

Unsupervised, Dynamic Identification of
Physiological and Activity Context in Wearable Computing

Andreas Krause

Technische Universität München
krausea@cs.tum.edu

Asim Smailagic

Carnegie Mellon University
asim@cs.cmu.edu

Daniel P. Siewiorek
Carnegie Mellon University

dps@cs.cmu.edu

Jonny Farringdon
BodyMedia Inc.

jonny@bodymedia.com

Abstract

 Context-aware computing describes the situation

where a wearable / mobile computer is aware of its
user’s state and surroundings and modifies its behavior
based on this information. We designed, implemented and
evaluated a wearable system which can determine typical
user context and context transition probabilities online
and without external supervision. The system relies on
techniques from machine learning, statistical analysis
and graph algorithms. It can be used for online
classification and prediction. Our results indicate the
power of our method to determine a meaningful user
context model while only requiring data from a
comfortable physiological sensor device.

1. Introduction

Our goal is to make the wearable computer sense the

user and his current state, exploiting context information
to significantly reduce demands on human attention [1].
By estimating physiological properties such as stress
level, activity level, movement patterns and ambient
context information, a human’s current state can be
predicted, e.g. if one is currently busy or not. We do not
try to identify detailed scenes such as shopping at a
supermarket, or entering or leaving a building. An
approach towards scene identification can be found in
[2].

Microphone data has been used in [3] to identify
whether the user of a cell phone can be interrupted or not.
In [4], accelerometer data has been used to identify
different kinds of activities such as walking, running,
climbing stairs. All these approaches rely on offline data
analysis to learn “typical” contexts.

A method based on Kohonen Self Organizing Maps
(KSOMs) and k-Means clustering is proposed in [5],
which is able to identify typical motion profiles. This
approach relies on active training, i.e. pushing buttons
while performing certain activities. These sparse labels
are used to construct a supervised context transition
profile based on a first order Markov process. This
approach also suffers from the KSOM’s inflexible
memorizing process [14]. To make the KSOM training
procedure converge, the neighborhood radius of the
learning neurons must decrease over time [9]. This results
in an inability to keep up the learning process running
over a long time period.

In [6], an online algorithm is given for the
combination of KSOMs and k-Means clustering. This
approach also requires active training by specification of
user labels.

For context-aware systems to eventually become end-
user products, both wearability (i.e. non-intrusiveness)
and usability (minimal active training) are the key issues.
Our objective is to make advances in both directions. For
the wearability issue, we make use of an off-the-shelf,
minimally intrusive armband. This armband can be
placed on the back of the upper arm, and can
communicate wirelessly with the other computers.

Our motivation is derived from the observation that
context does not require a descriptive label to be used for
adaptivity and contextually sensitive response. This
makes an approach towards completely unsupervised
learning feasible. By unsupervised learning we mean the
identification of context without requiring external
supervision, i.e. by manually annotating current user
states. Most unsupervised machine learning techniques
can be subsumed by the term clustering. In general, it is
difficult to tell whether two close (in terms of the feature
space distance metrics) cluster centers are actually part of

the same cluster. This is the challenge of context
abstraction.

In Section 2, we describe the wearable platform and

Section 3 explains our method. In Section 4, we describe
our experimental setup and evaluate the results of our
studies. In Section 5, we identify two applications that
can use our method, and Section 6 presents our
conclusions.

2. Wearable platform

Figure 1. Wearing position and form factor of the
SenseWear armband.

To provide sensor input, our system relies on

physiological and movement data. We use the SenseWear
armband from BodyMedia as shown in Figure 1.
Information about wearable sensor badges can be found
in [7]. The small armband combines five distinct sensors:
two accelerometers, galvanic skin response, skin
temperature and near-body ambient temperature. The
armband is worn on the back of the upper arm. The
sensors are described regarding this position, with the
wearer standing up, arms at their side.

A 2-axis micro-electro-mechanical sensor device
measures motion. These accelerometers are oriented in
the transverse (through the chest parallel to the ground)
and longitudinal (vertical to the ground along the arm,
head-to-toe) planes. The motion can be mapped to forces
exerted by the body and hence contribute to calculations
of energy expenditure. By taking into account gravity
they give orientation information as well as motion
information, which are used to predict the wearer’s
context.

Heat flux is a measure of the amount of heat being
dissipated by the body. The sensor uses very low
thermally resistant materials and extremely sensitive
thermocouple arrays. It is placed in a thermally
conductive path between the skin and the side of the
armband exposed to the environment.

Galvanic skin response (GSR) represents electrical
conductivity between two points on the wearer's arm. The
GSR sensor includes two hypo-allergenic stainless steel
electrodes integrated into the underside of the armband.
Skin conductivity is affected by the sweat from physical
activity and by emotional stimuli. GSR can be used as an
indicator of evaporative heat loss by identifying the onset,
peak, and recovery of maximal sweat rates.

Skin temperature is measured using a highly accurate
thermistor-based sensor located on the backside of the
armband near its edges and in contact with the skin.
Continuously measured skin temperature reflects the
body's core temperature activity.

The near-body ambient temperature sensor measures
the air temperature immediately around the wearer's
armband. This sensor also uses a highly accurate
thermistor-based sensor and directly reflects the change
of environmental conditions around the armband, e.g.
walking out of an air conditioned building on a hot day.

The SenseWear is worn on the back of the upper right
arm for numerous reasons. Comfort is key, as the
armband’s normal use is 24 hours a day 7 days a week. It
can be worn during the day and at night, only being taken
off to wash. The position at the back of the upper arm, in
combination with the armband shape makes it
unobtrusive and quickly “unnoticeable”. [8]
Additionally, the a-symmetric heat flux sensor gives the
most accurate readings when worn in this position.

The user sets a recording frequency. At one minute
data recording intervals the armband can record data for
over 5 days, 24 hours a day without recharging. Each of
the integrated sensors is sampled 32 times a second
regardless of the sample interval setting. Once a sampling
period two measures of the sensors – the mean value, and
the sum of the absolute differences (SADs) – are
calculated.

Sensor readings recorded in the armband are direct
values from the internal analogue-digital (AD) converter,
in the range [0, 4095]. Each armband contains calibration
information for each sensor unique to the armband,
determined during its manufacture.

The modus operandi of the SenseWear armband is
continuous wearing and data collection, with a data
download once a day or week. The armbands also contain
a transceiver for data transmission using the Scientific
and Medical Instruments (ISM) license free band. The
recharging and docking cradle for the PC contains a
corresponding transceiver. Within range of the cradle the
armband can transmit live data readings for processing.

The armband transceiver operates on a “no
unrequested broadcasts” principle. Under some
circumstances wireless broadcasting may be
inappropriate, for example in a hospital, or on an
airplane. The armband is always listening for wireless

communications. Each armband is identified by an eight
digit serial number, and wireless data requests ask
specific armbands to communicate.

Two wireless applications are routinely used in
context and real-time physiological research. The first is
request-based and the second is “continuous”. When
request based, a specific armband is asked to return a
sample from specified sensors. Data sampling rates of up
to four samples per second are possible with this method.
The continuous method instructs an armband to start
broadcasting specified sensor readings as fast as possible.
The armband stops broadcasting when it is taken off-
body, a state it automatically detects as being no longer in
contact with skin. Data rates up to sixteen samples a
second can be achieved with this method.

A button on the armband allows collecting time-
stamps which can be used for annotating recorded data.

For data processing, an Acer C100 Tablet PC with a

900 MHz Pentium III and 256 MB of main memory was
preferred to a Personal Digital Assistant (PDA) sized
device, since the tablet platform has a larger screen for
data visualization but can still be carried around easily.
Although the Tablet PC can communicate wirelessly with
the sensor, currently only recorded and downloaded data
has been studied, which is input to the data processing
software in a way to simulate real-time sensor queries.
Figure 2 shows the devices included in the wearable
platform.

3. Method

In this Section we describe our unsupervised machine

learning approach. We first present an offline algorithm
which uses a training sample time series as input and
constructs a classifier from this data. Successively, we
describe how we turn our offline algorithm into an online
algorithm, which can use real-time sampling data.

Figure 2. Wearable platform. The Acer C100 Tablet
PC is used for data analysis and can communicate
wirelessly and in real-time with the sensor armband on the
lower right via the transceiver cradle on the upper right.

Our offline approach can be summarized as follows:
After certain data preprocessing, a Kohonen Self
Organizing Map is trained with the sensor values. A k-
Means clustering is performed on the maps codebook
vectors, where k is chosen as guided by the Davies
Bouldin index; a description and analysis of this
clustering quality measure can be found in [17]. After the
clustering, a first order Markov model is trained with
respect to the cluster transition probabilities. A graph
reduction strategy is applied to the resulting transition
graph. This graph reduction eliminates transient states.
Codebook vectors for eliminated states are reassigned to
non-transient states by further iterations of the k-Means
algorithm. The resulting clustering is used as a classifier
for test samples; the first order Markov model on the final
clustering can serve for prediction. Figure 3 gives a
graphical illustration of our proposed system.

Figure 3. System diagram. Data is gathered by a
wearable sensor. The data is used both to construct the
classifier and to classify current sensor readings. The
resulting classification is sent to a context aware wearable
device.

We now give more details on the construction of the

classifier described above. In the remaining part of this
Section, we describe how we changed our offline
algorithm into an online algorithm. In Section 4, we
analyze the performance of our method with respect to
sensor data from several studies.

3.1 Preprocessing

Since we experimented with varying sampling

frequencies, different preprocessing techniques were
chosen. For low data rate polling (1 and 10 samples per
minute), the onboard averages and absolute differences
proved to be useful. Eight data channels of the
BodyMedia device have been recorded, forming an eight
dimensional feature space. These channels comprised the

 Preprocessing

Map training

Clustering

Context
abstraction

Transition
probabilities

Construction
of Classifier

Wearable
device

Sensors

Context classifier

averaged values from the GSR, heat flux, ambient and
skin thermometers and both axis of accelerometers as
well as the SAD values from both accelerometers.

For high data rate polling (8 samples per second) we
calculated the Fast Fourier Transform (FFT) oscillatory
spectra of the recorded accelerometer values. It turned out
that a 64 point FFT (i.e. spectra of 8 second time-frames,
separate spectra for both axes) was a good resolution to
discern various different fine-grain movement patterns.
Since the spectra are symmetric, only the first 32 points
were used. The resulting spectra have been log-
transformed. For the high data rate samples, the spectra of
the two accelerometers were recorded, making it a 64
dimensional feature space.

To give each dimension equal importance in terms of
the self organization process, we normalized the data to
have unit coordinate-wise variance as proposed in [9].

Since learning in high dimensional feature spaces is
adversely affected by the so called curse of
dimensionality [10], techniques for dimension reduction
were evaluated. Commonly used candidates for this
purpose are Principal Component Analysis (PCA) and
linear Independent Component Analysis (ICA). ICA is
computationally expensive and therefore currently not
feasible for online algorithms on wearable computers.
Therefore, PCA, which is a projection of the data vectors
to the most important eigenspaces (in terms of eigenvalue
size) of the covariance matrix, was evaluated. This
approach shows good results on our training data. Figure
4 shows the amount of variance explained by the top
eigenspaces for both the low data rate and high data rate
approach. Figure 5 shows two recorded time-series,
normalized to unit variance.

Figure 4. PCA. The bar charts display eigenvalue sizes
of the low rate (left) and high rate (right) samples.

Figure 5. Time series plot of the five principal
components’ time series, resulting from 20 hours of data
at 1 sample per minute (left) and from 3 minutes of 8
samples per second data.

3.2 Further dimension reduction by Kohonen Self
Organizing Maps

In both the high and the low data rate cases, the top

five eigenspaces appear to explain most of the sensor
variance, so the input data was projected onto the first
five principal components. Since the topology of the
Kohonen maps is typically two-dimensional (it can be
seen as a two dimensional manifold in the higher
dimensional feature space), it is expected that clusters in a
lower dimensional feature space can be found more easily
than in a higher dimensional feature space. We used a
20x23 cell hexagonal topology for the map, a size
suggested by [11] for our data size. Training is performed
by the batch training algorithm described in [9].

3.3 Clustering

Although the training of the self organizing map is

already a clustering process, codebook vectors must be
grouped together further to reach representative cluster
sizes. The Unified Distance Matrix, or U-Matrix, is a
means of detecting clusters and emerging features [16]. It
contains information about the feature space distance of
codebook vectors adjacent with respect to the map
topology. Figure 12 shows an example of a U-Matrix.
Clustering based solely on the segmentation of the U-
Matrix is difficult since emerging clusters rarely have
sharp borders. As suggested in [5], a k-Means clustering
is performed on the codebook vectors. Our approach does
not require user labels for determining the initial cluster
centroid starting values; the clustering is completely
driven by the unlabeled data. We initially perform a k-
Means clustering with quite large k (growing as the
square root of the number of codebook values is a
common heuristics). Clustering is performed for the k
values lying in a certain interval. The Davies-Bouldin
index is used as a further guidance.

3.4 Context abstraction

By this procedure, about 14 clusters are found for a

typical low data rate sample for 20 hours of training data.
Since the chosen data preprocessing is expected to
smooth out abrupt context changes, clusters representing
these context changes are expected to be found (i.e.
switching from running to walking and back). Although
these transition states are interesting in terms of context
change prediction, they adversely affect learning adaptive
system behavior, since the system must rely on robust
context state estimates as the basis of learning usage
patterns. To identify transient states, transition
probabilities are taken into account. Based on the
clustering described above, a first order Markov model is

trained based on the cluster transition probabilities.
Transient states can be characterized by having a low
“loop” probability, namely remaining in the same state
for a long time is improbable. A graph reduction
algorithm is performed on the Markov model, eliminating
states with a “loop” probability (the diagonal values in
the transition matrix) below a certain threshold. The
corresponding transitive corrections including the update
of the transition probabilities are implemented as shown
in Figure 6. Each state v with a loop probability below a
certain threshold α is removed from the transition graph;
0.3 turned out to be a good value although results do not
show dramatic changes for variations of this value
between 0.2 and 0.4. The main step in the algorithm is the
following transitivity update,
P(r,c) P(r,c) + P(r,v) * P(v,c) / S

which redistributes the probabilities of out-adjacent edges
of v to corresponding transitive out-adjacent edges of v’s
predecessors. P denotes the state transition probability
matrix, i.e. P(i,j) = Prob(Xt = j | Xt-1 = i), where Xt is the
cluster index assigned to the sensor value vector at time t,
Prob(X|Y) is the conditional probability of X for the prior
Y.

 For v = 1 to #states If P(v,v) < α then
 P(v,v) 0;
 S Σi P(v,i); For r = 1 to #states, r ≠ v
 For c = 1 to #states, c ≠ v
 P(r,c) P(r,c)+P(r,v)*P(v,c)/S;
 End P(r,c) 0;
 End End End

Figure 6. Pseudo code for elimination of
transient vertices.

After the elimination of the transient clusters, a few

more iterations of the k-Means algorithm are necessary to
reassign now unclustered codebook vectors to new
clusters. Successively, a new transition probability
Markov model is trained on the reduced set of clusters;
this model can then be used to predict possible context
changes. Figures 7 and 8 show the elimination of
transient states. For visualization of the transition graphs,
the GraphViz package from [12] was used.

3.5 Online algorithm

The algorithm described above is offline, i.e. the entire

sensor values time-series must be available at training
time. Our online algorithm is buffer based, and it
proceeds as follows: sensor values are recorded until a
certain time interval (i.e. some hours or days) has passed.

Figure 7. Transition probability graph before
elimination of transient states.

Figure 8. Transition probability graph after
elimination of transient states.

This data is taken to construct a classifier and context

transition probability model as described above. To refine
this model, a training sample is constructed, consisting of
the compressed prior training sample and the newly
buffered data. The prior training sample is compressed by
selecting a certain percentage of its data vectors at
equally spaced intervals. Using these training samples,
another map is trained, and the new codebook vectors are
again clustered by a k-Means algorithm with the existing
cluster centers as initial values plus a certain number of
randomly initialized cluster centers. Successively the
steps described above (building a Markov model, do
graph reduction, build another Markov model) are
applied again. By adding these randomly initialized
cluster centers, potentially new context can be identified.
Figure 9 illustrates the construction of this online
classifier.

Since the empirical covariance matrix changes as new
sensor data becomes available, PCA can only be

performed for fixed sets of data. We consider the
principal component directions as properties of the
sensors and the sensor placement. Therefore we expect
that data from a limited time interval can determine an
initial estimate of the principal component direction. The
linear transformation determined by these directions can
be used to project new data in real-time to the previously
determined principal components. Recalibration can be
triggered, as soon as the amount of variance explained by
the principal components drops beneath a certain
threshold.

Figure 9. Online algorithm: The top row represents
the buffering of the input data. In the second row, the
geometric memory decay is sketched. The third row shows
the training of the KSOM, the clustering, the Markov
model and the integration of the prior clustering.

By buffering a certain fraction of the past sensor data

we can still keep track of important past clusters, while
maintaining the KSOM’s ability to learn new contexts.
Since the fraction is fixed, the size of the learning data
converges. This memory decay strategy is geometric in
nature, which is the discrete version of exponential decay.

 The motivation of this buffered learning strategy
comes from the human ability to process daytime
experiences over night. Another advantage of the buffer
based update is that the computationally expensive
training and clustering procedure can be implemented in
parallel to the data acquisition, classification and
prediction algorithms.

A prototype of the online algorithm described above
was built in Matlab 6.5, using the SOM Toolbox 2.0 [13].
Figure 11 shows the graphical user interface of the
system. At each time step, the signal values are projected
onto the map topology and visualized in the clustering
diagram, which determines the output of our classifier.

4. Results and evaluation

To evaluate our method, two studies have been made.

In the first study, two subjects wore the BodyMedia
armband over the duration of several days, annotating
their determined context – i.e. working in the office,
being in a meeting, commuting, relaxing in the sun – by
use of the armband button and additional note-taking.

Subject A is one of the authors, a graduate student in
his early twenties leading a moderately active life style.
Subject B is a graduate student in her mid twenties,
leading an active life style. The subjects were required to
mark time-stamps close to their subjectively felt context
change and verbally classify the corresponding context.
In summary, over 240 hour long studies were done by
recording one sample per minute (low data rate).

The second study investigates other properties of our
classifier. We look at higher data rate samples,
performance of our classifier to determine fine-grain
motion, stability and computational properties. To
determine how our method performs with higher
sampling frequency data we collected data with different
sampling settings: One data set was sampled at 10
samples per minute, another one at 8 samples per second.
All data samples were recorded at specified sampling
rates on the armband’s onboard storage. The collected
data was downloaded to the Tablet PC via the SenseWear
docking cradle at varying time intervals.

4.1. Results of Study 1

Subject A collected data for 4 days for an overall

recording time of 74 hours, subject B gathered data
during daytime for 22 days with a total recording time of
168 hours. The sampling rate was set to one sample per
minute. Data was analyzed in blocks of varying lengths,
including a variety of different contexts. Per block, an
initial clustering with on average 15 clusters was done.
After the elimination of transient states, an average of
five clusters were identified for subject A, who
continuously wore the device for four days, and an
average of four clusters were identified for subject B,
who had varying recording time ranges. All recordings
were done during weekdays.

The data was processed by our classifier and the
resulting clustering was manually compared with the data
annotation. It was examined whether equally annotated
contexts correspond to single or separate clusters. Figure
13 displays the performance of our method on a 20 hour
data sample. Our method could compete with the
subjective context classification well up to a certain
extent. While subject A walked home every day – a
context which could clearly be identified, subject B
commuted, which was rarely identified; in most cases it

…

Buffer (t-1) Buffer t

Buffer t t-1 t-2

Time

Old model used
for update

Sensors on
armband

…

KSOM Clustering (t)

Clustering (t-1)

Transition
probabilities

was typically misclassified as the “working in office”
context. However, we did not use any temporal context in
our studies, and especially activities such as commuting
are expected to correlate well with temporal information.
The study shows that both subjects only identified a small
number of subjectively typical contexts; the number of
contexts annotated is only slightly higher than the number
of clusters found by our classifier. The frequent use of the
armband’s timestamp button by subject B indicates the
existence of a number of minor contexts which could not
be identified by our current algorithm. The number of
state transitions our classifier determines matches the
number of timestamps taken by both subjects well, so the
non-identified clusters might only have been eliminated
by a too strict context abstraction threshold.

Table 1 shows the results of Study 1. Col. 1 is the
sample number, Col. 2 denotes recording duration and
involved days, Col. 3 lists abbreviations for major
contexts identified by wearer, Col. 4 shows the number of
clusters found, Col. 5 gives the number of time stamps,
Col. 6 the number of stable (only one transition per five
minutes counted) transitions. Col. 7 gives the offline map
training quantization error. The following abbreviations
are used: B – Busy, C – Commute, D – Driving, E –
Eating, F – Fitness, H – at Home, L – Social, M –
Meeting, N – Not Busy, O – Office, R – Relaxing, S –
Sleeping.

Consistent with [8], both subjects reported the
unobtrusiveness of the wearable sensor badge, especially
for long term usage. The data from Study 1 was both
input to the offline and the online algorithm which
showed comparable classification performance.

4.2. Results of Study 2

To evaluate the sensor data quality and the

performance of our methods we performed analyses from
different perspectives: Firstly, we looked at higher data
rate samples (4.2.1., 4.2.2.), secondly we assessed sensor
quality by cross-validation (Section 4.2.3.), and thirdly
we measured computational performance and memory
requirements (Section 4.2.4.).

Two higher data rate data sets were collected. A
movement study at eight samples per second was used to
test the quality of our method to discern fine grain
movement patterns (Section 4.2.1.). A 24 hour data set at
10 samples a minute was collected to estimate stability of
our online algorithm and to determine the impact of
higher resolution time series data (Section 4.2.2.).
4.2.1. Stability study. Subject A wore the armband for
another two days, with the sampling rate set to 10
samples per minute. The comparison of both low data rate
sensor recordings indicate that the availability of more
data samples at the higher sampling rate of 10 samples a

minute makes the clustering more stable. A reason is that
less time samples are associated with transient states as
are for the one sample per minute sampling rate. A more
detailed clustering is found, resulting in an average of
eight stable clusters for a 24 hour period.

To evaluate the geometric decay memory of our online
algorithm we input a typical 24 hour sample (11002 data
vectors) to the online algorithm, repeated three times. The
buffer was sized to capture the most recent four hours of
data and four hours of compressed prior information; the
algorithm showed stability of the clustering for this
experiment.

The overall quantization error with the dynamically
updated map was 0.42 after the one day sample was
repeated three times. The overall quantization error for
the offline map was 0.37 after the one day sample. This
indicates that, although the buffer size was only 12 % of
the complete sample size, the quantization error of the
map constructed online was only 10% larger than the
quantization error of the offline map, for which the
complete sample was used while training. Figure 10
shows the influence of the buffer size on the quantization
error.

Figure 10. Buffer size vs. quantization and
topographic error

4.2.2. Movement study. Subject A performed several
distinct kinds of movements over a period of about three
minutes (1632 samples in total), in the following order:
Walking (1), running (2), walking (1), sitting (3), knee-
bends (4), walking (1), waving his arms (5), walking (1),
climbing up and down stairs, one stair a step (6). Six
clusters were identified, clearly corresponding to the
trained movement patterns. Projection of adjacent values
of the sensor time series onto the map exhibited close
locality while the subject performed movements
corresponding to a certain activity.

Quantization error

Topographic error

Chosen buffer size

Figure 11. Graphical user interface of the online
classifier. The top row shows the sensor data and is
updated in real time. The second row displays the
geometric memory decay buffer (left), the reduced Markov
model graph (right) and the corresponding clustering
(center). In the third row, the U-Matrix is displayed on the
left, along with values of the codebook vector coordinates
for the top five principal components.

The map constructed by the offline training algorithm
was evaluated by testing its performance as a classifier on
test data, which consisted on recorded movement patterns
of four minutes, 2204 samples in total. Movements were
recorded in the following order: walking slowly (1,3),
knee-bends (4), running (2), climbing up and down stairs,
two stairs a step (6), walking (1) and sitting (3). All
movements were correctly classified as indicated by the
numbers in brackets. The algorithm was very successful
even in discerning the transition from running to climbing
stairs; the classification of walking slowly was wrong
only in the first few seconds, when it was misclassified as
corresponding to the “sitting” cluster. Since the FFT is
calculated from an eight second time frame, the transition
lag varied between 0 and 4 seconds, 1 second being the
average classification lag. Figure 12 shows the resulting
clustering of the high data rate sample data.

4.2.3. Cross-Validation of the sensors. To assess the
importance of all eight sensor data channels for stable
clustering, a cross-validation was performed. Using a 20
hour data sample, a map was trained for all data channels
enabled, and for disabling either the GSR (i), the heat
flux (ii), ambient temperature (iii), skin temperature (iv),
both accelerometer SAD channels (v), both accelerometer
mean values (vi) and SAD and mean of the longitudinal
(vii) and the transverse accelerometer (viii). The most
detailed clustering was found in (v). The accelerometer
SAD values tended to produce many transient clusters. In
all observations with SAD values enabled, only four or
five clusters were found; in case (v), six clusters were

found. Case (v) had problems with identifying the sleep
state, which can be characterized by an extremely low
level of accelerometer change. The sleeping state was
characterized best in case (iv), where accelerometer SAD
values were available and the skin temperature was
disabled. Figure 14 shows the influence of the fluctuating
skin temperature and the accelerometer SAD values on
the detection of the sleeping state.
The topographic error of the map training process was
smallest for the exclusion of accelerometer means or
SAD values, as shown in Figure 15. This indicates that
the accelerometer values have great impact on cluster
variety. A definition and discussion of the topographical
error can be found in [9]. The overall result is that each
sensor value contributes towards a meaningful clustering,
each sensor characterizing certain contexts better than
others, but possibly also inhibit the characterization of
other contexts. Incorporating time series information
could help to determine irregular periodicities in the data
which could be used to reveal more detailed context
information.

Figure 12. Results of our offline analysis of the
high sample rate movement data. The right image
shows the clustering, based on the U-Matrix (left).

4.2.4. Computational performance results. The buffer
update procedure of training and re-clustering took on
average 68 seconds on the current implementation for the
4800 data point buffer with 50 percent geometric
memory; classification and sensor buffering works in
real-time for the low-data rate samples. Since the current
system has been implemented on Matlab which is an
interpreted language, the update procedure is expected to
perform well if optimized for current wearable computer
processors as the StrongArm with 400 MHz.

Since only the map and the buffered data must be
stored in memory, the memory requirements are rather
small; for a 24 hour buffer at the 10 samples per minute
data rate, 1.2 Megabytes are enough for storing the
buffer.

 Table 1. Results of Study 1.

|||
Figure 13. Analysis of the clustering – annotation correspondence

Figure 14. Unit variance normalized raw sensor
data of the skin temperature (green) sensor, the
longitudinal accelerometers SAD value and their
characterization of the sleeping context. The peak of the
skin temperature results from a recalibration process.

Figure 15. Topographic error for the cross-
validation scenarios.

5. Intended applications and future work

To assess the practical suitability of our context inference
method, we intend to employ it in two applications. The
first one will be SenSay, a context-aware cell phone,
developed at Carnegie Mellon University. Our method
will be used to identify typical user context such as
attending a meeting, having a conversation, being idle or
being highly active. These states can be the basis for
learning adaptive behavior, like proactive configuration
of the ringer volume and vibration alert. Our system
concept is illustrated in Figure 16. The other intended
application is in contextual car driver interface. We will
evaluate how our system will perform in predicting the
driver’s current cognitive load, e.g. to decline incoming
phone calls in a busy situation.

Our next steps will be twofold: firstly we will
investigate the use of other sensor qualities, i.e. light
sensor, ambient and voice microphones to allow more
detailed description of ambient context. Secondly, our
effort will address the incorporation of temporal context
in the clustering procedure. This includes both using time
as sensor values (day, week rhythm) and incorporating
time series information in the clustering process.
Extensions to the KSOM algorithms like Recurring
SOMs [15] will be investigated.

Sample Size Annotated Contexts Clusters Timestamps Transitions Quant. Error
A-1 20h / 2d C,E,H,O,S 6 9 11 0.5
A-2 25h / 2d C, E,F,H,O,R,S 6 9 14 0.3
A-3 29h / 2d C,E,H,O,S 5 8 17 0.4
B-1 57h / 6d B,C,H,M,O,S 4 26 35 0.6
B-2 17h / 3d M,O 2 20 25 0.5
B-3 26h / 4d C,M,N,O,S 4 18 24 0.6
B-4 22h / 3d C,D,E,L,O,M 4 25 27 0.8
B-5 46h / 5d C,E,L,M,O 3 37 35 0.9

Skin temperature

Lines denote significant transitions

sleeping work (Laptop) work (Laptop) reading cook
eat walk walk

office

Principal
Comp. of
Sensor
data

Anno-
tations
(manual)

Clusters
(unsuper-
vised)

Accelerometer

time
Unit var.
norm.
values

Since context can be looked at from different
abstraction levels – i.e. running as a fine grain movement
pattern and high activity as high level context description
– a hierarchical context model is appropriate. We will
examine a hierarchical system of SOMs and clusterings,
which will be constructed by training with data from
various sampling rates. We hope that this approach will
help us identify a suitable model for context abstraction,
in addition to the graph reduction method already
employed.

6. Conclusions

We have presented a method for unsupervised and

dynamic identification of physiological and activity
context in wearable computing. Studies indicate the
usefulness of physiological properties for context
identification. We developed, implemented and evaluated
a system which can identify a set of context states without
requiring supervision, based on data from a comfortable
wearable sensor armband. Our improvements in
wearability and usability for context-awareness are
advances towards making context-aware wearable
computers feasible for end-user products.

7. Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant No. 0205266.

8. References

[1] A. Smailagic, D.P. Siewiorek “Application Design for
Wearable and Context-Aware Computers”, IEEE Pervasive
Computing Vol. 1 No. 4 Dec. 2002 Pp. 20-29.
[2] B. Clarkson, “Life Patterns: structure from wearable
sensors” PhD Thesis, 2002, MIT Media Lab
[3] Hudson, S.E, Fogarty, J., Atkeson, C.G., Avrahami, D.,
Forlizzi, J., Kiesler, S., Lee, J.C., and Yang, J. (2003).
“Predicting Human Interruptibility with Sensors: A Wizard of
Oz Feasibility Study.” To Appear, in proc. SIGCHI Conference
on Human Factors in Computing Systems (CHI 2003).

[4] R.W. DeVaul, S. Dunn “Real-Time Motion Classification
for Wearable Computing Applications”, 2001, Project paper,
http://www.media.mit.edu/wearables/mithril/realtime.pdf
[5] K. VanLaerhoven, Ozan Cakmakci “What Shall We Teach
Our Pants”, In proc. The Fourth International Symposium on
Wearable Computers. IEEE. Atlanta, GA, USA, October 18-21
2000
[6] K. Van Laerhoven. "Combining the Kohonen Self-
Organizing Map and K-Means for On-line Classification of
Sensordata". Artificial Neural Networks - ICANN 2001, G.
Dorffner, H. Bischof & K. Hornik (Eds.), Vienna, Austria;
Lecture Notes in Artificial Intelligence; Vol. 2130, ISBN 3-540-
42486-5; Springer Verlag, 2001, pp.464-470
[7] J. Farringdon, A.J. Moore, N. Tilbury, J. Church, P.D.
Biemond. "Wearable Sensor Badge & Sensor Jacket for Context
Awareness." In proc. The Third International Symposium on
Wearable Computers. IEEE. San Francisco, CA, USA. October
18-19 1999, pp 77-83
[8] F. Gemperle, I. Stivoric, C. Kasaback et al. “Design for
Wearability” In proc. The Second International Symposium on
Wearable Computers. IEEE. Pittsburgh, PA, USA. Pp. 116-122
[9] Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-
Verlag, Berlin, 1995, pp. 127-128.
[10] R. Bellman, Adaptive Control Processes, Princeton
University Press (1961)
[11] Kohonen, T., "Things you haven't heard about the Self-
Organizing Map", in proc. International Conference on Neural
Networks (ICNN), San Francisco, 1993, pp. 1147-1156.
[12] E.R. Gansner, S.C. North “An open graph visualization
system and its applications to software engineering”, Software –
Practice and Experience 00 (S1), 1-5 (1999)
[13] J. Vesanto, E. Alhoniemi, et al, “Self-Organizing Map for
Data Mining in MATLAB: the KSOM Toolbox”, Simulation
News Europe, ARGE Simulation News 25 March (1999), Pg. 54
[14] R.M. French, “Catastrophic Forgetting in Connectionist
Networks” Trends in Cognitive Sci., 3(4), 1999, pp. 128-135.
 [15] T. Koskela, M. Varsta, J. Heikkonen, and K. Kaski.
“Temporal sequence processing using recurrent KSOM” In
proc. KES'98, 2nd International Conference on Knowledge-
Based Intelligent Engineering Systems, volume 1, pages 290-
297, Adelaide, Australia, April 1998.
[16] A. Ultsch. “Data mining and knowledge discovery with
emergent Self-Organizing Feature Maps for multivariate time
series”, Kohonen maps, Elsevier, pp. 33-45
[17] D.L. Davies, D.W. Bouldin, “A cluster separation
measure” IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI-1(2) (1979), 224--227.

Context
Classifier

Behavior
Learner

Sensor
data

Context
inform.

Configuration

Feedback User
Interactions

Figure 16. Intended system design for the context aware cell phone application. The
highlighted part is described in this paper. A behavior learning algorithm will learn from user interactions with
the phone and identify usage patterns from that data, which are used to configure the cell phone. The
behavior learner can pass feedback to the classifier, e.g. to control sensitivity of context abstraction.

