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Abstract
Parameter tuning is a notoriously time-consuming task

in accelerator facilities. As tool for global optimization
with noisy evaluations, Bayesian optimization was recently
shown to outperform alternative methods. By learning a
model of the underlying function using all available data,
the next evaluation can be chosen carefully to find the op-
timum with as few steps as possible and without violating
any safety constraints. However, the per-step computation
time increases significantly with the number of parameters
and the generality of the approach can lead to slow conver-
gence on functions that are easier to optimize. To overcome
these limitations, we divide the global problem into sequen-
tial subproblems that can be solved efficiently using safe
Bayesian optimization. This allows us to trade off local and
global convergence and to adapt to additional structure in
the objective function. Further, we provide slice-plots of
the function as user feedback during the optimization. We
showcase how we use our algorithm to tune up the FEL out-
put of SwissFEL with up to 40 parameters simultaneously,
and reach convergence within reasonable tuning times in the
order of 30 minutes (< 2000 steps).

INTRODUCTION
Empirical parameter tuning is an important and reoccur-

ring task of the FEL setup. Common tuning objectives in-
clude the pulse energy or spectrum of the FEL signal and
loss minimization, or a combination of multiple criteria. A
recent effort started to use optimization methods to automate
the tuning process [1–6], and significant speedups compared
to manual operator tuning have been obtained. As only point
evaluations of the objective function are available, one has to
rely on zero-order or blackbox optimization methods. Due
to their simplicity, the Nelder-Mead (Simplex) [7] algorithm
and random walk optimizers have become popular choices
to assist operator tuning in some facilities. As an alterna-
tive, Bayesian optimization (BO) [8, 9] has recently gained
interest also in the accelerator community [1, 2]. Bayesian
optimization deals with observation noise in a principled
way, allows to leverage prior data and comes with theoreti-
cal convergence guarantees in some cases [10]. A variant
(SafeOPT) has been proposed [11], that takes additional
safety constraints into account. This is of importance for
tuning FEL parameters, for instance to avoid electron losses
or to maintain a minimum level of the FEL signal during
optimization. However, these benefits come at the expense
of increased computational requirements as well as addi-
tional complexity in the choice and sensitivity of BO hyper-
parameters. We believe that these issues constitute the main

reasons that prevent a more wide-spread use of Bayesian
optimization in this context beyond an academic setup. Mov-
ing forward with this, we present the following contributions.

• We implement the LineBO [12] algorithm at SwissFEL.
The algorithm is designed to be computationally effi-
cient when used with a large number of parameters and
allows to take safety critical constraints into account.

• On SwissFEL we compare our methods to a simple pa-
rameter scan and the Nelder-Mead method, and obtain
promising results when tuning up to 40 parameters.

Mathematical Setting
Let 𝑑 denote the number of tuning parameters. The pa-

rameter space is 𝒳 = [𝑎1; 𝑏1] × ⋯ × [𝑎𝑑; 𝑏𝑑] ⊂ ℝ𝑑, where
𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 defines the allowed range for each parameter
𝑖 = 1, … , 𝑑. The objective function (e.g. the FEL pulse en-
ergy) is an unknown function 𝑓 ∶ 𝒳 → ℝ. The constraints
are modelled by some unknown 𝑔 ∶ 𝒳 → ℝ. A parameter
𝑥 ∈ 𝒳 is said to satisfy the safety constraint if 𝑔(𝑥) ≤ 𝜏
for a user-specified threshold level 𝜏 ∈ ℝ. For simplicity,
we use the formulation with a single constraint but multiple
constraints are possible by choosing 𝑔 vector valued. The
only way to access 𝑓 and 𝑔 is to measure at any 𝑥 ∈ 𝒳,
which yields noisy point observations of the objective and
the constraint, 𝑦 = 𝑓 (𝑥) + 𝜖 and 𝑠 = 𝑔(𝑥) + 𝜂. We refer to
this process as evaluating at 𝑥, which in our case includes
averaging the FEL signal over multiple shots. Formally, the
tuning objective is

𝑥∗ = arg max
𝑥∈𝒳;𝑔(𝑥)≤𝜏

𝑓 (𝑥) . (1)

An optimization algorithm iteratively chooses a sequence of
parameters 𝑥1, … , 𝑥𝑇 and obtains evaluations of 𝑓 and 𝑔 for
each point. After 𝑇 steps (when the user stops the optimiza-
tion), a final solution 𝑥𝑇 is returned. A tuning method is
called safe if all the iterates (𝑥𝑡)𝑇

𝑡=1 satisfy 𝑔(𝑥𝑡) ≤ 𝜏. In the
unconstrained case the requirement 𝑔(𝑥) ≤ 𝜏 is dropped.

BAYESIAN OPTIMIZATION
Bayesian optimization is a method for global optimiza-

tion. The idea is to learn a model of the objective function
based on the data collected during the optimization (and pos-
sibly any available prior data). The decision where to place
the next evaluation is then based on the model’s predictions
of plausible locations of the optimum 𝑥∗ and also takes the
model uncertainty into account. More formally, in the un-
constrained case, Bayesian optimization uses the following
steps.



Step 0) Initialize step counter 𝑡 = 0, data 𝒟0 = {}.

Step 1) Compute a Gaussian Process (GP) estimate ̂𝑓𝑡 of 𝑓
using data 𝒟𝑡. Gaussian processes are probabilistic
regression models that provide confidence intervals

̂𝑓𝑡 ±𝛽𝑡𝜎𝑡(𝑥). Here 𝜎𝑡(𝑥) quantifies the model uncer-
tainty at 𝑥, and 𝛽𝑡 is a scaling factor that controls
the coverage probability.

Step 2) Evaluate at 𝑥𝑡 = arg max𝑥∈𝒳 𝛼𝑡(𝑥). Here, 𝛼𝑡(𝑥)
is a so-called acquisition function based on ̂𝑓𝑡 and
the model uncertainty, which captures the utility
of choosing a point 𝑥𝑡. One of the most common
acquisition functions is the upper confidence bound
(UCB) 𝛼𝑡(𝑥) = 𝑓𝑡(𝑥) + 𝛽𝑡𝜎𝑡(𝑥). In this case the
point with the largest plausible value according to
the confidence intervals is chosen.

Step 3) The point 𝑥𝑡 is evaluated and the outcome 𝑦𝑡 =
𝑓 (𝑥) + 𝜖 is added to the data set 𝒟𝑡+1. Increase
𝑡 ∶= 𝑡 + 1, go to Step 1).

The interested reader may consult the excellent tutorials [8,9]
for a more detailed introduction to Gaussian processes and
Bayesian optimization. For the constrained case, a safe BO
method has been proposed (SafeOPT) [11]. The above out-
line is then modified to construct estimates ̂𝑓𝑡 and ̂𝑔𝑡 of 𝑓 and
the constraint function 𝑔 in Step 1), and the acquisition func-
tion in Step 2) is re-defined to ensure that a) all evaluations
are safe b) the set of safe parameter settings is explored suffi-
ciently and c) the optimum within the set of safe parameters
is identified. We describe this approach in more detail below.

Our Approach: SafeLineBO
Bayesian optimization as defined above has been success-

fully used in many applications, and was shown to outper-
form alternative approaches on some domains [13]. When
applied to high-dimensional settings, the major challenge is
to scale Step 2), which itself defines an optimization prob-
lem over the parameter space 𝒳. The reasoning behind re-
placing the main objective (1) by the acquisition Step 2 is
that 𝛼𝑡 can be optimized offline (without taking evaluations
on the machine) and with enough computational power a
solution can be obtained in reasonable time. Still, Step 2
becomes prohibitive as the number of parameters increases.
For the case of safe optimization already 𝑑 ≥ 5 parameters
are problematic, because the SafeOPT method requires a
discretization of the domain, hence requires to iterate over
exponentially (in 𝑑) many points in each step.

To address this short-coming, we use Bayesian optimiza-
tion combined with a linesearch technique as we previously
proposed in [12]. Below we give the algorithmic outline.

Step 0) Initialize 𝑡 = 0, 𝒟0 = {}, 𝜖 > 0, safe starting point
𝑥0.

Step 1) Query 𝑓 and 𝑔 at ∼ 𝑑 local perturbations of 𝑥𝑡, and
add the evaluations to the data set 𝒟𝑡.

Step 2) Update the Gaussian Process (GP) estimates ̂𝑓𝑡(𝑥)±
𝛽𝑡𝜎𝑡(𝑥), ̂𝑔𝑡(𝑥) ± 𝛽𝑡𝜌𝑡(𝑥) of 𝑓 and 𝑔 with 𝒟𝑡.

Step 3) Compute the estimated gradient 𝑙𝑡 ∶= ∇ ̂𝑓𝑡(𝑥𝑡).

Step 4) Define 1d subspace ℒ𝑡 = {𝜆 ⋅ 𝑙𝑡 +𝑥𝑡 ∶ 𝜆 ∈ ℝ}∩𝒳.

Step 5) Use SafeOPT to solve the objective (1) on ℒ𝑡:

i) Define safe subset of ℒ𝑡,
ℒ𝑠 = {𝑥 ∈ ℒ𝑡 ∶ ̂𝑔𝑡(𝑥) + 𝛽𝑡𝜌𝑡(𝑥) ≤ 𝜏}.

ii) Compute a candidate expander point 𝑥𝑒 ∈ 𝒳𝑠 that
is predicted to enlarge the estimated safe set.

iii) Compute a candidate optimizer 𝑥𝑜 ∈ 𝒳𝑠 that re-
duces uncertainty about the optimum on ℒ𝑡.

iv) Among {𝑥𝑒, 𝑥𝑜} choose the point where the
prediction of ̂𝑓 is more uncertain, ie 𝑥 =
arg max ̃𝑥∈{𝑥𝑒,𝑥𝑜} 𝜎𝑡( ̃𝑥).

v) Evaluate at 𝑥, update data 𝒟𝑡 and estimates ̂𝑓𝑡, ̂𝑔𝑡.
vi) As long as error is larger than 𝜖, go to 𝑖).

Step 6) Until user stops optimization, increase 𝑡 ∶= 𝑡 + 1,
go to Step 1).

A fully formal description as well as a more extensive em-
pirical evaluation of this approach is given in [12]. Impor-
tantly, Step 4-5) circumvent the expensive maximization of
the acquisition function by restricting the global problem
to iteratively chosen 1-dimensional subsets of the domain,
while keeping all data in a global model. Nevertheless, this
approach satisfies strong convergence guarantees [12]. We
present the evaluation of this approach on SwissFEL in the
next section.

PARAMETER TUNING AT SWISSFEL
We implemented a python interface for optimizers based

on pyepics. The optimization framework runs on a server
an can be controlled via an application interface. We have
beam checks in place, that pause the optimization in case
the signal is lost. Further, we have a configurable settling
time and we check for feedback error signal to fall below a
threshold before we evaluate a point.

Objective: Per shot pulse energy measured with a gas de-
tector [14], averaged over 10 measurements at 25-50 Hz.
With the settling and computation time, we are able to run
1-2 optimization steps per second.

Tuning parameters:

• 24 (horizontal & vertical) beam position monitor
(BPM) target values of the orbit feedback through the
undulators (maintaining 2 fixed points in each plane).

• 5 matching quadrupoles before the undulators.

• 11 gap settings of the undulators.
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Figure 1: Top: Performance of parameter scan, Nelder-Mead
and LineBO without safety constraints in terms of number of
evaluations on the machine, using the 24 BPM target values.
Bottom: Corresponding final BPM target values relative to
the starting parameter in the allowed range (±80 µm). Note
that the algorithms converge to different solutions, which
likely is due to local optima or insensitive parameters.

Constraints: As a constraint we used a lower bound on
the FEL signal (Fig. 2a). A possible use-case is parasitical
tuning during user operation, where a minimum signal is
required. Losses were not a major concern with these pa-
rameters, but could be included for other parameters or for
optimization on other accelerators (e.g. proton accelerators).

EMPIRICAL RESULTS
We did multiple test runs comparing LineBO and Safe-

LineBO (with the constraint) to Nelder-Mead and a simple
parameter scan baseline, using the 24 BPM target values
as tuning parameters. For the parameter scan baseline, we
consecutively optimized each parameter with a single scan.
For each test run, we manually detuned the machine to a
fixed starting point with a low signal value. Additionally,
we conducted an experiment with 40 parameters, including
BPM target values, matching quadrupoles and gap settings
of the undulators. Our findings are presented in Fig. 1 and
2. Note that the figures show results from different tuning
sessions. We found that the Bayesian optimization method
was able to consistently outperform our baselines, however
our method required setting GP hyperparameters such as
lengthscales, which we have not fully automatized yet.

OUTLOOK
The ultimate goal is to establish a well-performing opti-

mization method to assist operators with tuning FEL param-
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Figure 2: Top: Comparing LineBO and SafeLineBO (with
and without safety constraint). In this case SafeLineBO
performs significantly better because the search space is
more constrained: parameter that yield very low values (<1)
are never explored whereas LineBO also evaluates points
below this threshold. Bottom: Tuning with 40 parameters
where we obtain good values with 800 steps (15 minutes).

eters, in particular those that need regular adjustments. For
such a method to be practical, the method itself should have
at most 1-2 hyper-parameters that need adjustment, where
ideally the best setting is relatively robust or obtained with a
guiding principle. In our current implementation we explore
learning some of the GP hyper-parameters such as length-
scales from initial scans (a process that needs to be done
only once); however the results are not yet fully satisfying.
An additional advantage of the LineBO method is that one
can obtain slice plots of the model predictions on the current
line as feedback of the current optimization progress, which
can also guide the setting of GP hyper-parameters.

We also think that a more systematic comparison to other
methods should be conducted. Another candidate that to the
best of our knowledge has not yet been tested substantially
for FEL tuning is CMA-ES [15], which however does not
directly deal with safety constraints.
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