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Abstract 

 
   Context-aware computing describes the situation 

where a wearable / mobile computer is aware of its 
user’s state and surroundings and modifies its behavior 
based on this information. We designed, implemented and 
evaluated a wearable system which can determine typical 
user context and context transition probabilities online 
and without external supervision. The system relies on 
techniques from machine learning, statistical analysis 
and graph algorithms. It can be used for online 
classification and prediction. Our results indicate the 
power of our method to determine a meaningful user 
context model while only requiring data from a 
comfortable physiological sensor device.  

 
 

1. Introduction 
 
Our goal is to make the wearable computer sense the 

user and his current state, exploiting context information 
to significantly reduce demands on human attention [1]. 
By estimating physiological properties such as stress 
level, activity level, movement patterns and ambient 
context information, a human’s current state can be 
predicted, e.g. if one is currently busy or not. We do not 
try to identify detailed scenes such as shopping at a 
supermarket, or entering or leaving a building. An 
approach towards scene identification can be found in 
[2]. 

Microphone data has been used in [3] to identify 
whether the user of a cell phone can be interrupted or not. 
In [4], accelerometer data has been used to identify 
different kinds of activities such as walking, running, 
climbing stairs. All these approaches rely on offline data 
analysis to learn “typical” contexts.  

A method based on Kohonen Self Organizing Maps 
(KSOMs) and k-Means clustering is proposed in [5], 
which is able to identify typical motion profiles. This 
approach relies on active training, i.e. pushing buttons 
while performing certain activities. These sparse labels 
are used to construct a supervised context transition 
profile based on a first order Markov process. This 
approach also suffers from the KSOM’s inflexible 
memorizing process [14]. To make the KSOM training 
procedure converge, the neighborhood radius of the 
learning neurons must decrease over time [9]. This results 
in an inability to keep up the learning process running 
over a long time period.  

In [6], an online algorithm is given for the 
combination of KSOMs and k-Means clustering. This 
approach also requires active training by specification of 
user labels. 

For context-aware systems to eventually become end-
user products, both wearability (i.e. non-intrusiveness) 
and usability (minimal active training) are the key issues. 
Our objective is to make advances in both directions. For 
the wearability issue, we make use of an off-the-shelf, 
minimally intrusive armband. This armband can be 
placed on the back of the upper arm, and can 
communicate wirelessly with the other computers.  

Our motivation is derived from the observation that 
context does not require a descriptive label to be used for 
adaptivity and contextually sensitive response. This 
makes an approach towards completely unsupervised 
learning feasible. By unsupervised learning we mean the 
identification of context without requiring external 
supervision, i.e. by manually annotating current user 
states. Most unsupervised machine learning techniques 
can be subsumed by the term clustering. In general, it is 
difficult to tell whether two close (in terms of the feature 
space distance metrics) cluster centers are actually part of 



the same cluster. This is the challenge of context 
abstraction. 

 
In Section 2, we describe the wearable platform and 

Section 3 explains our method. In Section 4, we describe 
our experimental setup and evaluate the results of our 
studies. In Section 5, we identify two applications that 
can use our method, and Section 6 presents our 
conclusions. 

 
2. Wearable platform 

 

 
Figure 1. Wearing position and form factor of the 
SenseWear armband. 

 
To provide sensor input, our system relies on 

physiological and movement data. We use the SenseWear 
armband from BodyMedia as shown in Figure 1. 
Information about wearable sensor badges can be found 
in [7]. The small armband combines five distinct sensors: 
two accelerometers, galvanic skin response, skin 
temperature and near-body ambient temperature. The 
armband is worn on the back of the upper arm. The 
sensors are described regarding this position, with the 
wearer standing up, arms at their side.  

A 2-axis micro-electro-mechanical sensor device 
measures motion. These accelerometers are oriented in 
the transverse (through the chest parallel to the ground) 
and longitudinal (vertical to the ground along the arm, 
head-to-toe) planes. The motion can be mapped to forces 
exerted by the body and hence contribute to calculations 
of energy expenditure. By taking into account gravity 
they give orientation information as well as motion 
information, which are used to predict the wearer’s 
context.  

Heat flux is a measure of the amount of heat being 
dissipated by the body. The sensor uses very low 
thermally resistant materials and extremely sensitive 
thermocouple arrays. It is placed in a thermally 
conductive path between the skin and the side of the 
armband exposed to the environment.  

Galvanic skin response (GSR) represents electrical 
conductivity between two points on the wearer's arm. The 
GSR sensor includes two hypo-allergenic stainless steel 
electrodes integrated into the underside of the armband. 
Skin conductivity is affected by the sweat from physical 
activity and by emotional stimuli. GSR can be used as an 
indicator of evaporative heat loss by identifying the onset, 
peak, and recovery of maximal sweat rates.  

Skin temperature is measured using a highly accurate 
thermistor-based sensor located on the backside of the 
armband near its edges and in contact with the skin. 
Continuously measured skin temperature reflects the 
body's core temperature activity.  

The near-body ambient temperature sensor measures 
the air temperature immediately around the wearer's 
armband. This sensor also uses a highly accurate 
thermistor-based sensor and directly reflects the change 
of environmental conditions around the armband, e.g. 
walking out of an air conditioned building on a hot day. 

The SenseWear is worn on the back of the upper right 
arm for numerous reasons. Comfort is key, as the 
armband’s normal use is 24 hours a day 7 days a week. It 
can be worn during the day and at night, only being taken 
off to wash. The position at the back of the upper arm, in 
combination with the armband shape makes it 
unobtrusive and quickly “unnoticeable”.  [8] 
Additionally, the a-symmetric heat flux sensor gives the 
most accurate readings when worn in this position.  

The user sets a recording frequency. At one minute 
data recording intervals the armband can record data for 
over 5 days, 24 hours a day without recharging. Each of 
the integrated sensors is sampled 32 times a second 
regardless of the sample interval setting. Once a sampling 
period two measures of the sensors – the mean value, and 
the sum of the absolute differences (SADs) – are 
calculated.  

Sensor readings recorded in the armband are direct 
values from the internal analogue-digital (AD) converter, 
in the range [0, 4095]. Each armband contains calibration 
information for each sensor unique to the armband, 
determined during its manufacture.  

The modus operandi of the SenseWear armband is 
continuous wearing and data collection, with a data 
download once a day or week. The armbands also contain 
a transceiver for data transmission using the Scientific 
and Medical Instruments (ISM) license free band. The 
recharging and docking cradle for the PC contains a 
corresponding transceiver. Within range of the cradle the 
armband can transmit live data readings for processing. 

The armband transceiver operates on a “no 
unrequested broadcasts” principle. Under some 
circumstances wireless broadcasting may be 
inappropriate, for example in a hospital, or on an 
airplane. The armband is always listening for wireless 



communications. Each armband is identified by an eight 
digit serial number, and wireless data requests ask 
specific armbands to communicate. 

Two wireless applications are routinely used in 
context and real-time physiological research. The first is 
request-based and the second is “continuous”. When 
request based, a specific armband is asked to return a 
sample from specified sensors. Data sampling rates of up 
to four samples per second are possible with this method. 
The continuous method instructs an armband to start 
broadcasting specified sensor readings as fast as possible. 
The armband stops broadcasting when it is taken off-
body, a state it automatically detects as being no longer in 
contact with skin. Data rates up to sixteen samples a 
second can be achieved with this method. 

A button on the armband allows collecting time-
stamps which can be used for annotating recorded data. 

 
For data processing, an Acer C100 Tablet PC with a 

900 MHz Pentium III and 256 MB of main memory was 
preferred to a Personal Digital Assistant (PDA) sized 
device, since the tablet platform has a larger screen for 
data visualization but can still be carried around easily. 
Although the Tablet PC can communicate wirelessly with 
the sensor, currently only recorded and downloaded data 
has been studied, which is input to the data processing 
software in a way to simulate real-time sensor queries. 
Figure 2 shows the devices included in the wearable 
platform. 

 
3. Method 

 
In this Section we describe our unsupervised machine 

learning approach. We first present an offline algorithm 
which uses a training sample time series as input and 
constructs a classifier from this data. Successively, we 
describe how we turn our offline algorithm into an online 
algorithm, which can use real-time sampling data. 

 

 
Figure 2. Wearable platform. The Acer C100 Tablet 
PC is used for data analysis and can communicate 
wirelessly and in real-time with the sensor armband on the 
lower right via the transceiver cradle on the upper right.  

Our offline approach can be summarized as follows: 
After certain data preprocessing, a Kohonen Self 
Organizing Map is trained with the sensor values. A k-
Means clustering is performed on the maps codebook 
vectors, where k is chosen as guided by the Davies 
Bouldin index; a description and analysis of this 
clustering quality measure can be found in [17]. After the 
clustering, a first order Markov model is trained with 
respect to the cluster transition probabilities. A graph 
reduction strategy is applied to the resulting transition 
graph. This graph reduction eliminates transient states. 
Codebook vectors for eliminated states are reassigned to 
non-transient states by further iterations of the k-Means 
algorithm. The resulting clustering is used as a classifier 
for test samples; the first order Markov model on the final 
clustering can serve for prediction. Figure 3 gives a 
graphical illustration of our proposed system. 

 
 

Figure 3. System diagram. Data is gathered by a 
wearable sensor. The data is used both to construct the 
classifier and to classify current sensor readings. The 
resulting classification is sent to a context aware wearable 
device. 

 
We now give more details on the construction of the 

classifier described above. In the remaining part of this 
Section, we describe how we changed our offline 
algorithm into an online algorithm. In Section 4, we 
analyze the performance of our method with respect to 
sensor data from several studies. 

 
3.1 Preprocessing 

 
Since we experimented with varying sampling 

frequencies, different preprocessing techniques were 
chosen. For low data rate polling (1 and 10 samples per 
minute), the onboard averages and absolute differences 
proved to be useful. Eight data channels of the 
BodyMedia device have been recorded, forming an eight 
dimensional feature space. These channels comprised the 
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averaged values from the GSR, heat flux, ambient and 
skin thermometers and both axis of accelerometers as 
well as the SAD values from both accelerometers.  

For high data rate polling (8 samples per second) we 
calculated the Fast Fourier Transform (FFT) oscillatory 
spectra of the recorded accelerometer values. It turned out 
that a 64 point FFT (i.e. spectra of 8 second time-frames, 
separate spectra for both axes) was a good resolution to 
discern various different fine-grain movement patterns. 
Since the spectra are symmetric, only the first 32 points 
were used. The resulting spectra have been log-
transformed. For the high data rate samples, the spectra of 
the two accelerometers were recorded, making it a 64 
dimensional feature space.  

To give each dimension equal importance in terms of 
the self organization process, we normalized the data to 
have unit coordinate-wise variance as proposed in [9]. 

Since learning in high dimensional feature spaces is 
adversely affected by the so called curse of 
dimensionality [10], techniques for dimension reduction 
were evaluated. Commonly used candidates for this 
purpose are Principal Component Analysis (PCA) and 
linear Independent Component Analysis (ICA). ICA is 
computationally expensive and therefore currently not 
feasible for online algorithms on wearable computers. 
Therefore, PCA, which is a projection of the data vectors 
to the most important eigenspaces (in terms of eigenvalue 
size) of the covariance matrix, was evaluated. This 
approach shows good results on our training data. Figure 
4 shows the amount of variance explained by the top 
eigenspaces for both the low data rate and high data rate 
approach. Figure 5 shows two recorded time-series, 
normalized to unit variance. 

 

 
Figure 4. PCA. The bar charts display eigenvalue sizes 
of the low rate (left) and high rate (right) samples. 

  
Figure 5. Time series plot of the five principal 
components’ time series, resulting from 20 hours of data 
at 1 sample per minute (left) and from 3 minutes of 8 
samples per second data.  

 

3.2 Further dimension reduction by Kohonen Self 
Organizing Maps 

 
In both the high and the low data rate cases, the top 

five eigenspaces appear to explain most of the sensor 
variance, so the input data was projected onto the first 
five principal components. Since the topology of the 
Kohonen maps is typically two-dimensional (it can be 
seen as a two dimensional manifold in the higher 
dimensional feature space), it is expected that clusters in a 
lower dimensional feature space can be found more easily 
than in a higher dimensional feature space. We used a 
20x23 cell hexagonal topology for the map, a size 
suggested by [11] for our data size. Training is performed 
by the batch training algorithm described in [9]. 
 
3.3 Clustering 

 
Although the training of the self organizing map is 

already a clustering process, codebook vectors must be 
grouped together further to reach representative cluster 
sizes. The Unified Distance Matrix, or U-Matrix, is a 
means of detecting clusters and emerging features [16]. It 
contains information about the feature space distance of 
codebook vectors adjacent with respect to the map 
topology. Figure 12 shows an example of a U-Matrix. 
Clustering based solely on the segmentation of the U-
Matrix is difficult since emerging clusters rarely have 
sharp borders. As suggested in [5], a k-Means clustering 
is performed on the codebook vectors. Our approach does 
not require user labels for determining the initial cluster 
centroid starting values; the clustering is completely 
driven by the unlabeled data. We initially perform a k-
Means clustering with quite large k (growing as the 
square root of the number of codebook values is a 
common heuristics). Clustering is performed for the k 
values lying in a certain interval. The Davies-Bouldin 
index is used as a further guidance.  

 
3.4 Context abstraction 

 
By this procedure, about 14 clusters are found for a 

typical low data rate sample for 20 hours of training data. 
Since the chosen data preprocessing is expected to 
smooth out abrupt context changes, clusters representing 
these context changes are expected to be found (i.e. 
switching from running to walking and back). Although 
these transition states are interesting in terms of context 
change prediction, they adversely affect learning adaptive 
system behavior, since the system must rely on robust 
context state estimates as the basis of learning usage 
patterns. To identify transient states, transition 
probabilities are taken into account. Based on the 
clustering described above, a first order Markov model is 



trained based on the cluster transition probabilities. 
Transient states can be characterized by having a low 
“loop” probability, namely remaining in the same state 
for a long time is improbable. A graph reduction 
algorithm is performed on the Markov model, eliminating 
states with a “loop” probability (the diagonal values in 
the transition matrix) below a certain threshold. The 
corresponding transitive corrections including the update 
of the transition probabilities are implemented as shown 
in Figure 6. Each state v with a loop probability below a 
certain threshold α is removed from the transition graph; 
0.3 turned out to be a good value although results do not 
show dramatic changes for variations of this value 
between 0.2 and 0.4. The main step in the algorithm is the 
following transitivity update, 
P(r,c)  P(r,c) + P(r,v) * P(v,c) / S 

which redistributes the probabilities of out-adjacent edges 
of v to corresponding transitive out-adjacent edges of v’s 
predecessors. P denotes the state transition probability 
matrix, i.e.  P(i,j) = Prob(Xt = j | Xt-1 = i), where Xt is the 
cluster index assigned to the sensor value vector at time t, 
Prob(X|Y) is the conditional probability of X for the prior 
Y. 

   For v = 1 to #states   If P(v,v) < α then 
    P(v,v)  0; 
    S  Σi P(v,i);     For r = 1 to #states, r ≠ v 
      For c = 1 to #states, c ≠ v 
        P(r,c)  P(r,c)+P(r,v)*P(v,c)/S; 
      End       P(r,c)  0; 
    End   End End 
 
Figure 6. Pseudo code for elimination of 
transient vertices.  

 
After the elimination of the transient clusters, a few 

more iterations of the k-Means algorithm are necessary to 
reassign now unclustered codebook vectors to new 
clusters. Successively, a new transition probability 
Markov model is trained on the reduced set of clusters; 
this model can then be used to predict possible context 
changes. Figures 7 and 8 show the elimination of 
transient states. For visualization of the transition graphs, 
the GraphViz package from [12] was used.  
 
3.5 Online algorithm 

 
The algorithm described above is offline, i.e. the entire 

sensor values time-series must be available at training 
time. Our online algorithm is buffer based, and it 
proceeds as follows: sensor values are recorded until a 
certain time interval (i.e. some hours or days) has passed. 

 

 
Figure 7. Transition probability graph before 
elimination of transient states. 

 
Figure 8. Transition probability graph after 
elimination of transient states. 

 
This data is taken to construct a classifier and context 

transition probability model as described above. To refine 
this model, a training sample is constructed, consisting of 
the compressed prior training sample and the newly 
buffered data. The prior training sample is compressed by 
selecting a certain percentage of its data vectors at 
equally spaced intervals. Using these training samples, 
another map is trained, and the new codebook vectors are 
again clustered by a k-Means algorithm with the existing 
cluster centers as initial values plus a certain number of 
randomly initialized cluster centers. Successively the 
steps described above (building a Markov model, do 
graph reduction, build another Markov model) are 
applied again. By adding these randomly initialized 
cluster centers, potentially new context can be identified. 
Figure 9 illustrates the construction of this online 
classifier. 

Since the empirical covariance matrix changes as new 
sensor data becomes available, PCA can only be 



performed for fixed sets of data. We consider the 
principal component directions as properties of the 
sensors and the sensor placement. Therefore we expect 
that data from a limited time interval can determine an 
initial estimate of the principal component direction. The 
linear transformation determined by these directions can 
be used to project new data in real-time to the previously 
determined principal components. Recalibration can be 
triggered, as soon as the amount of variance explained by 
the principal components drops beneath a certain 
threshold. 

 
Figure 9. Online algorithm: The top row represents 
the buffering of the input data. In the second row, the 
geometric memory decay is sketched. The third row shows 
the training of the KSOM, the clustering, the Markov 
model and the integration of the prior clustering. 

  
By buffering a certain fraction of the past sensor data 

we can still keep track of important past clusters, while 
maintaining the KSOM’s ability to learn new contexts. 
Since the fraction is fixed, the size of the learning data 
converges. This memory decay strategy is geometric in 
nature, which is the discrete version of exponential decay. 

 The motivation of this buffered learning strategy 
comes from the human ability to process daytime 
experiences over night. Another advantage of the buffer 
based update is that the computationally expensive 
training and clustering procedure can be implemented in 
parallel to the data acquisition, classification and 
prediction algorithms.  

A prototype of the online algorithm described above 
was built in Matlab 6.5, using the SOM Toolbox 2.0 [13]. 
Figure 11 shows the graphical user interface of the 
system. At each time step, the signal values are projected 
onto the map topology and visualized in the clustering 
diagram, which determines the output of our classifier. 
 
 

4. Results and evaluation 
 
To evaluate our method, two studies have been made. 

In the first study, two subjects wore the BodyMedia 
armband over the duration of several days, annotating 
their determined context – i.e. working in the office, 
being in a meeting, commuting, relaxing in the sun – by 
use of the armband button and additional note-taking. 

Subject A is one of the authors, a graduate student in 
his early twenties leading a moderately active life style. 
Subject B is a graduate student in her mid twenties, 
leading an active life style. The subjects were required to 
mark time-stamps close to their subjectively felt context 
change and verbally classify the corresponding context. 
In summary, over 240 hour long studies were done by 
recording one sample per minute (low data rate). 

The second study investigates other properties of our 
classifier. We look at higher data rate samples, 
performance of our classifier to determine fine-grain 
motion, stability and computational properties. To 
determine how our method performs with higher 
sampling frequency data we collected data with different 
sampling settings: One data set was sampled at 10 
samples per minute, another one at 8 samples per second. 
All data samples were recorded at specified sampling 
rates on the armband’s onboard storage. The collected 
data was downloaded to the Tablet PC via the SenseWear 
docking cradle at varying time intervals. 

 
4.1. Results of Study 1 

 
Subject A collected data for 4 days for an overall 

recording time of 74 hours, subject B gathered data 
during daytime for 22 days with a total recording time of 
168 hours. The sampling rate was set to one sample per 
minute. Data was analyzed in blocks of varying lengths, 
including a variety of different contexts. Per block, an 
initial clustering with on average 15 clusters was done. 
After the elimination of transient states, an average of 
five clusters were identified for subject A, who 
continuously wore the device for four days, and an 
average of four clusters were identified for subject B, 
who had varying recording time ranges. All recordings 
were done during weekdays. 

The data was processed by our classifier and the 
resulting clustering was manually compared with the data 
annotation. It was examined whether equally annotated 
contexts correspond to single or separate clusters. Figure 
13 displays the performance of our method on a 20 hour 
data sample. Our method could compete with the 
subjective context classification well up to a certain 
extent. While subject A walked home every day – a 
context which could clearly be identified, subject B 
commuted, which was rarely identified; in most cases it 
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was typically misclassified as the “working in office” 
context. However, we did not use any temporal context in 
our studies, and especially activities such as commuting 
are expected to correlate well with temporal information. 
The study shows that both subjects only identified a small 
number of subjectively typical contexts; the number of 
contexts annotated is only slightly higher than the number 
of clusters found by our classifier. The frequent use of the 
armband’s timestamp button by subject B indicates the 
existence of a number of minor contexts which could not 
be identified by our current algorithm. The number of 
state transitions our classifier determines matches the 
number of timestamps taken by both subjects well, so the 
non-identified clusters might only have been eliminated 
by a too strict context abstraction threshold.  

Table 1 shows the results of Study 1. Col. 1 is the 
sample number, Col. 2 denotes recording duration and 
involved days, Col. 3 lists abbreviations for major 
contexts identified by wearer, Col. 4 shows the number of 
clusters found, Col. 5 gives the number of time stamps, 
Col. 6 the number of stable (only one transition per five 
minutes counted) transitions. Col. 7 gives the offline map 
training quantization error. The following abbreviations 
are used: B – Busy, C – Commute, D – Driving, E – 
Eating, F – Fitness, H – at Home, L – Social, M – 
Meeting, N – Not Busy, O – Office, R – Relaxing, S – 
Sleeping.  

Consistent with [8], both subjects reported the 
unobtrusiveness of the wearable sensor badge, especially 
for long term usage. The data from Study 1 was both 
input to the offline and the online algorithm which 
showed comparable classification performance. 

 
4.2. Results of Study 2 

 
To evaluate the sensor data quality and the 

performance of our methods we performed analyses from 
different perspectives: Firstly, we looked at higher data 
rate samples (4.2.1., 4.2.2.), secondly we assessed sensor 
quality by cross-validation (Section 4.2.3.), and thirdly 
we measured computational performance and memory 
requirements (Section 4.2.4.). 

Two higher data rate data sets were collected. A 
movement study at eight samples per second was used to 
test the quality of our method to discern fine grain 
movement patterns (Section 4.2.1.). A 24 hour data set at 
10 samples a minute was collected to estimate stability of 
our online algorithm and to determine the impact of 
higher resolution time series data (Section 4.2.2.). 
4.2.1. Stability study. Subject A wore the armband for 
another two days, with the sampling rate set to 10 
samples per minute. The comparison of both low data rate 
sensor recordings indicate that the availability of more 
data samples at the higher sampling rate of 10 samples a 

minute makes the clustering more stable. A reason is that 
less time samples are associated with transient states as 
are for the one sample per minute sampling rate. A more 
detailed clustering is found, resulting in an average of 
eight stable clusters for a 24 hour period. 

To evaluate the geometric decay memory of our online 
algorithm we input a typical 24 hour sample (11002 data 
vectors) to the online algorithm, repeated three times. The 
buffer was sized to capture the most recent four hours of 
data and four hours of compressed prior information; the 
algorithm showed stability of the clustering for this 
experiment. 

The overall quantization error with the dynamically 
updated map was 0.42 after the one day sample was 
repeated three times. The overall quantization error for 
the offline map was 0.37 after the one day sample. This 
indicates that, although the buffer size was only 12 % of 
the complete sample size, the quantization error of the 
map constructed online was only 10% larger than the 
quantization error of the offline map, for which the 
complete sample was used while training. Figure 10 
shows the influence of the buffer size on the quantization 
error. 
 

 
Figure 10. Buffer size vs. quantization and 
topographic error 
 
4.2.2. Movement study. Subject A performed several 
distinct kinds of movements over a period of about three 
minutes (1632 samples in total), in the following order: 
Walking (1), running (2), walking (1), sitting (3), knee-
bends (4), walking (1), waving his arms (5), walking (1), 
climbing up and down stairs, one stair a step (6). Six 
clusters were identified, clearly corresponding to the 
trained movement patterns. Projection of adjacent values 
of the sensor time series onto the map exhibited close 
locality while the subject performed movements 
corresponding to a certain activity. 

Quantization error 
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Figure 11. Graphical user interface of the online 
classifier. The top row shows the sensor data and is 
updated in real time. The second row displays the 
geometric memory decay buffer (left), the reduced Markov 
model graph (right) and the corresponding clustering 
(center). In the third row, the U-Matrix is displayed on the 
left, along with values of the codebook vector coordinates 
for the top five principal components. 
 
The map constructed by the offline training algorithm 
was evaluated by testing its performance as a classifier on 
test data, which consisted on recorded movement patterns 
of four minutes, 2204 samples in total. Movements were 
recorded in the following order: walking slowly (1,3), 
knee-bends (4), running (2), climbing up and down stairs, 
two stairs a step (6), walking (1) and sitting (3). All 
movements were correctly classified as indicated by the 
numbers in brackets. The algorithm was very successful 
even in discerning the transition from running to climbing 
stairs; the classification of walking slowly was wrong 
only in the first few seconds, when it was misclassified as 
corresponding to the “sitting” cluster. Since the FFT is 
calculated from an eight second time frame, the transition 
lag varied between 0 and 4 seconds, 1 second being the 
average classification lag. Figure 12 shows the resulting 
clustering of the high data rate sample data. 
 
4.2.3. Cross-Validation of the sensors.  To assess the 
importance of all eight sensor data channels for stable 
clustering, a cross-validation was performed. Using a 20 
hour data sample, a map was trained for all data  channels 
enabled, and for disabling either the GSR (i), the heat 
flux (ii), ambient temperature (iii), skin temperature (iv), 
both accelerometer SAD channels (v), both accelerometer 
mean values (vi) and SAD and mean of the longitudinal 
(vii) and the transverse accelerometer (viii). The most 
detailed clustering was found in (v). The accelerometer 
SAD values tended to produce many transient clusters. In 
all observations with SAD values enabled, only four or 
five clusters were found; in case (v), six clusters were 

found. Case (v) had problems with identifying the sleep 
state, which can be characterized by an extremely low 
level of accelerometer change. The sleeping state was 
characterized best in case (iv), where accelerometer SAD 
values were available and the skin temperature was 
disabled. Figure 14 shows the influence of the fluctuating 
skin temperature and the accelerometer SAD values on 
the detection of the sleeping state. 
The topographic error of the map training process was 
smallest for the exclusion of accelerometer means or 
SAD values, as shown in Figure 15. This indicates that 
the accelerometer values have great impact on cluster 
variety. A definition and discussion of the topographical 
error can be found in [9]. The overall result is that each 
sensor value contributes towards a meaningful clustering, 
each sensor characterizing certain contexts better than 
others, but possibly also inhibit the characterization of 
other contexts. Incorporating time series information 
could help to determine irregular periodicities in the data 
which could be used to reveal more detailed context 
information. 
 

 
Figure 12. Results of our offline analysis of the 
high sample rate movement data. The right image 
shows the clustering, based on the U-Matrix (left). 
 
4.2.4. Computational performance results. The buffer 
update procedure of training and re-clustering took on 
average 68 seconds on the current implementation for the 
4800 data point buffer with 50 percent geometric 
memory; classification and sensor buffering works in 
real-time for the low-data rate samples. Since the current 
system has been implemented on Matlab which is an 
interpreted language, the update procedure is expected to 
perform well if optimized for current wearable computer 
processors as the StrongArm with 400 MHz. 

Since only the map and the buffered data must be 
stored in memory, the memory requirements are rather 
small; for a 24 hour buffer at the 10 samples per minute 
data rate, 1.2 Megabytes are enough for storing the 
buffer. 



 
          Table 1. Results of Study 1. 
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Figure 13. Analysis of the clustering – annotation correspondence 

 

 
Figure 14. Unit variance normalized raw sensor 
data of the skin temperature (green) sensor, the 
longitudinal accelerometers SAD value and their 
characterization of the sleeping context. The peak of the 
skin temperature results from a recalibration process. 
 

 
Figure 15. Topographic error for the cross-
validation scenarios.  

 
5. Intended applications and future work 

 
To assess the practical suitability of our context inference 
method, we intend to employ it in two applications. The 
first one will be SenSay, a context-aware cell phone, 
developed at Carnegie Mellon University. Our method 
will be used to identify typical user context such as 
attending a meeting, having a conversation, being idle or 
being highly active. These states can be the basis for 
learning adaptive behavior, like proactive configuration 
of the ringer volume and vibration alert. Our system 
concept is illustrated in Figure 16. The other intended 
application is in contextual car driver interface. We will 
evaluate how our system will perform in predicting the 
driver’s current cognitive load, e.g. to decline incoming 
phone calls in a busy situation.  

Our next steps will be twofold: firstly we will 
investigate the use of other sensor qualities, i.e. light 
sensor, ambient and voice microphones to allow more 
detailed description of ambient context. Secondly, our 
effort will address the incorporation of temporal context 
in the clustering procedure. This includes both using time 
as sensor values (day, week rhythm) and incorporating 
time series information in the clustering process. 
Extensions to the KSOM algorithms like Recurring 
SOMs [15] will be investigated.  

Sample Size Annotated Contexts Clusters Timestamps Transitions Quant. Error 
A-1 20h / 2d C,E,H,O,S 6 9 11 0.5 
A-2 25h / 2d C, E,F,H,O,R,S 6 9 14 0.3 
A-3 29h / 2d C,E,H,O,S 5 8 17 0.4 
B-1 57h / 6d B,C,H,M,O,S 4 26 35 0.6 
B-2 17h / 3d M,O 2 20 25 0.5 
B-3 26h / 4d C,M,N,O,S 4 18 24 0.6 
B-4 22h / 3d C,D,E,L,O,M 4 25 27 0.8 
B-5 46h / 5d C,E,L,M,O 3 37 35 0.9 
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Since context can be looked at from different 
abstraction levels – i.e. running as a fine grain movement 
pattern and high activity as high level context description 
– a hierarchical context model is appropriate. We will 
examine a hierarchical system of SOMs and clusterings, 
which will be constructed by training with data from 
various sampling rates. We hope that this approach will 
help us identify a suitable model for context abstraction, 
in addition to the graph reduction method already 
employed.  
 
6. Conclusions 

 
We have presented a method for unsupervised and 

dynamic identification of physiological and activity 
context in wearable computing. Studies indicate the 
usefulness of physiological properties for context 
identification. We developed, implemented and evaluated 
a system which can identify a set of context states without 
requiring supervision, based on data from a comfortable 
wearable sensor armband. Our improvements in 
wearability and usability for context-awareness are 
advances towards making context-aware wearable 
computers feasible for end-user products.  
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Figure 16. Intended system design for the context aware cell phone application. The 
highlighted part is described in this paper. A behavior learning algorithm will learn from user interactions with 
the phone and identify usage patterns from that data, which are used to configure the cell phone. The 
behavior learner can pass feedback to the classifier, e.g. to control sensitivity of context abstraction.  


