been studied.
In the so calledOptimal Decision Tree (ODT) problem,
each decision region corresponds to a single hypothesis.
In this case, a greedy algorithm called Generalized
Binary Search (GBS) is known to perform near
optimally, i.e., the expected number of observations
is O(log n) more than the optimum policy where n
indicates the number of hypotheses (Dasgupta, 2004;
Guillory and Bilmes, 2009; Kosaraju and Borgstrom,
1999). GBS greedily selects tests in expectation over
the test outcomes to maximize the probability mass
of eliminated hypotheses. Another special instance
of our setting is the Equivalence Class Determination
(ECD) problem (Golovin et al., 2010) where the set of
hypotheses is (disjointly) partitioned– that is, decision
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regions do not overlap and collectively cover the set
of hypotheses. In this case, it is known that GBS
performs poorly while greedily optimizing a more in-
formative objective known as EC2 exhibits an O(log n)
approximation guarantee (Golovin et al., 2010).

In both aforementioned settings, decision regions are
disjoint. In this paper, we tackle the general case of
overlapping decision regions, a problem that is less
understood. We develop a novel surrogate objective
function, which we call Hyperedge Cutting (HEC), and
prove that the policy which greedily maximizes this
objective has strong theoretical guarantees. It relies on
the fact that our proposed objective function satisfies
adaptive submodularity (Golovin and Krause, 2011), a
natural diminishing returns property that generalizes
the classical notion of submodularity to policies.

We empirically evaluate our algorithm on two applica-
tions: approximate comparison-based learning (Kar-
basi et al., 2012), and active localization with a robot
hand. In approximate comparison-based learning, a
user is searching through set of items (e.g., movies),
and is not particularly interested in a single item, but
rather any suggestion from a given category (e.g., the
horror genre). The search terminates once all items
consistent with user responses are contained in a single
category. Similarly, many actions in robotic manipu-
lation, such as pushing a button or grasping an object,
inherently tolerate some uncertainty. The robot need
not know the exact location of an object, but rather
must localize an object to a decision region to ensure
it can successfully accomplish the task. An optimal
policy achieves each of these with the smallest test cost.

We make the following contributions:

1. We provide a necessary and sufficient condition for
identifying if a decision region contains all hypothe-
ses that are consistent with the tests performed.

2. We develop a novel algorithm – Hyperedge Cutting
(HEC) – and prove that it is competitive with the
intractable optimal algorithm.

3. We provide an efficient way to implement our al-
gorithm based on computing sums of the complete
homogeneous symmetric polynomials.

4. We demonstrate the empirical effectiveness of our
approach for both comparison-based learning and
active localization in a robotic manipulation task.

2 Problem Statement

We formalize our Bayesian active learning problem by
assuming a prior probability distribution P on a set of
hypothesesH (e.g., state of patient, location of target).
By conducting tests from a set of tests T , we gain infor-

mation about the true, initially unknown hypothesis.

More formally, for a given hypothesis h ∈ H, running
a test t ∈ T produces an outcome (deterministically)
from a finite set of outcomes/observations O. Thus,
each hypothesis h ∈ H can be considered a function
h : T → O mapping tests to outcomes. Suppose we
have executed a set of tests T = {t1, . . . , tm} ⊆ T
(e.g., medical tests we ran, items shown to the user,
moves made by the robot), and have observed their
outcomes h(t1), . . . , h(tm). Our evidence so far is
captured by a set of test-outcome pairs, S ⊆ T × O,
where S = {(t1, h(t1)), . . . , (tm, h(tm))}.

Upon observing S, we can rule out hypotheses incon-
sistent with our observations. We denote the resulting
set of hypotheses by

V(S) = {h ∈ H : ∀(t, o) ∈ S, h(t) = o} (1)

In principle, we can now choose tests that reduce our
uncertainty about the set of hypotheses directly. In
many practical problems, we are primarily concerned
about reducing uncertainty for the purpose of making a
decision: it is not necessary to remove all uncertainty,
but it is necessary to reduce uncertainty in a structured
way to ensure a decision action will be successful.
Choosing tests that reduce uncertainty dramatically,
but still leave it unclear what action to choose, will not
be effective. We now formalize this idea.

Active learning for decision making. Suppose we
have a set of decisionsR, and the eventual goal of select-
ing a decision r ∈ R after gathering information. For
example, in medical diagnosis, we choose a treatment;
in robotic manipulation, we press a button (Fig. 5); in
content search, we recommend a particular movie.

Each decision region r corresponds to the set of
hypotheses for which it would succeed, i.e., r ⊆ H.
Our problem is then captured by a hypergraph, a gen-
eralization of a graph in which an edge can connect to
any number of nodes. Briefly, a hypergraph G is a pair
G = (X,E), where X is a set of elements called nodes,
and E is a collection of sets of X called hyperedges. We
can specify our problem with a hypergraph, which we
refer to as the region hypergraph Gr = (H,R).1

Note that in general, multiple decisions are equally suit-
able for a hypothesis: In the robot example, multiple
manipulation actions may succeed for an object loca-
tion (Fig. 5); in movie recommendation, the user may
be indifferent among sets of movies. Hence, we allow
the decision regions to overlap (Fig. 1(a)). Formally,
we also assume that the set of hypotheses is covered by
the collection of decision regions, i.e., H = ∪Rr.

1We illustrate decision regions as circles (e.g., Fig. 1(a))
- however, our method treats regions as arbitrary sets.
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(a) Regions and hypotheses

1,1,3 1,2,3 1,3,3

(b) Subregions and hypergaph (c) Edges cut if all h ∈ g3 inconsistent

Figure 1: (a) An instance of the Decision Region Determination (DRD) problem with two decision regions. Black
dots represent hypotheses and circles represent decision regions. (b) The resulting subregions and splitting hyperedges
constructed by Hyperedge Cutting (HEC) algorithm. Thickness of edge represents weight, which is proportional to weight
in subregion. (c) Resulting hypergraph when all hypotheses in subregion g3 inconsistent, causing all edges to be “cut”.

The ultimate goal is to find a policy π for running tests
that allows us to determine a decision region r the true
hypothesis is guaranteed to lie in. In other words, upon
termination we require that V(S) ⊆ r for some r ∈ R.

Thus, we seek a policy for selecting a minimal number
of tests to determine a suitable decision. A policy π is
a function from a set of evidence so far S, to the next
test to choose (or to stop running tests). A policy is
feasible if and only if it drives all remaining uncertainty
into any single decision region, V(S) ⊆ r. We define
the expected cost (i.e., number of tests2) of policy π as:

C(π) =
∑
h∈H

P (h)|T (π, h)|,

where T (π, h) is the set of tests policy π chooses in
case the correct hypothesis is h. Given this, we seek a
feasible policy of minimal cost, i.e.,

π∗ = arg min
π
C(π) s.t. ∀h,∃r : V(T (π, h)) ⊆ r (2)

We call Problem (2) theDecision Region Determination
(DRD) Problem.

Special cases of Problem (2) have been studied before.
In particular, the special case where each hypoth-
esis is contained in a dedicated region is called the
Optimal Decision Tree (ODT) problem (Kosaraju
and Borgstrom, 1999). More generally, the special
case where the regions partition the hypothesis space
(i.e., do not overlap), is called the Equivalence Class
Determination (ECD) Problem (Golovin et al., 2010).
For both of these special cases, it is known that finding
a policy π for which C(π) ≤ C(π∗)o(log n) is NP-hard
(Chakaravarthy et al., 2007). Here, π∗ indicates the
optimum policy. To the best of our knowledge, there
are no efficient algorithms with theoretical approxima-
tion guarantees for the general DRD problem. In the
following, we present such an algorithm.

2Note that while we focus on tests with unit cost, our
results generalize to tests with non-uniform costs.

3 The HEC Algorithm

We now introduce and analyze our algorithm – the
Hyperedge Cutting (HEC) approach.

3.1 Overview

Our key strategy is to transform the DRD Problem (2)
into an alternative representation – a different hyper-
graph for splitting decision regions. Observing certain
test outcomes corresponds to downweighting or cutting
hyperedges in this hypergraph. The construction is
chosen so that cutting all hyperedges is a necessary and
sufficient condition for driving all uncertainty into a sin-
gle decision region. We then prove that a simple greedy
algorithm, which chooses tests that reduce hyperedge
weight maximally (in expectation), implements a pol-
icy that is competitive with the optimal (intractable)
policy for Problem (2). In Sec. 4, we show how this
greedy algorithm can be efficiently implemented.

3.2 Splitting hypergraph construction

We construct a different hypergraph, the splitting
hypergraph Gs, and define our objective on that. Here,
our hyperedges are not sets, butmultisets, a generaliza-
tion of sets where members are allowed to appear more
than once. As a result, a node can potentially appear
in a hyperedge multiple times. The cardinality of a
hyperedge refers to how many nodes it is connected to.

We observe that for solving the DRD problem, we
can group together all hypotheses that share the same
region assignments. We refer to this grouping as a
subregion g, and the set of all subregions as G. More
formally, for any pair hk ∈ gi and hl ∈ gi, we have
hk ∈ rj if and only if hl ∈ rj . In a slight abuse of
notation, we say that a subregion is contained in a
region, g ∈ r, if ∀h ∈ g, h ∈ r (Fig. 1(b)). Similarly, we
say that h ∈ e if ∃g ∈ e s.t. h ∈ g. It is easy to see that
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all remaining hypotheses V(S) are contained in r if and
only if all remaining subregions are contained in r.

We construct the splitting hypergraph Gs over these
subregions. Each subregion g ∈ G corresponds to a
node. The hyperedges e ∈ E consist of all multisets
of precisely k subregions, e = {g1, . . . , gk}, such that
a single decision region does not contain them all (we
will describe how k is selected momentarily). Note that
hyperedges can contain the same subregion multiple
times. Formally,

E = {e : |e| = k ∧ @ r s.t. ∀h ∈ e, h ∈ r}. (3)

Our splitting hypergraph is defined as Gs = (G, E).
Fig. 1(b) illustrates the splitting hypergraph obtained
from the DRD instance of Fig. 1(a).

Hyperedge Cardinality k. Key to attaining our
results is the proper selection of hyperedge cardinality
k. If k is too small, our results won’t hold, and our
algorithm won’t solve the DRD problem. If k is too
large, we waste computational effort, and our theoret-
ical bounds loosen. Here, we define the cardinality we
use practically. Our theorems hold for a smaller, more
difficult to compute k as well. See Sec. 7 for details.

k = min

(
max
h∈H
|{r :h ∈ r}|,max

r∈R
|{g :g ∈ r}|

)
+ 1 (4)

Note that each term is a property of the original region
hypergraph Gr defined in Sec. 2: maxh |{r : h ∈ r}| is
the maximum degree of any node, and maxr |{g :g ∈ r}|
bounds the maximum cardinality of hyperedges inGr.3

3.3 Relating DRD and HEC

How does the hypergraph capture our progress towards
solving Problem (2)? Observing a set of test-outcomes
S ⊆ T ×O eliminates inconsistent hypotheses, and con-
sequently downweights or eliminates (“cuts”) incident
hyperedges (Fig. 1(c)). Analogous to the definition of
V(S) in (5), we define the set of hyperedges consistent
with S by

E(S) = {e ∈ E : ∀(i, o) ∈ S ∀h ∈ e, h(i) = o} (5)

The following result guarantees that cutting all hyper-
edges is a necessary and sufficient condition for success,
i.e., driving all uncertainty into a single decision region.
Theorem 1. Suppose we construct a splitting hyper-
graph by drawing hyperedges of cardinality k according
to (3). Let S ⊆ T × O be a set of evidence. All
consistent hypotheses lie in some decision region if and
only if all hyperedges are cut, i.e.,

E(S) = ∅ ⇔ ∃r : V(S) ⊆ r
3It is precisely the maximum cardinality of any

hyperedge if we grouped hypotheses into subregions in Gr.

Thus, the DRD Problem (2) is equivalent to finding a
policy of minimum cost that cuts all hyperedges. This
insight suggests a natural algorithm: select tests that
cut as many edges as possible (in expectation). In the
following, we formalize this approach.

3.4 The Hyperedge Cutting (HEC) Algorithm

Given the above construction, we define a suitable
objective function whose maximization will ensure
that we pick tests to remove hyperedges quickly,
thus providing us with an algorithm that identifies a
correct decision region. First, we define the weight
of a subregion as the sum of hypothesis weights,
p(g) =

∑
h∈g p(h). We define the weight of a hyperedge

e = {g1, . . . , gk} as w(e) =
∏k
i=1 P (gi). More gener-

ally, we define the weight of a collection of hyperedges
as w({e1, . . . , en}) =

∑n
l=1 w(el). Now, given a pair

of test/observation (t, o), we can identify the set of
inconsistent hypotheses, which in turn implies the
set of hyperedges that should be downweighted or
removed. Formally, given a set of test/observation
pairs S ⊆ T ×O, we define its utility fHEC(S) as

fHEC(S) = w(E)− w(E(S)). (6)

Thus fHEC(S) is the total mass of all the edges cut via
observing set S.

A natural approach to the DRD Problem is thus to
seek policies that maximize (6) as quickly as possible.
Arguably the simplest approach is a greedy approach
that iteratively chooses the test that increases (6) as
much as possible, in expectation over test outcomes.

Formally, we define the expected marginal gain of a test
t given evidence S ⊆ T ×O as follows:

∆(t |S)=
∑
h

P (h |S)
(
fHEC(S∪{(t, h(t))})−fHEC(S)

)
Thus, ∆(t |S) quantifies, for test t, the expected reduc-
tion in hyperedge mass upon observing the outcome
of the test. Hereby, the expectation is taken w.r.t. the
distribution over hypotheses conditioned on our evi-
dence so far. It is apparent that all hyperedges are cut
if and only if ∆(t |S) = 0 for all tests t ∈ T . Given this,
our HEC Algorithm simply starts with S = ∅. It then
proceeds in an iterative manner, greedily selecting the
test t∗ that maximizes the expected marginal benefit,
t∗ = arg maxt ∆(t | S), observes the outcome h(t∗) and
adds the pair (t∗, h(t∗)) to S. It stops as soon as all
edges are cut (i.e., the marginal gain of all tests is 0).

3.5 Theoretical Analysis

The key insight behind our analysis is that the marginal
gain ∆(t | S) satisfies two properties: adaptive mono-
tonicity and adaptive submodularity, introduced by
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Golovin and Krause (2011) and associated with certain
sequential decision problems. Formally, adaptive
monotonicity simply states that the benefit of each test
is nonnegative, ∆(t | S) ≥ 0 for all tests t ∈ T and
evidence S ⊆ T × O. This is straightforward, since
carrying out a test can never introduce hyperedges, but
only remove them. The second, slightly more subtle
property – adaptive submodularity – states that the
marginal gain of any fixed test t ∈ T can never increase
as we gain additional evidence. Formally, whenever
S ⊆ S ′ ⊆ T ×O, it must hold that∆(t | S) ≥ ∆(t | S ′).
Those properties are formally established for our fHEC
objective and the associated marginal gain ∆ in the
following Theorem:
Theorem 2. The objective function fHEC defined
in (6) is adaptive submodular and strongly adaptive
monotone.

Why are these properties useful? Golovin and Krause
(2011) prove that for sequential decision problems
satisfying adaptive monotonicity and adaptive sub-
modularity, greedy policies are competitive with the
optimal policy. In particular, as a consequence of The-
orem 2 and Theorem 5.8 of Golovin and Krause (2011),
we obtain the following result for our HEC Algorithm:
Theorem 3. Assume that the prior probability distri-
bution P on the set of hypotheses is rational. Then, the
performance of πHEC is bounded as follows:

C(πHEC) ≤ (k ln(1/pmin) + 1)C(π∗),

where pmin = minh∈H P (h).

For the special case of disjoint regions (i.e., the ECD
Problem, corresponding to k = 2), our objective fHEC
is equivalent to the objective function proposed by
Golovin et al. (2010), and hence our Theorem 3 strictly
generalizes their result. Furthermore, in the special
case where each test can have at most two outcomes,
and we set k = 1, the HEC Algorithm is equivalent to
the Generalized Binary Search algorithm for the ODT
problem, and recovers its approximation guarantee.

4 Efficient Implementation

Our HEC algorithm computes ∆(t |S) for every test in
T , and greedily selects one at each time step. Naively
computing this quantity involves constructing the
splitting hypergraphGs for every possible observation,
and summing the edge weights. This is computa-
tionally expensive, as constructing the graph requires
enumerating every multiset of order k and checking if
any region contains them all, resulting in a runtime of
O(|G|k). We can, however, quickly prune checks and
iteratively consider multisets of growing cardinality
during our computation by utilizing the following fact:

Algorithm 1 Hyperedge Weight
procedure Hyperedge Weight(H, k)

Compute subregions G from H
W ← CHPk(G)
Initialize queue Q1 with every subregion g ∈ G
for all k̂ ≤ k do

for all ζk̂ ∈ Qk̂ do
if ∃r s.t. ∀h ∈ ζk̂, h ∈ r then

W ←W −
∏
g∈ζ

k̂
p(g)CHPk−k̂(ζk̂)

Add all supersets of ζk̂ to Qk̂+1

return W

Proposition 1. A set of subregions G shares a region
only if all subsets G′ ⊂ G also share that region.

4.1 Utilizing Complete
Homogeneous Symmetric Polynomials

Our general strategy will be to compute the sum of
weights over all multisets of cardinality k, and subtract
those that correspond to a shared region. To do so
efficiently, we identify algebraic structure in computing
a sum of multisets, where a multiset corresponds to
a product. Namely, it is equivalent to computing a
complete homogeneous symmetric polynomial.

For any G ⊆ G and cardinality k̂, we define Gk̂(G) as
all multisets over groups G of cardinality k̂. Unlike hy-
peredges, these multisets can share a region. Formally

Gk̂(G) =
{
{g1, . . . , gk̂} ⊆ G

}
Recall that w(Gk̂(G)) =

∑
G
k̂
(G)

∏
g P (g). Computing

w(Gk̂(G)) can be performed efficiently as this quantity
is exactly equivalent to the complete homogeneous
symmetric polynomial (CHP) of degree k̂ over G.
We will briefly review a well known variant of the
Newton-Girard formulae which will make an efficient
algorithm for computing w(Gk̂(G)) clear.

Define any set of variables x = {x1, · · · , xn}.

PSi(x) =
∑
x∈x

xi

CHPi(x) =
∑

l1+...ln=i;lj≥0

∏
xj∈x

x
lj
j

Here PSi is the i-th power sum, and CHPi is the i-th
complete homogeneous symmetric polynomial.

We have the identity (Macdonald, 1998; Seroul, 2000):

CHPi(x) =
1

i

i∑
j=1

CHPi−j(x)PSj(x)

Thus, we iteratively computeCHP1(G). . .CHPk̂(G) to
computew(Gk̂(G)) = CHPk̂(G)with runtimeO(k̂|G|).
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1,3,31,2,31,1,31,1,1 3,3,3

1,1,2 1,2,2 2,2,32,2,2 2,3,3

(a) All Multisets

1,3,31,2,31,1,3

1,1,2 1,2,2 2,2,3 2,3,3

(b) |ζ| = 1 sets removed

1,3,31,2,31,1,3

(c) |ζ| = 2 sets removed

Figure 2: A depiction of our algorithm as hyperedges. (a) The equivalent hyperedges of CHP3(G). (b) First iteration
Alg. 1 which removes all |ζ| = 1 (light edges) by subtracting g1CHP2({g1}) + g2CHP2({g2}) + g3CHP2({g3}). (c) Second
iteration of Alg. 1 which removes all |ζ| = 2 (light edges) by subtracting g1g2CHP1({g1, g2}) + g2g3CHP1({g2, g3})

We now turn our attention to efficiently computing the
weight of all multisets that correspond to subregions
encapsulated by a region. Let ζ be a set (not multiset)
of subregions that shares a region. Formally:

ζ = {g1 . . . gk̂} k̂ ≤ k, @r s.t. ζ ⊆ r

We compute the term corresponding to ζ we subtract
from CHPk(G) (weight of all multisets), as ζ shares a
region. To avoid double counting, we force the term to
include

∏
g∈ζ p(g) as a factor, i.e. if we think of a hyper-

edge as a product, we force one link to each element of ζ.

w(ζ) =
∏
g∈ζ

p(g)
∑

l1+...lk̂=k−k̂;li>0

p(g1)l1 . . . p(g
k̂
)lk̂

=
∏
g∈ζ

p(g)CHPk−k̂(ζ)

Using this, we computew(E) = CHPk(G)−
∑

ζ⊆G w(ζ)
by finding every set ζ ⊆ G that shares a region. Further-
more, we can utilize Proposition 1 to prune sets, and
only consider ζk̂+1 which are supersets of any ζk̂. The
algorithm is detailed in Alg. 1, and depicted in Fig. 2.

Additionally, we note that region assignments do not
change as observations are received. In practice, we
find all sets of subregions that share a region once.
At each time step, we need only sum over the terms
corresponding to remaining hypotheses.

Note that in the worst case, this algorithm still has
complexity O(|G|k). This occurs when many, at least
k, subregions share a single region. The complexity
is then controlled by how many distinct subregions
a single region can be shattered into, and the largest
number of regions a single hypothesis can belong to.
However, for many practical problems, wemight expect
many regions to be separated, e.g., when |R| � k. In
this case, Alg. 1 will be significantly more efficient.

Finally, we note that we can utilize an accelerated
adaptive greedy algorithm applicable to all adaptive

submodular functions, which directly uses the di-
minishing returns property to skip reevaluation of
actions (Golovin and Krause, 2011).

5 Experiments

In this section, we empirically evaluateHEC on the two
applications - approximate comparison-based learning
and touch based localization with a robotic end effector.

We compare HEC with five baselines. The first two
are variants of algorithms for the specialized versions
of the DRD problem described earlier - generalized
binary search (Nowak, 2009) and equivalence class edge
cutting (Golovin et al., 2010). For generalized binary
search (GBS), we assign each hypothesis to its own
decision region, and runHEC on this hypothesis-region
assignment until only one hypothesis remains. To apply
equivalence class edge cutting (EC2), decision regions
must be disjoint. Thus, we randomly assign each
hypothesis to one of the decision regions that it belongs
to, and run EC2 until only one of these new regions re-
mains. For each of these, we also run a slightly modified
version, termed GBS-HEC and EC2-HEC respectively,
which selects tests based on these algorithms, but
terminates once all hypotheses are contained in one
decision region in the original DRD problem (i.e. when
the HEC termination condition is met).

The last baseline is a classic heuristic from decision
theory: myopic value of information (VoI) (Howard,
1966). We define a utility function U(h, r) which is 1 if
h ∈ r and 0 otherwise. The utility of V(S) corresponds
to the maximimum expected utility of any decision
region, i.e., the expected utility if we made a decision
now. VoI greedily chooses the test that maximizes (in
expectation over observations) the gain in this utility.
Note that if we could solve the intractable problem
of nonmyopically optimizing VoI (i.e., look ahead
arbitrarily to consider outcomes of sequences of tests),
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we could solve the DRD problem optimally. In some
sense, HEC can be viewed as a surrogate function for
nonmyopic value of information.

5.1 Approximate comparison-based learning

We evaluate HEC on the MovieLens 100k4 dataset,
which consists of 1 to 5 ratings of 1682 movies from
943 users. We partition movies into decision regions
using these ratings, with the goal of recommending any
movie in a decision region. In order to get a similarity
measurement between movies, we map them into a
10-dimensional feature space by computing a low-rank
approximation of the user/rating matrix through SVD.
We then use k-means to partition the set of movies
into |R| (non-overlapping) clusters, corresponding to
decision regions. Each movie is then assigned to the α
closest cluster centroids. See Fig. 4 for an illustration.
A test corresponds to comparing two movies, an
observation to selecting one of the two, and consist hy-
potheses are those which are closer to the selectedmovie
(euclidean distance in 10-dimensional feature space).

Each experiment corresponds to sampling one movie
as the “true” movie. The size of a decision region de-
termines how close our solution is to this (exact) target
hypothesis. As the number of regions increases, the size
of each decision region shrinks. As a result, the problem
requires the selected movie be closer to the true target,
at the expense of increased query complexity. Fig. 3(a)
shows the query complexity of different algorithms as a
function of the number of regions, with the cardinality
of the HEC hypergraph fixed to k = 3 (i.e., each hy-
pothesis belongs to two decision regions). An extreme
case is when there are only two regions and all hypothe-
ses belong to both regions, giving a query complexity
of 0. Other than that, we see that HEC performs
consistently better than other methods (e.g., to identify
the true region out of 8 regions, it takes on average 6.7
queries forHEC, as opposed to 8 queries for EC2-HEC,
8.5 queries for GBS-HEC, and 10.3 queries for VoI).

To see how the cardinality and region overlap influence
performance, we compare the query complexity of
different algorithms by varying the number of regions
each hypothesis is assigned to. If we assignmore regions
to a hypothesis, then the search result is allowed to be
further away from the true target, and thus the number
of queries required for approximated search should be
smaller. Fig. 3(b) demonstrates such an effect. We fix
the number of clusters to 12, and vary the number of
assigned regions (and thus the hyperedge cardinality)
from 1 to 4 (k from 2 to 5, respectively). We see that
higher cardinality enables HEC to save more queries.
For k = 5, it takes HEC 5.3 queries to identify a movie,

4http://www.grouplens.org/datasets/movielens/

(a) Partitions (k = 2) (b) Decision regions (k = 3)

Figure 4: A 2-d illustration of (overlapping) decision
regions for MovieLens 100k experiments. Dots represent
movies, cross markers represent cluster centroids, and
colored polygons represent decision region boundaries. (a)
Movies are partitioned into 12 disjoint clusters. (b) Each
movie is assigned to the two closest centroids.

k 2 3 4 5

t(HEC) 0.026s 0.071s 2.5s < 2min

Table 1: Running time of HEC on MovieLens 100k with
different cardinality k (|R| = 12)

whereas VoI, GBS-HEC, and EC2-HEC took 8.8, 7.4,
and 6.4 queries, respectively. Additionally, Table 5.1
shows the running time of HEC for these instances.
We see that the accelerated implementation described
in Sec. 4 enablesHEC to run efficiently with reasonable
hyperedge cardinality on this data set.

5.2 Touch Based localization

We evaluate HEC on a simple robotic manipulation
example. Our task is to push a button with the
finger of a robotic end effector. Given a distribution
over object location, we generate a set of decisions,
corresponding to the end effector going to a particular
pose and moving forward in a straight line. Each of
these decisions will succeed on a subset of hypotheses,
corresponding to a decision region. Decision regions
may overlap, as a button can be pushed with many
decision actions. See Fig. 5.

All hypotheses are not contained in a single decision re-
gion, so we perform tests to reduce uncertainty. These
tests correspond to guarded moves (Will andGrossman,
1975), where the end effector moves along a path until
contact is sensed. After sensing contact, hypotheses are
updatedby eliminating object locationswhich could not
have produced contact, e.g., if they are far away. Our
goal is to find the shortest sequence of tests such that
after performing them, there is a single button-push de-
cision that would succeed for all remaining hypotheses.

Given some object location Xs, we generate an
initial set of 2000 hypotheses H by sampling from
N(µ,Σ) with µ = Xs, and Σ a diagonal matrix with
Σxx = Σyy = Σzz = 0.04. The robot generates 50
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(c) Robotic manipulation simulation

Figure 3: Results on MovieLens 100k and Robot experiments. (a) Performance as we vary the number of regions |R|. (b)
Performance as we vary the cardinality k. (c) Average performance of different algorithms across button push instances.

(a) Hypotheses (b) A decision region (c) Two regions

Figure 5: Touch based localization for pushing the button of amicrowave. Given hypotheses over object location (a), decision
actions are generated. The corresponding decision regions are computed by forward simulating to find hypotheses for which
it would succeed (b). Decision regions will overlap. In (c), we see two regions (blue and grey) and their overlap (yellow).

decision regions by picking different locations and simu-
lating the end effector forward, and noting which object
poses it would succeed on. Hypotheses range from be-
ing in zero decision regions to 6, giving us a cardinality
k = 7. For tests, the robot generates 150 guardedmoves
by sampling a random start location and orientation.

We conduct experiments on 10 random environments,
and randomly sample 100 hypotheses to be the “true”
object location (for producing observations during
execution), for a total of 1000 experiments. Fig. 3(c)
shows the query complexity of different algorithms
averaged over these instances. We see that HEC
performs well, outperforming GBS, GBS-HEC, EC2,
and EC2-HEC handily. Note that myopic VoI performs
essentially the same as HEC on these experiments.
This is likely due to the short horizon, where 2-3 actions
were usually sufficient for reducing uncertainty to a
single decision region. We would expect that for longer
horizons, myopic VoI would not perform as well.

6 Conclusions

In this paper, we have addressed the problem of active
learning in order to facilitate decision making. We de-
fined the Decision Region Determination (DRD) prob-
lem, requiring that at the end of information gathering,
all remaining hypotheses are confined within a single

decision region (i.e., do not require further distinction
from a decision making point of view). To address this
problem, we proposed an equivalent representation in
terms of a hypergraph. We prove that eliminating all
edges in this hypergraph is a necessary and sufficient
condition for success, suggesting a natural objective
function. We show that this objective satisfies adap-
tivemonotonicity and adaptive submodularity. This in-
sight enabled us to prove that a greedy policy for remov-
ing hyperedges (HEC) has an approximation guarantee
compared to the optimal policy. Finally, we note that at
each iteration, we compute a particular polynomial, and
can utilize a faster algorithm through efficient computa-
tions of complete homogeneous symmetric polynomials.

While our algorithm enables us to tackle problems of
reasonable size, our computation is still exponential
in hyperedge cardinality k. Additionally, our current
scheme assumes noise-free observations, where a hy-
pothesis deterministicallymaps a test to an observation.
We hope to alleviate these limitations in future work.
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7 Appendix

In this section, we provide proofs for theorems stated throughout the paper.

7.1 k for bounds

We start by showing that for a properly defined k, the DRD problem is solved (V(S) ⊆ r) if and only if the
HEC objective is maximized. However, we sometimes require a slightly greater k to ensure the objective fHEC is
adaptive submodular. We define these below.

Let R be a set of regions, the length of which is related to k. To get equivalence of the DRD and HEC, we require
that for every region in R, there is some hypothesis in all but one region of R.

Riff = arg max
R

|R| s.t. ∀r ∈ R,∃h : h /∈ r, h ∈ R\r

kiff = |Riff|

Sometimes, this is not sufficient for adaptive submodularity. For this, we also require that there is some hypothesis
in every region of R, and we also add one to the length of R.

Ras = arg max
R

|R| s.t. 1 ∃h̃ ∈ R 2 ∀r ∈ R,∃h : h /∈ r, h ∈ R\r

kas = |Ras|+ 1

Before moving on, we prove that kas ≥ kiff.
Proposition 2. kas ≥ kiff

Proof. There are two cases:

1. ∃h ∈ Riff. In this case, Ras = Riff and kas = |Ras|+ 1 = kiff + 1.

2. 6 ∃h ∈ Riff. Define R̃ = Riff \ r for some r ∈ Riff. We know by definition of Riff that ∃h ∈ R̃. Additionally, we
know by definition of kiff that ∀r ∈ R̃,∃h, h /∈ r, h ∈ Riff \ r, so it follows that h ∈ R̃ \ r. Therefore, we know
R̃ satisfies the constraints for Ras, and kas ≥ |R̃|+ 1 = |Riff| = kiff.

Our algorithm actually utilizes k = min

(
max
h∈H
|{r : h ∈ r}|,max

r∈R
|{g : g ∈ r}|

)
+ 1. We briefly show that each of

these also upper bound kas.

Proposition 3. maxh∈H |{r : h ∈ r}|+ 1 ≥ kas

Proof. Note that condition 1 in Ras bounds |Ras| by maxh∈H |{r : h ∈ r}|. The result follows.

Proposition 4. maxr∈R |{g : g ∈ r}|+ 1 ≥ kas

Proof. Let r be an element of Ras. By definition, it is required that at least |Ras| different subregions g1 · · · g|Ras|

be in that region - one which is in every other region in Ras to satisfy condition 1 , and |Ras| − 1 which are in all
but one of the Ras − 1 other regions to satisfy condition 2 . The result follows.

Thus, we can utilize k = min

(
max
h∈H
|{r : h ∈ r}|,max

r∈R
|{g : g ∈ r}|

)
+ 1 and apply the proofs using cardinality at

least kas and kiff. While our bounds and algorithm are better if we knew the correct kas to use, finding that value
is itself hard to compute - thus, our implementation uses the value defined in Sec. 3 and copied above.
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7.2 Theorem 1: Equivalence of DRD and HEC

Proof. We first prove that if all h are contained in one region, then all edges are cut, i.e. ∃r : V(S) ⊆ r ⇒ E(S) = ∅.
This is by construction, since a hyperedge e ∈ E(S) is only between subregions (or hypotheses) that do not share
any regions. More concretely, our definition of e requires 6 ∃r s.t. ∀h ∈ e : h ∈ r. Since all remaining nodes
V(S) ⊆ r, there will be no such such set of hypotheses.

Next, we prove that if all edges are removed, then all h are contained in one region, i.e., E(S) = ∅ ⇒ ∃r : V(S) ⊆ r.
Clearly, if we set |V(S)| ≤ k, this condition would be met - E(S) would check every subset of V(S) to see if they
shared a region, and would draw a hyperedge i.f.f. they do not. To complete the proof, we will make use of the
following lemma:

Lemma 1. Define β as some constant s.t. β ≥ k. ∀H ⊆ H, |H| = β,∃r : H ⊆ r ⇒ ∀{H∪h} ⊆ H,∃r : {H∪h} ∈ r

Proof. For the sake of contradiction, suppose @r : {H ∪ h} ∈ r. This must mean h 6∈ H. Let
{H ∪ h} = {h1, h2, . . . , hβ+1}. Let Hi be the subset of {H ∪ h} which does not include the ith h from
{H ∪ h}, i.e. Hi = {h1 . . . , hi−1, hi+1, . . . hβ+1}. By assumption, we know ∃r : Hi ∈ r. Let ri be that region
for Hi. If ri = rj , for any i, j, this would imply {Hi ∪ Hj} = {H ∪ h} ∈ ri. Thus, each ri must be unique if
6 ∃r : {H ∪ h} ∈ r. Furthermore, this implies hi 6∈ ri, and h ∈ rj ,∀j 6= i. Let Rβ+1 = {r1 . . . rβ+1}. By definition
of β, we know β ≥ k ≥ kiff . But this causes a contradiction - by definition of kiff , the maximum set of regions R
where hi 6∈ ri, hi ∈ rj∀j 6= i is kiff. But Rβ+1 would require such a set of regions where |Rβ+1| = β + 1 ≥ kiff + 1.
Thus, we have a contradiction, and have shown ∃r : {H ∪ h} ∈ r.

By construction, we know that if E(S) = ∅ ⇒ ∀H ⊆ H, |H| ≤ k, ∃r : H ⊆ r. Applying Lemma 1 inductively, this
implies, ∀{H ∪ h1} ⊆ V(S),∃r : {H ∪ h1} ⊆ r ⇒ ∀{H ∪ h1 ∪ h2} ⊆ V(S),∃r : {H ∪ h1 ∪ h2} ⊆ r ⇒ · · · ⇒ ∃r :
V(S) ⊆ r.

7.3 Theorem 2: strong adaptive monotonicity and adaptive submodularity

Proof. We start with showing our formulation is strongly adaptive monotone.

Lemma 2. The function fHEC described above is strongly adaptive monotone, i.e.

fHEC(S ∪ {(t, h(t))})− fHEC(S) ≥ 0 ∀t, h

Proof. This states that our utility function must always increase as we take additional actions and receive
observations. Intuitively, we can see that additional action observation pairs can only cut edges, and thus our
utility function always increases. More concretely:

fHEC(S ∪ {(t, h(t))})− fHEC(S)

=
(
w(E)− w(E(S ∪ {(t, h(t))}))

)
−
(
w(E)− w(E(S))

)
= w(E(S))− w(E(S ∪ {(t, h(t))}))

= w({e ∈ E : ∀(i, o) ∈ S ∀h̃ ∈ e, h̃(i) = o})

− w({e ∈ E : ∀(i, o) ∈ S ∀h̃ ∈ e, h̃(i) = o, h̃(t) = h(t)}) by definition of E(S)

= w({e ∈ E : ∀(i, o) ∈ S ∀h̃ ∈ e, h̃(i) = o, h̃(t) 6= h(t)})
≥ 0 since w(e) ≥ 0 ∀e

Next, we prove that our formulation is adaptive submodular:

Lemma 3. The function fHEC described above is adaptive submodular for any prior with rational values, i.e. for
S ⊆ Ŝ ⊆ T ×O

∆(t |S) ≥ ∆(t | Ŝ) ∀t ∈ T \ST

where ST are the set of tests in S.
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Proof. This states that our expected utility for a fixed action t decreases as we take additional actions and receive
observations. We rewrite our expected marginal utility in a more convenient form:

∆(t |S) =
∑
h

P (h |S)
(
fHEC(S ∪ {(t, h(t))})− fHEC(S)

)
=
∑
h

P (h |S)
(

[w(E)− w(E(S ∪ {(t, h(t))}))]− [w(E)− w(E(S))]
)

=
∑
h

P (h |S)
(
w(E(S))− w(E(S ∪ {(t, h(t))}))

)

For convenience, we define noi to be the total probability mass in gi consistent with all evidence in S and observation
o. We define ni and no similarly. More formally:

noi =
∑
h∈gi

P (h)1(h ∈ V(S ∪ {(t, o)}))

ni =
∑
o∈O

noi

no =
∑
gi∈G

noi

N =
∑
gi∈G

∑
o∈O

noi

w(E(S)) =
∑
e∈E

∏
i∈e

ni

Similarly, we can also write w(E(S ∪ {(t, o)})) =
∑
e∈E

∏
i∈e n

o
i . We can rewrite our objective as:

∆(t |S) =
∑
h

P (h |S)
(∑
e∈E

∏
i∈e

ni −
∑
e∈E

∏
i∈e

n
h(t)
i

)
=
∑
o

no

N

(∑
e∈E

∏
i∈e

ni −
∑
e∈E

∏
i∈e

noi

)
=
∑
e∈E

∏
i∈e

ni −
∑
o

no

N

∑
e∈E

∏
i∈e

noi

Similarly, we define variables for the evidence Ŝ, i.e. n̂oi for the total probability mass in gi consistent with all
evidence in Ŝ and observation o:

∆(t | Ŝ) =
∑
e∈E

∏
i∈e

n̂i −
∑
o

n̂o

N̂

∑
e∈E

∏
i∈e

n̂oi

We rewrite what we would like to show as:

∆(t |S)−∆(t | Ŝ)

=
(∑
e∈E

∏
i∈e

ni −
∑
o

no

N

∑
e∈E

∏
i∈e

noi

)
−
(∑
e∈E

∏
i∈e

n̂i −
∑
o

n̂o

N̂

∑
e∈E

∏
i∈e

n̂oi

)
≥ 0

We will show that for any single action observation pair, which corresponds to eliminating a single hypothesis,
the expected utility of a test will always decrease. General adaptive submodularity, which states the expected
utility decreases with any additional evidence, follows easily. For convenience, we consider rescaling our function
so that all noi are integers, which is possible since we assumed a rational prior. Note that a function f is adaptive
submodular i.f.f. cf is adaptive submodular for any constant c > 0, so showing adaptive submodularity in the
rescaled setting implies adaptive submodularity for our setting.
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Lemma 3.1. If we remove one hypothesis from subregion k which agrees with observation c, i.e.

n̂oi =

{
noi − 1 if i = l and o = c

noi else

then

∆ =
(∑
e∈E

∏
i∈e

ni −
∑
o

no

N

∑
e∈E

∏
i∈e

noi

)
−
(∑
e∈E

∏
i∈e

n̂i −
∑
o

n̂o

N̂

∑
e∈E

∏
i∈e

n̂oi

)
≥ 0

Proof. Based on our definitions, it follows that:

n̂i =

{
ni − 1 if i = l

ni else

n̂o =

{
no − 1 if o = c

no else

N̂ = N − 1

We split the difference into three terms:

∆a =
∑
e∈E

(∏
i∈e

ni −
∏
i∈e

n̂i

)

∆b =
∑
o∈O\c

∑
e∈E

(
−n

o

N

∏
i∈e

noi +
n̂o

N̂

∏
i∈e

n̂oi

)

∆c =
∑
e∈E

(
−n

c

N

∏
i∈e

nci +
n̂c

N̂

∏
i∈e

n̂ci

)
∆a + ∆b + ∆c = ∆

To aid in notation, we define El = {e ∈ E : gl ∈ e}, hyperedges that contain region l, and El = E\El, all other
hyperedges. Additionally, let |el| be the number of times gl appears in the multiset e.

First term:

∆a =
∑
e∈E

(∏
i∈e

ni −
∏
i∈e

n̂i

)

=
∑
e∈El

[∏
i∈e

ni −
∏
i∈e

n̂i

]
+
∑
e∈El

[∏
i∈e

ni −
∏
i∈e

n̂i

]

=
∑
e∈El

[∏
i∈e

ni −
∏
i∈e

ni

]
+
∑
e∈El

 ∏
i∈e,i 6=l

ni

n
|el|
l −

 ∏
i∈e,i 6=l

ni

 (nl − 1)|el|


=
∑
e∈El

 ∏
i∈e,i6=l

ni

(n|el|l − (nl − 1)|el|
)

≥ 0 (since nl ≥ 1)
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Second term:

∆b =
∑
o∈O\c

∑
e∈E

(
−n

o

N

∏
i∈e

noi +
n̂o

N̂

∏
i∈e

n̂oi

)

=
∑
o∈O\c

∑
e∈E

(
−n

o

N

∏
i∈e

noi +
no

N − 1

∏
i∈e

noi

)

=
∑
o∈O\c

∑
e∈E

no

N(N − 1)

∏
i∈e

noi

≥ 0 (since each term ≥ 0)

Third term:

∆c =
∑
e∈E

(
−n

c

N

∏
i∈e

nci +
n̂c

N̂

∏
i∈e

n̂ci

)

= −n
c

N

∑
e∈E

∏
i∈e

nci +
nc − 1

N − 1

∑
e∈E

 ∏
i∈e,i6=l

nci

 (ncl − 1)|el|


= −n

c

N

∑
e∈E

∏
i∈e

nci +
nc − 1

N − 1

∑
e∈E

 ∏
i∈e,i6=l

nci

((ncl )
|el| − (ncl )

|el| + (ncl − 1)|el|
)

= −n
c

N

∑
e∈E

∏
i∈e

nci +
nc − 1

N − 1

∑
e∈E

∏
i∈e

nci −
∑
e∈El

 ∏
i∈e,i 6=l

nci

((ncl )
|el| − (ncl − 1)|el|

)
= − N − nc

N(N − 1)

∑
e∈E

∏
i∈e

nci −
nc − 1

N − 1

∑
e∈El

 ∏
i∈e,i 6=l

nci

((ncl )
|el| − (ncl − 1)|el|

)
≤ 0 (since each term ≤ 0)

We also define:

∆c =

(
N − nc

N(N − 1)

)
∆c

1 +

(
nc − 1

N − 1

)
∆c

2

∆c
1 = −

∑
e∈E

∏
i∈e

nci

∆c
2 = −

∑
e∈El

 ∏
i∈e,i 6=l

nci

((ncl )
|el| − (ncl − 1)|el|

)

∆a =

(
N(N − nc)
N(N − 1)

+
nc − 1

N − 1

)
∆a

=

(
N − nc

N(N − 1)

)
∆a

1 +

(
nc − 1

N − 1

)
∆a

2

∆a
1 = N

∑
e∈El

 ∏
i∈e,i 6=l

ni

(n|el|l − (nl − 1)|el|
)

∆a
2 =

∑
e∈El

 ∏
i∈e,i 6=l

ni

(n|el|l − (nl − 1)|el|
)
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The constants in front of the sum for ∆c
1 and ∆c

2 were from the equation, and ∆a was split up to include the same
constants. Now we will show that ∆a

1 + ∆c
1 ≥ 0 and ∆a

2 + ∆c
2 ≥ 0. We start with the latter:

∆a
2 + ∆c

2 =
∑
e∈El

 ∏
i∈e,i6=l

ni

(n|el|l − (nl − 1)|el|
)
−

 ∏
i∈e,i 6=l

nci

((ncl )
|el| − (ncl − 1)|el|

)
≥
∑
e∈El

 ∏
i∈e,i6=l

ni

(n|el|l − (nl − 1)|el|
)
−

 ∏
i∈e,i 6=l

ni

(n|el|l − (nl − 1)|el|
) (7)

= 0

Where (7) follows from ni ≥ nci ∀i.

∆a
1 + ∆c

1 = N
∑
e∈El

 ∏
i∈e,i 6=l

ni

(n|el|l − (nl − 1)|el|
)
−
∑
e∈E

∏
i∈e

nci

≥ N
∑
e∈El

 ∏
i∈e,i 6=l

ni

(n|el|l − (nl − 1)|el|
)
−
∑
e∈E

∏
i∈e

ni (8)

≥ N
∑
e∈El

 ∏
i∈e,i 6=l

ni

n
|el|−1
l −

∑
e∈E

∏
i∈e

ni (9)

= (N − nl)
∑
e∈El

 ∏
i∈e,i 6=l

ni

n
|el|−1
l +

∑
e∈El

 ∏
i∈e,i 6=l

ni

n
|el|
l −

∑
e∈E

∏
i∈e

ni

= (N − nl)
∑
e∈El

 ∏
i∈e,i 6=l

ni

n
|el|−1
l −

∑
e∈El

∏
i∈e

ni (10)

≥ (N − nl)
∑
e∈El

∏
i∈e,i6=l

ni −
∑
e∈El

∏
i∈e

ni

Where (8) follows from ni ≥ nci ∀i, (9) follows from n
|el|
l − (nl − 1)|el| ≥ n|el|l − n|el|−1l (nl − 1) = n

|el|−1
l , and (10)

cancels edges in El exactly, leaving only edges in El.

We again want to separate out terms that cancel. We define:

E k̂ = {e : |e| = k̂ ∧ @ j s.t. ∀g ∈ e : g ⊆ rj}
Emin = {e : e ∈ E ,@ê ⊂ e : ê ∈ Ek−1}

Emin = E\Emin

We defined E k̂ as the hyperedges for any specified cardinality k̂. We call Emin the minimal hyperedges if k is the
minimal cardinality at which these regions should be seperated. Thus, these are the hyperedges where no subset
of subregions {g1 . . . gk−1} ⊂ e would have a seperation hyperedge. All other hyperedges are called non-minimal.
We also define Emin

l , Emin
l , Emin

l , Emin
l as the minimal and non-minimal hyperedges of El and El:

Emin
l = {e : e ∈ El,@ê ⊂ e : ê ∈ Ek−1}

Emin
l = {e : e ∈ El,@ê ⊂ e : ê ∈ Ek−1}

Emin
l = El\Emin

l

Emin
l = El\Emin

l
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We also note that: ∑
e∈Emin

l

∏
i∈e

ni ≤
∑

gj∈G\gl

nj
∑

e∈El
k−1

∏
i∈e

ni

= (N − nl)
∑

e∈El
k−1

∏
i∈e

ni

For convenience, we define one additional set of hyperedges Êl. These are hyperedges in El such that no subset of
k − 1 elements which do not include k are in El.

Êl = {e : e ∈ El ∧ @ek−1 ⊂ e s.t. ek−1 ∈ El
k−1}

This enables us to split the set El up into edges where El
k−1

are a subset, and Êl. We note that since there is no
region shared by all elements ek−1 ∈ El

k−1
, then there will be no region shared by e = ek−1 ∪ gl. Thus, this will

be an element of El. This gives us: ∑
e∈El

∏
i∈e,i 6=l

ni =
∑

e∈El
k−1

∏
i∈e

ni +
∑
e∈Êl

∏
i∈e,i6=l

ni

Applying these:

∆a
1 + ∆c

1 ≥ (N − nl)
∑
e∈El

∏
i∈e,i6=l

ni −
∑
e∈El

∏
i∈e

ni

= (N − nl)

 ∑
e∈El

k−1

∏
i∈e

ni +
∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
e∈Emin

l

∏
i∈e

ni −
∑

e∈Emin
l

∏
i∈e

ni

≥ (N − nl)

 ∑
e∈El

k−1

∏
i∈e

ni +
∑
e∈Êl

∏
i∈e,i 6=l

ni

− (N − nl)
∑

e∈El
k−1

∏
i∈e

ni −
∑

e∈Emin
l

∏
i∈e

ni

= (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
e∈Emin

l

∏
i∈e

ni

At this point, we use the structure of our edge construction and definition of k to show this sum is ≥ 0. We have
a positive term, consisting of edges which include k, and a negative term, consisting of edges that do not include
k. We will show that for every product in the negative term, there is a corresponding product in the positive term.

To do so, we show that for any e ∈ Emin
l , there is at least one corresponding e′ ∈ Êl to cancel the terms out. More

concretely:

Lemma 3.1.1. Let e ∈ Emin
l . There exists some ek−1 ⊂ e, |ek−1| = k − 1 such that e′ = (ek−1 ∪ gl) ∈ Êl.

Proof. Recall that e is a multiset of subregions. It is straightforward to see that because e is minimal, there can be
no repeated elements in the multiset - and thus it is equivalent to a set. Define this set as e = {ĝ1 . . . ĝk}. Define
each distinct subset which does not include ĝi as ei = e\ĝi, 1 ≤ i ≤ k. By our definition of minimal hyperedges
Emin
l , we know that ∀ei,∃ri : ei ⊆ ri, which implies that ei 6∈ El

k−1
. Note that each ri must be distinct. If ri = rj ,

for any i, j, this would imply (ei ∪ ej) = e ∈ ri. But since there exists a separating hyperedge e, 6 ∃r : e ⊆ r. This
implies ĝi 6⊆ ri. Combining this with our definition of Êl, if 6 ∃r : (ei ∪ gl) ⊆ r ⇒ (ei ∪ gl) ∈ Êl. To prove this
lemma, we will show that this region cannot exist for all ei.

If gl 6⊆ ri ⇒ ei ∪ gl 6⊆ ri. For the sake of contradiction, suppose gl ⊆ ri∀i. Let R = {r1 . . . rk}. For this to be true,
it must be that: 1 ∀h ∈ gl, h ∈ R 2 ∀ri ∈ R,∀ĥ ∈ ĝi : ĥ /∈ ri, ĥ ∈ R\ri where |R| = k. However, by definition
of k this cannot be true: the largest such R where this holds |R| = k − 1. Thus, we have a contradiction, and have
shown such a set of regions {r1 . . . rk} = R : gl ⊆ ri ∀ri cannot exist. Therefore, ∃ei : (ei ∪ gl) ∈ Êl.
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In order to apply Lemma 3.1.1, we split every e ∈ Emin
l it up into ek−1 and g, where ek−1 is the subset of e such

that (ek−1 ∪ gl) ∈ Êl, and g = e\ek−1. Let n be the number of particles in subregion g, which we will use in ((11)):

∆a
1 + ∆c

1 ≥ (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
e∈Emin

l

∏
i∈e

ni

= (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
e∈Emin

l

n
∏

i∈ek−1

ni (11)

≥ (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
gj∈G\gl

nj

∑
e∈Êl

∏
i∈e,i 6=l

ni

 (12)

= (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni


= 0

Where ((12)) applies Lemma 3.1.1.

At this point, we have shown that ∆ = ∆a + ∆b + ∆c ≥ 0, since ∆b ≥ 0 and ∆a + ∆c ≥ 0, which is what we
needed to show.

It is not hard to see that for any S ⊆ Ŝ ⊆ T × O, we could show that ∆(t |S) ≥ ∆(t | Ŝ1) ≥ ∆(t | Ŝ2) · · · ≥ ∆(t | Ŝ)

In other words, we can always find a sequence of removing one hypothesis at a time to get from S to Ŝ when
S ⊆ Ŝ ⊆ T ×O.

7.4 Theorem 3: Greedy Performance Bound

Wewould like to apply Theorem 5.8 of Golovin and Krause (2011). We have already shown adaptive submodularity
and strong adaptive monotonicty in Sec. 7.3. The theorem also requires that instances are self-certifying, which
means that when the policy knows it has obtained the maximum possible objective value immediately upon doing
so. See Golovin and Krause (2011) for details. As our objective is equivalent for all remaining hypotheses in V(S),
our function fHEC is self-certifying.

The performance bound now follows directly from Theorem 5.8 of Golovin and Krause (2011). To apply the
theorem, we needed to define two constants: a bound on the maximum value of fHEC(S),Q = 1, and the minimum
our objective function can change by, which corresponds to removing one hyperedge, η = pkmin. Plugging those
into Theorem 5.8 of Golovin and Krause (2011) gives C(πHEC) ≤ (k ln(1/pmin) + 1)C(π∗).
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