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Abstract

Context-aware mobile computing requires wearable sen-
sors to acquire information about the user. Continu-
ous sensing rapidly depletes the wearable system’s energy,
which is a critically constrained resource. In this paper, we
analyze the trade-off between power consumption and pre-
diction accuracy of context classifiers working on dual-axis
accelerometer data collected from the eWatch sensing and
notification platform. We improve power consumption tech-
niques by providing competitive classification performance
even in the low frequency region of 1-10 Hz and for the
highly erratic wrist based sensing location. Furthermore,
we propose and analyze a collection of selective sampling
strategies in order to reduce the number of required sensor
readings and the computation cycles even further. Our re-
sults indicate that optimized sampling schemes can increase
the deployment lifetime of a wearable computing platform
by a factor of four without a significant loss in prediction
accuracy.

1. Introduction

Context-aware mobile computing uses wearable sensors
to acquire information about the user, without requiring the
user’s attention, in order to enable proactive system behav-
ior [8]. Continuous sensing and data processing requires the
wearable computer to constantly run at full power, thereby
rapidly depleting the system’s energy, which is a critically
constrained resource [10]. In [3], the decrease of energy
consumption for varying sampling and bit rates was exam-
ined for a wearable sensing platform consisting of two hip-
and knee-worn accelerometers. It was shown that a rea-
sonable trade-off between prediction accuracy and sampling
rate was achieved at a sampling rate of 20 Hz and 2 bit reso-

lution. Lowering the sampling rate led to a drastic decrease
in prediction accuracy. Sampling rates of 20 Hz pose a sig-
nificant computational problem, and a memory consump-
tion problem for the data collection scenario. In particular,
the deployment of a knee worn accelerometer in a wearable
computer system is difficult to realize on a larger scale.

In this paper, we analyze the trade-off between power
consumption and prediction accuracy for the eWatch [9],
a context-aware wearable platform, described in Section 2.
It acquires activity context information from dual-axis ac-
celerometer data. We improve on the results of [3] by
achieving competitive classification accuracy with contin-
uous monitoring even for the highly erratic and ambigu-
ous wrist-based sensing location, while presenting a finer-
grained resolution at the lower frequency region of 1-10 Hz.
We also provide detailed estimates on the deployment life-
time of the eWatch depending on the selected sampling
rates. While these results allow us to reduce the processor
duty cycles by a significant amount, we additionally pro-
pose four selective sampling strategies in order to reduce
the number of required sensor and computation duty cycles.
We empirically analyze our methods for a real-world de-
ployment of the eWatch devices. Our results indicate that
optimized sampling schemes can increase the deployment
lifetime of a wearable computing platform by a factor of
four without a significant loss in prediction accuracy.

2. Wearable platform

We developed the eWatch, a wearable sensor and notifi-
cation prototype in a wrist-mounted form factor [9], which
offers a versatile platform with LCD, LED, vibration motor,
and speaker for notification; Bluetooth for wireless com-
munication; and buttons for interacting with the user. It
perceives the user’s context using a two-axis accelerometer,
microphone, light and temperature sensors in combination
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Figure 1. eWatch sensor platform.

with machine learning algorithms.
The eWatch hardware is based on a 32-bit ARM7 CPU

with 64kb RAM running at 80 MHz. The acceleration sen-
sor ADXL202 from Analog Devices has been used to cap-
ture the movements and orientation of the forearm including
forces of +/- 2g.

The two accelerometer axes are aligned to be parallel to
the LCD plane, which captures all “horizontal” movements.
Sampling the third axis is not necessary, as the user exper-
iments showed little extra movements along this axis that
could increase classification accuracy. The eWatch is worn
as shown in Figure 1 during the different user studies.

The eWatch is powered by a Li-Ion battery with a ca-
pacity of 700mAh. The ARM7 processor allows optimiz-
ing for power consumption through explicitly switching off
the processor core clock and certain peripherals when they
are not required. We assumed the following three different
power states for estimating the power consumption of clas-
sifiers running on the eWatch:

(1) Full Power: eWatch runs at full-speed with all pe-
ripherals enabled. This state is used for acquiring sensor
values from the accelerometer and processing them. In
the current hardware and software configuration, this takes
about 30ms, but that time can be further reduced with im-
proved interrupt handling. The duration for classification
depends on the type and number of feature vectors used.

(2) Idle State: The core clock is turned off, but all pro-
cessor internal and external peripherals keep running. This
state is used while waiting for the next sample to be col-
lected and its time interval varies with the selected sampling
frequency. For a sampling rate of 6 Hz, this is 166ms mi-
nus the time required for acquiring and processing sensor
values.

(3) Low Power: The state is active most of the time when
selective sampling strategies are used. The processor and its
peripherals are shut down except for a real-time clock which
schedules the next wake-up, as determined previously by

Table 1. eWatch power consumption
Power state Current Battery lifetime
Full Power 108 mA 6.5 h
Idle State 24 mA 29 h
Low Power 9 mA 78 h

the selective sampling algorithm. This reduces the power
consumption to the lowest value possible. The remaining
power goes into external components like the voltage reg-
ulator. The average length of this interval depends on how
often selective sampling is conducted.

Table 1 shows the power consumption for the whole
eWatch device and how long it would run with that aver-
age current. Power consumption during the Full Power state
can be further improved by reducing clock speed and fine-
tuning the use of CPU internal peripherals. The current val-
ues correspond to the different power states described above
and form the basis for later calculation of the average cur-
rent and battery lifetime.

For continuous sampling with varying sampling rates,
only Full Power and Idle State is used, whereas for selective
sampling, all three power states are included in the calcula-
tion.

To determine the battery lifetime, the three power states
are averaged, with parameters such as sample rate, number
of selective sampling actions and the number of FLOPS in-
fluencing the time intervals of each power state.

For lower sampling rates, the time interval for the Idle
State increases reciprocally, while the time interval for the
Full Power state slightly decreases as the number of sam-
ples in a block also diminishes. This results in an improved
battery lifetime, as illustrated in Figure 2. The lifetime is
slightly higher for a time domain analysis, as no FFT is re-
quired and the vector dimensions are smaller.
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rates
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Additional power is required if the data is transmitted
over Bluetooth. This module consumes an 8.5 mA on av-
erage when activated. Later calculations assume a classi-
fier algorithm running locally on the eWatch with Bluetooth
switched off.

To estimate the power consumption for running data pro-
cessing and classification on the eWatch, we assumed a cal-
culation throughput of 250 kFLOPS/s based on [1]. A real
ARM-based implementation would work in integer arith-
metic, which results in an even higher speed. We show an
upper bound for calculation power, and the following esti-
mates are rather pessimistic as they are based on the use of
software floating point.

For an analysis in the frequency domain with a Support
Vector Machine (SVM) at 25 Hz sensor sample rate collect-
ing two-axis data for 5 seconds, we can estimate the number
of FLOPS as follows:

• FFT with n = 128 values:
cdual-axis · cimpl. FFT · n · log2(n)
= 2 · 5 · 128 · 7 = 8960 FLOPS

• SVM with D = 128 dimensions and n = 300 vectors:
cimpl. SVM · n · D + n · cimpl. exp

= 2 · 300 · 128 + 300 · 10 = 79800 FLOPS

About 89 kFLOPS are required for one classification.
For a continuous classification at 25 Hz, this reduces the
running time by nearly 30 minutes from 8.1 to 7.6 hours;
hence, the computation itself is a visible but not a dominant
factor in reducing energy consumption.

The sampling interval is always five seconds, so a re-
duced sample rate will result in a lower number of samples
for each block and in a lower number of required FLOPS.
Together with appropriate power levels, this leads to greatly
reduced power consumption.

3. Power-optimized classification

In this section, we describe the classification method we
used and explore the impact of varying the sampling rate
and choice of feature vectors on the classification accuracy
and power consumption.

The first task in classification is to decide on how the raw
signal (xt)t should be represented in feature space. Moti-
vated by the observation that human movement often ap-
pears periodic, frequency spectrum-based classification is
commonly used for classifying accelerometer data [6, 3]. In
this approach, short-term Fast Fourier Transformations are
computed for short time windows from the collected sam-
ples. For very low sampling rates, however, one might ex-
pect that the frequency spectrum becomes less expressive,
because high dominant frequencies might be lost in reflec-
tion. So in addition to using frequency based features, we

also investigated time domain-based features. Guided by
results from [6], we used five second windows for comput-
ing the features used in the classification process for both
approaches.

For frequency-domain-based classification, we com-
puted the absolute values of the frequency components us-
ing the FFT for both accelerometer axes separately. For
time-domain-based classification, we computed the empiri-
cal means, variances, square root of the uncentered second
moment and the median absolute differences. For both ap-
proaches, the labeled examples used to train the classifier
were centered and normalized to have unit variance, as sug-
gested in [6].

For the actual classification task, we used a multi-class
Support Vector Machine (SVM) [11], which is a classifi-
cation algorithm that often provides competitive or superior
accuracy for a large variety of real-world classification tasks
[7]. While training an SVM is computationally complex,
the evaluation of the classification rule is very efficient and
can easily be deployed on wearable hardware. To handle
non-linear classification problems, SVMs can make use of
the kernel trick, which allows implicit and non-linear em-
bedding of the data in high-dimensional spaces, effectively
allowing non-linear classification while avoiding overfitting
problems. In our experiments, the Gaussian Radial Basis
Function (RBF) kernel exhibited the best classification ac-
curacy during cross-validation. Invoked with a set (xi, yi)i

of labeled examples, the training procedure identifies a set
of support vectors vi among the labeled training, which sup-
port the maximum margin slab in the feature space induced

by the Gaussian kernel k(x, x′) = exp(−‖x−x′‖2
2

h ). We
employed the LIBSVM [2] implementation for our experi-
ments as this library is widely used and often cited as refer-
ence.

3.1. Experiment Design

To construct the classifiers, training data was captured
by three different test participants. The following five pre-
defined activities were performed consecutively: walking,
running or jogging, standing, sitting or working and climb-
ing or descending stairs. Each activity was recorded for 10
minutes.

The data stream was first resampled at different target
frequencies without using a low-pass filter. The resulting
alias effects due to sub-nyquist sampling are actually de-
sired since they help to at least capture some of the higher
frequency effects even using low sampling rates. The data
was then split into the different recorded activities and fur-
ther partitioned into blocks of five seconds. From these five-
second windows, we extracted the time- and frequency do-
main features as described above.

The labeled examples were subsequently used for train-

Proceedings of the 2005 Ninth IEEE International Symposium on Wearable Computers (ISWC’05) 
0-7695-2419-2/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 15:40 from IEEE Xplore.  Restrictions apply.



0 5 10 15 20 25 300.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sampling frequency (Hz)

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

Time domain features

Frequency domain features

(a) Dependence of accuracy on sampling rate

10 15 20 25

0.7

0.8

0.9

1.0

Battery lifetime (h)

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

Time domain features

Frequency domain features

17h@6 Hz9.2h@20 Hz

(b) Lifetime/accuracy trade-off for varying sampling rate

Figure 3. Classifier performance.

ing multi-class SVMs with Gaussian Radial Basis Func-
tion kernels. The kernel width was determined using cross-
validation, with 0.01 being the optimal choice for the unit
variance normalized data. The generalization errors of the
SVMs were computed using six-fold cross-validation.

In addition to computing the prediction accuracy for
varying sampling rates, we estimated the power consump-
tion based on the data described in Section 2.

3.2. Results

Figure 3(a) presents the dependency of the classifica-
tion accuracy on the chosen sampling rate, using the fre-
quency and time domain features. It can be seen that for
all but the extremely low frequency ranges the frequency-
based features perform superiorly. On the other hand, if
power consumption is of utmost importance and only sam-
pling rates of 1 Hz or less can be afforded, the time domain
features achieve significantly higher classification accuracy.
A main result of this analysis is that a sampling frequency

of 6 Hz gives almost the same accuracy as achieved with
much higher sampling rates. This significantly improves on
the results from [3]. Figure 3(b) shows that a decrease of the
sampling frequency from 20 Hz to 6 Hz increases the bat-
tery lifetime from 9.2 to 17 hours, which is an 85 percent
increase. The relationship between sampling frequency and
battery lifetime can be seen in Figure 2.

4. Selective sampling vs. prediction accuracy

To further reduce energy consumption and increase the
deployment lifetime of the wearable platform, we observe
that human activity is a rather continuous process: observed
at a particular point in time, a person involved in one activity
will be more likely to continue the activity than to change
to another. We exploit this continuity by proposing a col-
lection of selective sampling strategies. These schemes can
be considered to schedule the use of the classifier presented
above. Thus, selective sampling is a method of reducing
the number of observations to save energy, from a contin-
uous monitoring to selected time points, while keeping the
accuracy of tracking the user’s current activity as high as
possible.

We can model the selective sampling problem as a se-
quential decision-making process, where we decide at each
time step whether we want to sample and use the classifier
to estimate the user’s activity. We will model the activity
sequence along with our notion of continuity as a (poten-
tially instationary) Markov chain (At)t, where At describes
the activity of the user at time t. An example of such a
Markov chain estimated from our data is shown in Figure 4.
The selective sampling problem is then to select a set of
observation times, subject to certain constraints, in order to
maximize the probability of correctly predicting the user’s
activity at time steps when the sampler and classifier are
not invoked. We can formalize the problem as follows: We
want to minimize the expected loss

min
π,|π|≤B

E

[
T∑

t=1

L(P (At = ·|π(a)))

]
, (1)

where the optimization is over conditional plans π, which
are allowed to make at most B observations. Here, the ex-
pectation is taken over all activity sequences a. A condi-
tional plan π is a sequence of decisions, which, depending
on the outcome of the observations made so far, decides
when the next observation should be made. For each ac-
tivity sequence a, the selected observation times are de-
noted by π(a). The objective function is the expected
loss L incurred by only observing the sensor measurements
π(a) selected by the conditional plan, where the expec-
tation is taken over all possible sequences of activities a.
The empirical loss measures the amount of uncertainty in
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the probability distribution P (At = · | π(a)) of activ-
ity variable At conditioned on the observations π(a) up to
time t. We chose the entropy of the marginal distributions
L(P (At = · | π(a))) = H(At | π(a)) = −∑

x P (At =
x | π(a)) log P (At = x | π(a)). This objective function
has been studied in [5] with applications to sensor networks.
There it was proven that the optimal conditional plan π can
be computed and represented in polynomial time using a
dynamic programming approach.

In our experiments described below, we used four ap-
proaches for selecting the conditional plan π:

• Uniform spacing selects observation times at equally
spaced intervals, starting at time 1.

• In random spacing, B observation times are selected
uniformly at random, leading to time intervals of ran-
dom length independent of the current activity. At time
1, a sample was guaranteed to be made.

• Exponential backoff samples at time 1, and maintains
a maximum step size ∆max. If at any time, the cur-
rent activity is identical to the last detected activity, the
maximum step size is multiplied by a fixed parameter
α > 1. If the activity is different, it resets ∆max to 1.
The actual step size ∆ is selected uniformly at random
from the interval [1, ∆max], and the next observation
is made at time �t + ∆�. [4]. This strategy has been
successfully employed in the Ethernet standard.

• The entropy based method acquires data according to a
conditional plan π as to minimize the uncertainty in the
marginal probability distributions P (At = a | π(a)),
measured using the entropy criterion. This strategy
directly aims at improving the classification accuracy
of the different activities by solving the optimization
problem (1) as defined above and presented in [5]. Un-
like the previous schemes, this method takes transition
probabilities of the states into account, as can be seen
in Figure 4. If the current state is known to have a
short duration, the interval to the next sampling time is
set shorter than for states with longer duration.

4.1. Experiment design

We performed one-hour user studies with four subjects
wearing the eWatch. These subjects were different from
those who collected data to train the classifiers in order to
obtain person-independent classification results. In contrast
to the previous experiment, it was not explicitly stated what
activities should be performed and when.

The goal was to record a representative snapshot of user
activity within one hour. To achieve this, the instructions
were given in an indirect way. The subjects were asked to
perform typical tasks such as “Go to the soda machine in the
basement, get something to drink.” or “Run to the bus stop
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Figure 4. Transition probabilities estimated
from annotated data

and wait a few minutes.” The user was asked to perform
such activities at random times and return to the desk to
continue working afterwards.

A second person was constantly following the subject
and manually annotating the actual activities, as listed in
Section 3.1. This procedure resulted in an exact list of activ-
ities such as walking and their respective length in seconds,
which was used later in evaluating the different strategies
for selective sampling. Sampled with a rate of 6 Hz, the
recorded data from the acceleration sensors was then parti-
tioned into sequences of five second blocks. These blocks
were labeled according to the annotations and classified us-
ing the pre-trained classifiers in the frequency domain.

4.2. Results

Figure 5(a) presents the results of our selective sampling
experiment, using the annotation as “exact classification”
output. Using 100% of samples is equivalent to continu-
ous sampling, resulting in 17 hours battery lifetime. Due
to the dependence on random values, every trial for the ex-
ponential backoff and random spacing strategies results in
different sampling points even for the same data. To get a
representative result, the means from 100 random trials are
shown. The uniform spacing and entropy-based strategies
are deterministic, thus only one trial is shown.

It can be seen that the random spacing strategy performs
almost consistently worst. Exponential backoff, which was
executed with the multiplication parameter α varying from
1.01 through 5.00, is very competitive if not superior for

Proceedings of the 2005 Ninth IEEE International Symposium on Wearable Computers (ISWC’05) 
0-7695-2419-2/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 15:40 from IEEE Xplore.  Restrictions apply.



0 10 20 30 40 50 60 70 80 90 1000.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Percent of samples used

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

Entropy based
Random spacing
Exponential backoff
Uniform spacing

(40%, 0.95)

(a) Effects of selective sampling strategies (annotated data)

20 30 40 50 60 70170.7

0.75

0.8

0.85

0.9

0.95

1

Battery lifetime (h)

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

Entropy based
Uniform spacing
Exponential backoff
Random spacing

(35h, 0.95)

(b) Lifetime/accuracy trade-off for selective sampling (annotated
data)

0 10 20 30 40 50 60 70 80 90 1000.5

0.6

0.7

0.8

0.9

1

Percent of samples used

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

Random spacing
Exponential backoff
Uniform spacing
Entropy based

(38%, 0.82)

(c) Effects of selective sampling strategies (classified data)

20 30 40 50 60 70 80170.4

0.5

0.6

0.7

0.8

0.9

1

Battery lifetime (h)

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

Entropy based
Uniform spacing
Exponential backoff
Random spacing

(44h, 0.82)

(d) Lifetime/accuracy trade-off for selective sampling (classified
data)

Figure 5. Selective sampling results.

very low limits on the number of observations (less than
10 percent of the potential 5 second windows used). In
general, the entropy-based approach of finding an optimal
conditional plan shows superior performance, improving
the classification accuracy by several percent. The optimal
plan uses activity transition probabilities estimated from the
annotations, as presented in Figure 4. The uniform spac-
ing strategy, which is much easier to implement, almost
achieves the same performance, especially with increasing
the number of observations B.

For example, Figure 5(a) shows that a reduction to 40%
of the number of samples used still results in a 95% clas-
sification accuracy. The corresponding battery lifetime has
increased by a factor of two from 17 to 35 hours, as seen in
Figure 5(b).

We performed the same experiment again, using the out-
put of the classifier, described in Section 3, instead of the
annotations. The annotation was used only to compute the
classification accuracy for each selected block of samples.

In comparison to the “perfect classification” experiment de-
scribed above, it can be seen that now the overall error is
dominated by the classification error from the support vec-
tor machine, diminishing the error induced by the selective
sampling strategy.

The classification accuracy is in general slightly lower
than the results reported in Section 3, since the classifier
was used for people it had not been trained for. Also, the
recording was performed in a noisy real-world environment.
The qualitative characteristics of the four selective sam-
pling schemes are similar to the “perfect data” experiment,
except that the exponential backoff strategy exhibits inter-
esting performance: For a very small number of observa-
tions, it outperformed the other methods, consistently over
all study participants. For the usage range of 10 through 40
percent of all possible observations, it performs worse than
all other strategies. We plan to perform further studies to
investigate whether these characteristics can be reproduced
for a larger number of study participants. Figure 6 shows
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the observations selected by the exponential backoff strat-
egy for a value of α = 4. Each shade of gray indicates one
of five different activities, and the vertical lines show the
moments at which one block of samples is acquired. This
example illustrates the effective use of a small number of
observations to more densely cover regions of high activity
than long regions of a single activity.

As can be seen in Figure 5(c), the classification accuracy
is about 82% when only 38% of the samples are used at a
sample rate of 6 Hz. Figure 5(d) shows that the correspond-
ing battery lifetime increased from 17 to 44 hours, which is
a factor of about 2.5.

5. Conclusion

In this paper, we explored options for trading off power
consumption for classification accuracy in context-aware
wearable computing. We showed how even very low fre-
quency sampling of accelerometer data collected from the
highly erratic wrist location can lead to classification re-
sults competitive with previous results for much higher
sampling rates, and more inconvenient wearing locations.
This approach effectively doubles the battery lifetime for
our context-aware eWatch platform. We furthermore pro-
posed a collection of selective sampling strategies which
decrease the power consumption even further by exploit-
ing continuity in human activity. Using this approach, we
can again approximately double the lifetime of our wearable
platform. We believe that our analysis can significantly ben-
efit the real-world deployment of context-aware wearable
computing devices.
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