Stochastic Bandits with Context Distributions

Johannes Kirschner, Andreas Krause

Department of Computer Science, ETH Zurich

Neurips 2019, Additional Material

In the **contextual bandit** model, the learner interacts with an unknown environment.

In each iteration $t = 1, 2, \ldots, T$,

- 1) the environment provides a context c_t ,
- 2) the learner observes the context and chooses an action x_t ,
- 3) the environment reveals a stochastic reward $f(x_t, c_t) + \epsilon_t$.

The learner's objective is to maximize reward, and compete with the best-in-hindsight mapping from context to actions.

Examples: Bandits with Stochastic Context

Crop Variety Testing

Action: Crop Variety Context: Weather Conditions

Movie Recommendation

Action: Movie Context: New User

Examples: Bandits with Stochastic Context

Crop Variety Testing

Movie Recommendation

Context is stochastic and not known exactly!

Action: Crop Variety Context: Weather Conditions

Action: Movie Context: New User

Our Setting: Bandits with Context Distributions

Notation: Action set \mathcal{X} , context set \mathcal{C} $\phi_{\mathsf{x},c} \in \mathbb{R}^d$: Feature vectors, $\theta \in \mathbb{R}^d$: True parameter

For t = 1, 2, ..., T:

- 1: Environment chooses distribution $\mu_t \in \mathcal{P}(\mathcal{C})$,
- 2: Learner observes μ_t ,
- 3: Learner chooses $x_t \in \mathcal{X}$,
- 4: Environment secretly samples context $c_t \sim \mu_t$,
- 5: Learner obtains reward $y_t = \phi_{x_t,c_t}^\top \theta + \epsilon_t$

Learner never observes context c_t !

Examples: Context Distributions

Crop Variety Testing

Context Distribution: (Stochastic) Weather Prediction

Movie Recommendation

Context Distribution: Based on user statistics Impossible Baseline: $x_t^* = \arg \max_x \phi_{x,c_t}^\top \theta$ ($\rightarrow \Omega(T)$ regret)

Contextual Regret: Compare to best mapping $\pi^*(\mu_t) \to \mathcal{X}$.

$$egin{aligned} \mathbf{x}_t^* &= \pi^*(\mu_t) = rg\max_{\mathbf{x}} \mathbb{E}_{c \sim \mu_t}[\phi_{\mathbf{x},c}^ op heta] \end{aligned}$$

Distributional Context Regret: $R_T := \sum_{t=1}^{T} \left(\phi_{x_t^*, c_t}^\top \theta - \phi_{x_t, c_t}^\top \theta \right)$

Key insight:

$$y_{t} = \phi_{x_{t},c_{t}}^{\top} \theta + \epsilon_{t} = \mathbb{E}_{c \sim \mu_{t}} [\phi_{x_{t},c}^{\top} \theta] + \underbrace{\phi_{x_{t},c_{t}}^{\top} \theta - \mathbb{E}_{c \sim \mu_{t}} [\phi_{x_{t},c}^{\top} \theta]}_{\text{zero mean, acts like noise}} + \epsilon_{t}$$
$$= \mathbb{E}_{c \sim \mu_{t}} [\phi_{x_{t},c}]^{\top} \theta + \xi_{t}$$
$$=: \overline{\phi}_{x,t}^{\top} \theta + \xi_{t}$$

We show: **UCB** on the expected features $\bar{\phi}_{x,t}$ achieves $R_T \leq \tilde{\mathcal{O}}(d\sqrt{T})$.

Sample Based UCB for Context Distributions

Sample Averages: $\tilde{\phi}'_{x,t} = \frac{1}{l} \sum_{i=1}^{l} \phi_{x,\tilde{c}_i}$ with samples $\tilde{c}_1, \ldots \tilde{c}_l \sim \mu_t$.

$$y_{t} = \phi_{x_{t},c_{t}}^{\top}\theta + \epsilon_{t} = \tilde{\phi}_{x_{t},t}^{\top}\theta + \underbrace{\phi_{x_{t},c_{t}}^{\top}\theta - \tilde{\phi}_{x_{t},t}^{\top}\theta}_{=: b_{t}} \underbrace{\phi_{x_{t},c_{t}}^{\top}\theta - \tilde{\phi}_{x_{t},t}^{\top}\theta}_{\text{no longer zero mean!}} + \epsilon_{t}$$

Solution: Least-squares regression with *adversarial bias* b_t :

If $|b_t| \leq 1/\sqrt{t}$, statistical rate of least-squares estimator unchanged!

We show: **UCB** on sample-averaged features $\tilde{\phi}_{x,t}^{l=t}$ achieves $R_T \leq \tilde{\mathcal{O}}(d\sqrt{T})$

Our setting: Bandits with context distributions

- ▷ UCB type-strategy with **regret bounds**
- Sample-based algorithm with guarantees
- Kernelized setting (Bayesian optimization)
- ▷ Variant with context observed after action choice.
- ▷ Numerical experiments on real-world data.

Arxiv: https://arxiv.org/abs/1906.02685

