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ABSTRACT
When monitoring spatial phenomena with wireless sensor networks,
selecting the best sensor placements is a fundamental task. Not
only should the sensors be informative, but they should also be able
to communicate efficiently. In this paper, we present a data-driven
approach that addresses the three central aspects of this problem:
measuring the predictive quality of a set of sensor locations (re-
gardless of whether sensors were ever placed at these locations),
predicting the communication cost involved with these placements,
and designing an algorithm with provable quality guarantees that
optimizes the NP-hard tradeoff. Specifically, we use data from a pi-
lot deployment to build non-parametric probabilistic models called
Gaussian Processes(GPs) both for the spatial phenomena of inter-
est and for the spatial variability of link qualities, which allows
us to estimate predictive power and communication cost of un-
sensed locations. Surprisingly, uncertainty in the representation of
link qualities plays an important role in estimating communication
costs. Using these models, we present a novel, polynomial-time,
data-driven algorithm,pSPIEL, which selects Sensor Placements
at Informative and cost-Effective Locations. Our approach exploits
two important properties of this problem:submodularity, formaliz-
ing the intuition that adding a node to a small deployment can help
more than adding a node to a large deployment; andlocality, under
which nodes that are far from each other providealmostindepen-
dent information. Exploiting these properties, we prove strong ap-
proximation guarantees for ourpSPIELapproach. We also provide
extensive experimental validation of this practical approach on sev-
eral real-world placement problems, and built a complete system
implementation on 46 Tmote Sky motes, demonstrating significant
advantages over existing methods.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; G.3 [Probability and Statistics]: Experimen-
tal Design; I.2.6 [Artificial Intelligence ]: Learning

General Terms
Algorithms, Measurement

Keywords
Sensor networks, communication cost, link quality, information
theory, spatial monitoring, sensor placement, approximation algo-
rithms, Gaussian Processes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’06,April 19–21, 2006, Nashville, Tennessee, USA.
Copyright 2006 ACM 1-59593-334-4/06/0004 ...$5.00.

1. INTRODUCTION
Networks of small, wireless sensors are becoming increasingly pop-
ular for monitoring spatial phenomena, such as the temperature dis-
tribution in a building [5]. Since only a limited number of sensors
can be placed, it is important to deploy them at most informative
locations. Moreover, due to the nature of wireless communication,
poor link qualities, such as those between sensors which are too far
apart, or even nearby nodes that are obstructed by obstacles such
as walls or radiation from appliances, require a large number of re-
transmissions in order to collect the data effectively. Such retrans-
missions drastically consume battery power, and hence decrease the
overall deployment lifetime of the sensor network. This suggests
that communication cost is a fundamental constraint which must be
taken into account when placing wireless sensors.
Existing work on sensor placement under communication constraints
[11, 13, 6] has considered the problem mainly from a geometric
perspective: Sensors have a fixedsensing region, such as a disc
with a certain radius, and can only communicate with other sensors
which are at most a specified distance apart. These assumptions
are problematic for two reasons. Firstly, the notion of asensing
region implies that sensors can perfectly observe everything within
the region, but nothing outside, which is unrealistic: e.g., the tem-
perature can be highly correlated in some areas of a building but
very uncorrelated in others (c.f.,Fig. 2(a)). Moreover, sensor read-
ings are usually noisy, and one wants to make predictions utilizing
the measurements of multiple sensors, making it unrealistic to as-
sume that a single sensor is entirely responsible for a given sensing
region. Secondly, the assumption that two sensors at fixed locations
can either perfectly communicate (i.e., they are “connected”) or not
communicate at all (and are “disconnected”) is unreasonable, as it
does not take into account variabilities in the link quality due to
moving obstacles (e.g., doors), interference with other radio trans-
missions, and packet loss due to reflections [2]. In order to avoid
thesensing regionassumption, previous work [3] establishedprob-
abilistic modelsas an appropriate framework for predicting sensing
quality by modeling correlation between sensor locations. In [9],
we present a method for selecting informative sensor placements
based on ourmutual informationcriterion. We show that this cri-
terion leads to intuitive placements with superior prediction accu-
racy when compared to existing methods. Furthermore, we pro-
vide an efficient algorithm for computing near-optimal placements
with strong theoretical performance guarantees. However, this al-
gorithm does not take communication costs into account.
In this paper, we address the general (and much harder) problem
of selecting sensor placements that are simultaneously informative,
and achieve low communication cost. Note that this problem can-
not be solved merely by first finding the most informative loca-
tions, and then connecting them up with the least cost—indeed,
it is easy to construct examples where such a two-phase strategy
performs very poorly. We also avoid theconnectednessassump-
tion (sensors are “connected” iff they can perfectly communicate):
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(b) Real link quality – node 41
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(c) GP link quality – node 41
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Figure 1: (a) Indoor deployment of 54 nodes and an example placement of six sensors (squares) and three relay nodes (diamonds);
(b) measured transmission link qualities for node 41; (c) GP fit of link quality for node 41 and (d) shows variance of this GP estimate.

0
10

20
30

40
50

0

10

20

30

40
5

10

15

Sensor
location

(a) Real temperature covari-
ances – node 41
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(b) GP temperature covari-
ances – node 41
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(c) GP prediction of tempera-
ture surface
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Figure 2: (a) Measured temperature covariance between node 41 and other nodes in the deployment; (b) predicted covariance using
non-stationary GP; (c) predicted temperatures for sensor readings taken at noon on February 28th 2004, and (d) shows the variance
of this prediction.

In this paper, we use theexpected number of retransmissionsas a
cost metric on the communication between two sensors. This cost
metric directly translates to the deployment lifetime of the wireless
sensor network. We propose to use the probabilistic framework of
Gaussian Processesnot only to model the monitored phenomena,
but also to predict communication costs.
Balancing informativeness of sensor placements with the need to
communicate efficiently can be formalized as a novel discrete op-
timization problem; it generalizes several well-studied problems,
thus appearing to be a fundamental question in its own. We present
a novel algorithm for this placement problem in wireless sensor net-
works; the algorithm selects sensor placements achieving a speci-
fied amount of certainty, with approximately minimal communica-
tion cost. More specifically, our main contributions are:
• A unified method for learning a probabilistic model of the

underlying phenomenon and for the expected communica-
tion cost between any two locations from a small, short-
term initial deployment. These models, based onGaussian
Processes, allow us to avoid strong assumptions previously
made in the literature.
• A novel and efficient algorithm for Sensor Placements at In-

formative and cost-Effective Locations (pSPIEL). Exploiting
the concept ofsubmodularity, this algorithm is guaranteed to
provide near-optimal placements for this hard problem.
• A complete solution for collecting data, learning models, op-

timizing and analyzing sensor placements, realized on Tmote
Sky motes, which combines all our proposed methods.
• Extensive evaluations of our proposed methods on temper-

ature and light prediction tasks, using data from real-world
sensor network deployments, as well as on a precipitation
prediction task in the Pacific Northwest.

2. PROBLEM STATEMENT
In this section, we briefly introduce the two fundamental quantities

involved in optimizing sensor placements. Asensor placementis
a finite subset of locationsA from a ground setV. Any possible
placement is assigned asensing qualityF (A) ≥ 0, and acom-
munication costc(A) ≥ 0, where the functionsF andc will be
defined presently. We will use a temperature prediction task as a
running example: In this example, our goal is to deploy a network
of wireless sensors in a building in order to monitor the temperature
field, e.g., to actuate the air conditioning or heating system. Here,
the sensing quality refers to our temperature prediction accuracy,
and the communication cost depends on how efficiently the sensors
communicate with each other. More generally, we investigate the
problem of solving optimization problems of the form

min
A⊆V

c(A) subject toF (A) ≥ Q, (1)

for somequotaQ > 0, which denotes the required amount of cer-
tainty achieved by any sensor placement. This optimization prob-
lem aims at finding the minimum cost placement that provides a
specified amount of certaintyQ, and is called thecovering prob-
lem. We also address the dual problem of solving

max
A⊆V

F (A) subject toc(A) ≤ B, (2)

for somebudgetB > 0. This optimization problem aims at finding
the most informative placement subject to a budget on the commu-
nication cost, and is called themaximization problem. In this paper,
we present efficient approximation algorithms for both the covering
and maximization problems.

2.1 What is sensing quality?
In order to quantify how informative a sensor placement is, we have
to establish a notion of uncertainty. We associate a random variable
Xs ∈ XV with each locations ∈ V of interest; for a subsetA ⊆ V,
let XA denote the set of random variables associated with the lo-
cationsA. In our temperature measurement example,V ⊂ R2 de-
scribes the subset of coordinates in the building where sensors can



be placed. Our probabilistic model will describe a joint probability
distribution over all these random variables. In order to make pre-
dictions at a locations, we will consider conditional distributions
P (Xs = xs | XA = xA), where we condition on all observa-
tionsxA made by all sensorsA in our placement. To illustrate this
concept, Fig. 2(c) shows the predicted temperature field given the
measurements of the 54 sensors we deployed, and Fig. 2(d) shows
the variance in this distribution.
We use the conditional entropy of these distributions,H(Xs | XA) =
−
R

xs,xA
P (xs,xA) log P (xs | xA)dxsdxA to assess the uncer-

tainty in predictingXs. Intuitively, this quantity expresses how
“peaked” the conditional distribution ofXs givenXA is around the
most likely value, averaging over all possible observationsXA =
xA the placed sensors can make. To quantify how informative a
sensor placementA is, we use the criterion ofmutual information:

F (A) = I(XA;XV−A) = H(XV−A)−H(XV−A | XA). (3)

This criterion expresses the expected reduction of entropy of all
locationsV−A where we did not place sensors, after taking into ac-
count the measurements of our placed sensors. We first proposed
this criterion in [9], and showed that it leads to intuitive placements
with prediction accuracy superior to existing approaches. Sec. 3 ex-
plains how we model and learn a joint distribution over all locations
V and how to efficiently compute the mutual information.

2.2 What is communication cost?
Since each transmission drains battery of the deployed sensors, we
have to ensure that our sensor placements have reliable commu-
nication links, and the number of unnecessary retransmissions is
minimized. If the probability for a successful transmission between
two sensor locationss andt is θs,t, the expected number of retrans-
missions is1/θs,t. Since we have to predict the success probability
between any two locationss, t ∈ V, we will in general only have
a distributionP (θs,t) with densityp(θs,t) instead of a fixed value
for θs,t. Surprisingly, this uncertainty has a fundamental effect on
the expected number of retransmissions. For a simple example,
assume that with probability1

2
we predict that our transmission

success rate is3
4
, and with probability1

2
, it is 1

4
. Then, the mean

transmission rate would be1
2
, leading us to assume that the ex-

pected number of retransmissions might be2. In expectation over
the success rate however, our expected number of retransmissions
becomes1

2
· 4 + 1

2
· 4

3
= 2 + 2

3
> 2. More generally, the expected

number is

c({s, t}) =

Z
θ

1

θs,t
p(θs,t)dθs,t. (4)

Using this formula, we can compute the expected number of re-
transmissions for any pair of locations. IfV is finite, we can model
all locations inV as nodes in a graph, with the edges labeled by
their communication costs. We call this graph thecommunication
graphof V. For any sensor placementA ⊆ V, we define its cost by
the minimum cost treeT ,A ⊆ T ⊆ V, connecting all sensorsA in
the communication graph forV. (In general, the locationsA may
include distant sensors, requiring us to placerelay nodes, which do
not sense but only aid communication.) Finding this minimum cost
treeT to evaluate the cost functionc(A) is called theSteiner tree
problem; anNP-complete problem that has very good approxima-
tion algorithms [17]. Our algorithm,pSPIEL, will however not just
find an informative placement and then simply add relay nodes,
since the resulting cost may be exorbitant. Instead, itsimultane-
ouslyoptimizes sensing quality and communication cost.
Note that it if we threshold all link qualities at some specified cut-
off point, and define the edge costs between two locations in the
communication graph as1 if the link quality is above the cut-off

point, and infinite if the link quality is below the cut-off point,
then the communication cost of a sensor placement is exactly (one
less than) the number of placed sensors. Hence, in this special
case, we can interpret the maximization problem (2) as the prob-
lem of finding the most informative sensor placement of at mostB
nodes.

2.3 Overview of our approach
Having established the notions of sensing quality and communica-
tion cost, we now present an outline of our proposed approach.

1. We collect sensor and link quality data from an initial de-
ployment of sensors. From this data, we learn probabilis-
tic models for the sensor data and the communication cost.
Alternatively, we can use expert knowledge to design such
models.

2. These models allow us to predict the sensing qualityF (A)
and communication costc(A) for any candidate placement
A ⊆ V.

3. UsingpSPIEL, our proposed algorithm, we then find highly
informative placements which (approximately) minimize com-
munication cost. We can approximately solve both the cov-
ering and maximization problems.

4. After deploying the sensors, we then possibly add sensors
or redeploy the existing sensors, by restarting from Step 2),
until we achieve a satisfactory placement. (This step is op-
tional.)

Consider our temperature prediction example. Here, in step 1), we
would place a set of motes throughout the building, based on geo-
metrical or other intuitive criteria. After collecting training data
consisting of temperature measurements and packet transmission
logs, in step 2), we learn probabilistic models from the data. This
process is explained in the following Sections. Fig. 2(c) and Fig. 2(d)
present examples of the mean and variance of our model learned
during this step. As expected, the variance is high in areas where
no sensors are located. In step 3), we would then explore the sens-
ing quality tradeoff for different placements proposed bypSPIEL,
and select an appropriate one. This placement automatically sug-
gests if relay nodes should be deployed. After deployment, we can
collect more data, and, if the placement is not satisfactory, iterate
step 2).

3. PREDICTING SENSING QUALITY
In order to achieve highly informative sensor placements, we have
to be able to predict the uncertainty in sensor values at a location
s ∈ V, given the sensor valuesxA at some candidate placement
A. This is an extension of the well-known regression problem [8],
where we use the measured sensor data to predict values at loca-
tions where no sensors are placed. The difference is that in the
placement problem, we must be able to predict not just sensor val-
ues at uninstrumented locations, but ratherprobability distributions
over sensor values.Gaussian Processesare a powerful formalism
for making such predictions. To introduce this concept, first con-
sider the special case of the multivariate normal distribution over a
setXV of random variables associated withn locationsV:

P (XV = xV) =
1

(2π)n/2|Σ|
e−

1
2 (xV−µ)T Σ−1(xV−µ).

This model has been successfully used for example to model tem-
perature distributions [5], where every location inV corresponds to
one particular sensor placed in the building. The multivariate nor-
mal distribution is fully specified by providing a mean vectorµ and
a covariance matrixΣ. If we know the values of some of the sen-
sorsA ⊆ V, we find that fors ∈ V−A the conditional distribution
P (Xs = xs | XA = xA) is a normal distribution, where mean



µs|A and varianceσ2
s|A are given by

µs|A = µs + ΣsAΣ−1
AA(xA − µA), (5)

σ2
s|A = σ2

s − ΣsAΣ−1
AAΣAs. (6)

Hereby,ΣsA = ΣT
As is a row vector of the covariances ofXs with

all variables inXA. Similarly, ΣAA is the submatrix ofΣ, only
containing the entries relevant toXA, andσ2

s is the variance ofXs.
µA andµs are the means ofXA andXs respectively. Hence the
covariance matrixΣ and the mean vectorµ contain all the informa-
tion needed to compute the conditional distributions ofXs given
XA. The goal of an optimal placement will intuitively be to select
the observations such that the posterior variance (6) for all variables
becomes uniformly small. If we can make a set ofT measurements
x

(1)
V , . . . ,x

(T )
V of all sensorsV, we can estimateΣ andµ, and use

it to compute predictive distributions for any subsets of variables.
However, in the sensor placement problem, we must reason about
the predictive quality of locations where we donot yet have sen-
sors, and thus need to compute predictive distributions, conditional
on variables for which we do not have sample data.
Gaussian Processes are a solution for this dilemma. Technically,
a Gaussian Process (GP) is a joint distribution over a (possibly in-
finite) set of random variables, such that the marginal distribution
over any finite subset of variables is multivariate Gaussian. In our
temperature measurement example, we would associate a random
variableX (s) with each points in the building, which can be mod-
eled as a subsetV ⊂ R2. The GPX (·), which we will refer to as
thesensor data process, is fully specified by amean functionM(·)
and a symmetric positive definiteKernel functionK(·, ·), general-
izing the mean vector and covariance matrix in the multivariate nor-
mal distribution: For any random variableX (s) ∈ X ,M(s) will
correspond to the mean ofX (s), and for any two random variables
X (s),X (t) ∈ X ,K(s, t) will be the covariance ofX (s) andX (t).
This implies, that for any finite subsetA = {s1, s2, . . . , sm},
A ⊆ V of locations variables, the covariance matrixΣAA of the
variablesXA is obtained by

ΣAA =

0
BBB@
K(s1, s1) K(s1, s2) . . . K(s1, sm)
K(s2, s1) K(s2, s2) . . . K(s2, sm)

...
...

...
K(sm, s1) K(sm, s2) . . . K(sm, sm)

1
CCCA ,

and its mean isµA = (M(s1),M(s2), . . . ,M(sm)). Using for-
mulas (5) and (6), the problem of computing predictive distribu-
tions is reduced to finding the mean and covariance functionsM
andK for the phenomena of interest. In general, this is a difficult
problem – we want to estimate these infinite objects from a finite
amount of sample data. Consequently, often strongly limiting as-
sumptions are made: It is assumed that the covariance of any two
random variables is only a function of their distance (isotropy), and
independent of their location (stationarity). A kernel function often
used is the Gaussian kernel

K(s, t) = exp

�
−‖s− t‖22

h2

�
. (7)

These isotropy and stationarity assumptions lead to similar prob-
lems as encountered in the approach using geometric sensing re-
gions, as spatial inhomogeneities such as walls, windows, reflec-
tions etc. are not taken into account. These inhomogeneities are
however dominantly encountered in real data sets, as indicated in
Fig. 2(a).
In this paper, we donot make these limiting assumptions. We use
an approach to estimate nonstationarity proposed in [16]. Their
method estimates several stationary GPs with kernel functions as
in (7), each providing a local description of the nonstationary process

around a set of reference points. These reference points are chosen
on a grid or near the likely sources of nonstationary behavior. The
stationary GPs are combined into a nonstationary GP, whose co-
variance function interpolates the empirical covariance matrix es-
timated from the initial sensor deployment, and near the reference
points behaves similarly to the corresponding stationary process.
Fig. 2(b) shows a learned nonstationary GP for our temperature
data. Due to space limitations, we refer to [16] for details.
Once we have obtained estimates for the mean and covariance func-
tions, we can use these functions to evaluate our mutual information
criterion. In order to evaluate Eq. (3), we need to compute condi-
tional entropiesH(Xs | XA), which involve integrals over all pos-
sible assignments to the placed sensorsxA. Fortunately, there is a
closed form solution: We find that

H(XV−A | XA) =
1

2
log((2πe)n detΣV−A|A),

hence it only depends on the determinant of the predictive covari-
ance matrixΣV−A|A. Hereby,ΣV−A|A can be inferred using Eq. (6).
For details on efficient computationc.f., [9].

4. PREDICTING COMMUNICATION COST
As discussed in Sec. 2.2, an appropriate measure for communica-
tion cost is the expected number of retransmissions. If we have a
probability distributionP (θs,t) over transmission success proba-
bilities θs,t, Eq. (4) can be used in a Bayesian approach to compute
the expected number of retransmissions. The problem of determin-
ing such predictive distributions for transmission success probabil-
ities is very similar to the problem of estimating predictive distrib-
utions for the sensor values as discussed in Sec. 3, suggesting the
use of GPs for predicting link qualities. A closer look however
shows several qualitative differences: When learning a model for
sensor values, samples from the actual values can be obtained. In
the link quality case however, we can only determine whether cer-
tain messages between nodes were successfully transmitted or not.
Additionally, transmission success probabilities are constrained to
be between 0 and 1. Fortunately, GPs can be extended to handle
this case as well [4]. In thisclassificationsetting, the predictions
of the GP are transformed by the sigmoid, also called link function,
f(x)= 1

1+exp(−x)
. For large positive values ofx, f(x) is close to

1, for large negative values it is close to0 andf(0) = 1
2
.

Since we want to predict link qualities for everypair of locations
in V, we define a random processΘ(s, t) = f(W (s, t)), where
W (s, t) is a GP over(s, t) ∈ V2. We callΘ(s, t) the link qual-
ity process. This process can be learned the following way. In
our initial deployment, we let each sensor broadcast a message
once every epoch, containing its identification number. Each sen-
sor also records, from which other sensors it has received mes-
sages this epoch. This leads to a collection of samples of the form
(si,k, sj,k, θk(si, sj))i,j,k, wherei, j range over the deployed sen-
sors,k ranges over the epochs of data collection, andθk(si, sj) is 1
if nodei received the message from nodej in epochk, and0 other-
wise. We will interpretθk(si, sj) as samples from the link quality
processΘ(·, ·). Using these samples, we want to compute predic-
tive distributions similar to those described in Eqs. (5) and (6). Un-
fortunately, in the classification setting, the predictive distributions
cannot be computed in closed form anymore, but one can resort to
approximate techniques [4]. Using these techniques, we infer the
link qualities by modeling the underlying GPW (s, t). Intuitively,
the binary observations will be converted to imaginary observations
of W (s, t), such thatΘ(s, t) = f(W (s, t)) will correspond to the
empirical transmission probabilities between locationss andt. We
now can use Eqs. (5) and (6) to compute the predictive distribu-
tionsW (s, t) for anypair of locations(s, t) ∈ V2. Applying the



Input : LocationsC ⊆ V
Output : Greedy sequenceg1, g2, . . . , g|C|, Ci = {g1, . . . , gi}
begin
C0 ← ∅;
for j = 1 to |C| do

gj← argmax
g∈C−Cj−1

F (Cj−1 ∪ {g}); Cj ← Cj−1 ∪ gj ;

end
end

Algorithm 1 : Greedy algorithm for maximizing mutual infor-
mation.

sigmoid transform will then result in a probability distribution over
transmission success probabilities. In our implementation, instead
of parameterizingW (s, t) by pairs of coordinates, we use the para-
metrizationW (t − s, s). The first component of this parametriza-
tion is the displacement the successful or unsuccessful message has
traveled, and the second component is the actual set of physical co-
ordinates of the transmitting sensor. This parametrization tends to
exhibit better generalization behavior, since the distance to the re-
ceiver (component 1) is the dominating feature, when compared to
the spatial variation in link quality. Fig. 1(c) shows an example of
the predicted link qualities using a GP for our indoors deployment,
Fig. 1(d) shows the variance in this estimate.
What is left to do is to compute the expected number of retrans-
missions, as described in formula (4). Assuming the predictive
distribution forW (s, t) is normal with meanµ and varianceσ2,
we compute

R
1

f(x)
N (x; µ, σ2)dx = 1 + exp(−µ + σ2), where

N (·; µ, σ2) is the normal density with meanµ and varianceσ2.
Hence we have a closed form solution for this integral. Ifσ2 = 0,
we simply retain that the expected number of retransmissions is
the inverse of the transmission success probability. Ifσ2 is very
large however, the expected number of retransmission drastically
increases. This implies that even if we predict the transmission
success probability to be reasonably high, e.g.,2/3, if we do not
have enough samples to back up this prediction and hence our pre-
dictive varianceσ2 is very large, we necessarily have to expect the
worst for the number of retransmissions. So, using this GP model,
we may determine that it is better to select a link with success prob-
ability 1/3, about which we are very certain, to a link with a higher
success probability, but about which we are very uncertain. En-
abling this tradeoff is a great strength of using GPs for predicting
communication costs!

5. PROBLEM STRUCTURE IN SENSOR
PLACEMENT OPTIMIZATION

We now address the covering and maximization problems described
in Sec. 2. We will consider a discretization of the space into fi-
nitely many pointsV, e.g., points lying on a grid. For each pair
of locations inV, we define the edge cost as the expected number
of retransmissions required to send a message between these nodes
(since link qualities are asymmetric, we use the worse direction as
the cost). The set of edges that have finite cost is denoted byE.
The challenge in solving the optimization problems (1) and (2) is
that the search space—the possible subsetsA ⊆ V—is exponen-
tial; more concretely, the problem is easily seen to beNP-hard as
a corollary to the hardness of the unconstrained optimization prob-
lem [9, 13]. Given this, we seek an efficient approximation algo-
rithm with strong performance guarantees. In Sec. 6, we present
such an algorithm. The key to finding good approximate solutions
is understanding and exploiting problem structure.
Intuitively, the sensor placement problem satisfies the following di-
minishing returns property: The more sensors already placed, the

less the addition of a new sensor helps us. This intuition is formal-
ized by the concept ofsubmodularity: A set functionF defined on
subsets ofV is calledsubmodular, if

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B), (8)

for all A ⊆ B ⊆ V ands ∈ V−B. The functionF is monotonic
if F (A) ≤ F (B) for all A ⊆ B ⊆ V. With any such set function
F , we can associate the following greedy algorithm: Start with the
empty set, and at each iteration add to the current setA′ the element
s which maximizes thegreedy improvementF (A′∪{s})−F (A′),
and continue untilA′ has the specified size ofk elements. Perhaps
surprisingly, ifAG is the set selected by the greedy algorithm (with
|AG|=k) and if F is monotonic submodular withF (∅)=0, then
F (AG) ≥ (1−1/e) maxA:|A|=k F (A), i.e.,AG is at most a con-
stant factor(1− 1/e) worse than the optimal solution [15]. In [9],
we prove that our mutual information criterion is submodular and
approximatelymonotonic: For anyε > 0, if we choose the dis-
cretization fine enough (polynomially-large in1/ε), then the solu-
tion obtained by the greedy algorithm is at most(1−1/e)OPT−ε.
Alg. 1 presents the greedy algorithm for mutual information; for
details we refer the reader to [9]. However, this result only holds
when we do not take communication cost into account, and does
not generalize to the covering and maximization problems (1) and
(2) we study in this paper. Indeed, since the greedy algorithm does
not take distances into account, it would prefer to place two highly
informative sensors very far apart (in order to achieve the quota
Q), whereas a cheaper solution may select three sensors which are
slightly less informative (still satisfying the quota), but which are
closer together. In Sec. 7 we show that even a modified version of
the greedy algorithm naturally taking into account communication
cost can provide very poor solutions.
In addition tosubmodularity, the mutual information criterion em-
pirically (c.f., Fig. 4(h)) exhibits another importantlocality prop-
erty: Sensors which are very far apart are approximately indepen-
dent. This implies that if we consider placing a subset of sen-
sorsA1 in one area of the building, andA2 in another area, then
F (A1 ∪ A2) ≈ F (A1) + F (A2). Here, we will abstract out this
property to assume that there are constantsr > 0 and0 < γ ≤ 1,
such that for any subsets of nodesA1 andA2 which are at least
distancer apart,F (A1 ∪ A2) ≥ F (A1) + γF (A2). Such a sub-
modular functionF will be called(r, γ)-local.

6. APPROXIMATION ALGORITHM
In this Section, we propose an efficient approximation algorithm
for selecting Padded Sensor Placements at Informative and cost-
Effective Locations (pSPIEL). Our algorithm exploits problem struc-
ture via submodularityand locality, both properties described in
Sec. 5. Before presenting our results and performance guarantees,
here is an overview of our algorithm.

1. We randomly select a decomposition of the possible loca-
tionsV into smallclusters using Alg. 2 (c.f.,Fig. 3(a), Sec. 6,
[10]). Nodes close to the “boundary” of their clusters are
stripped away and hence the remaining clusters are “well-
separated”. (We prove that not too many nodes are stripped
away). The well-separatedness and the locality property ofF
ensure the clusters are approximately independent, and hence
very informative. Since the clusters are small, we are not
concerned about communication cost within the clusters.

2. Use the greedy algorithm (Alg. 1) within each clusteri to get
an ordergi,1, gi,2, . . . gi,ni on theni nodes in clusteri. Cre-
ate a chain for this cluster by connecting the vertices in this
order, with suitably chosen costs for each edge(gi,j , gi,j+1),
as in Fig. 3(b). The submodularity ofF ensures that the first
k nodes in this chain are almost as informative as the best
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Figure 3: Illustration of our algorithm: (a) presents a padded decomposition into four clusters; (b) displays the chain in the modular
approximation graph associated with cluster 1; (c) shows the modular approximation graph with chains induced by greedy algorithm
and the complete “core”; (d) the solution of the Quota-MST problem on the modular approximation graph; and(e) is the final
solution after expanding the Quota-MST edges representing shortest paths.

subset ofk nodes in the cluster [9].
3. Create a “modular approximation graph”G′ from G by tak-

ing all these chains, and creating a fully connected graph on
g1,1, g2,1, . . . , gm,1, the first nodes of each chain. The edge
costs(gi,1, gi′,1) correspond to the shortest path distances
betweengi,1 andgi′,1, as in Fig. 3(c).

4. We now need to decide how to distribute the desired quota to
the clusters. Hence, we approximately solve the Quota-MST
problem (for the covering version) or the Budget-MST prob-
lem (for the maximization problem) onG′ [7, 12] (Fig. 3(d)).

5. Expand the chosen edges ofG′ in terms of the shortest paths
they represent inG, as in Fig. 3(e).

Supposen = |V| is the number of nodes inV, andA∗ denotes the
optimal set (for the covering or maximization problem), with cost
`∗. Finally, letdim(V, E) be thedoubling dimensionof the data,
which is constant for many graphs (and for costs that can be em-
bedded in low-dimensional spaces), and isO(log n) for arbitrary
graphs (c.f., [10]). We prove the following guarantee:

THEOREM 1. Given a graphG = (V, E), and an(r, γ)-local
monotone submodular functionF , we can find a treeT with cost
O(r dim(V,E))×`∗, spanning a setAwithF (A)≥Ω(γ)×F (A∗).
The algorithm is randomized and runs in polynomial-time.

In other words, Theorem 1 shows that we can solve the covering
and maximization problems (1) and (2) to provide a sensor place-
ment for which the communication cost is at most a small factor
(at worst logarithmic) larger, and for which the sensing quality is
at most a constant factor worse than the optimal solution.1 The
proof can be found the Appendix. In the rest of this section, we
flesh out the details of the algorithm, giving more technical insight
and intuition about the performance of our approach.

1While the actual guarantee of our algorithm holds in expectation,
running the algorithm a small (polynomial) number of times will
lead to appropriate solutions with arbitrarily high probability.

Input : Graph(V, E), shortest path distanced(·, ·), r > 0,
α ≥ 64 dim(V, E)

Output : (α, r)-padded decompositionC = {Cu : u ∈ U}
begin

repeat
C ← ∅; r′ ← αr

4
; U ← {a random element inV};

while ∃ v∈V : ∀u∈ U d(u, v) > r′ do U←U∪{v};
π ← random permutation onU ;
R← uniform at random in(r′, 2r′];
foreachu ∈ U according toπ do
Cu ← {v ∈ V : d(u, v) < R, and∀u′ ∈
U appearing earlier thatu in π , d(u′, v) ≥ R};

end
until at least1

2
nodesr-padded;

end

Algorithm 2 : Algorithm for computing padded decomposi-
tions.

Padded decompositions. To exploit the locality property, we would
like to decompose our space into “well-separated” clusters; loosely,
anr-padded decomposition is a way to do this so that most vertices
of V lie in clustersCi that are at leastr apart. Intuitively,padded
decompositionsallow us to split the original placement problem
into approximately independent placement problems, one for each
clusterCi. This padding and the locality property of the objective
function F guarantee that, if we compute selectionsA1,. . . ,Am

for each of them clusters separately, then it holds thatF (A1 ∪
· · · ∪ Am) ≥ γ

P
i F (Ai), i.e., we only lose a constant factor. An

example is presented in Fig. 3(a).
If we put all nodes into a single cluster, we obtain a padded decom-
position that is not very useful. To exploit our locality property, we
want clusters of size aboutr that are at leastr apart. It is difficult to
obtain separated clusters of size exactlyr, but padded decomposi-
tions exist for arbitrary graphs for cluster sizes a constantα larger,



whereα is Ω(dim(V, E)) [10]. We want small clusters, since we
can then ignore communication cost within each cluster.
Formally, an(α, r)-padded decomposition is a probability distri-
bution over partitions ofV into clustersC1, . . . , Cm, such that:

(i) Every clusterCi in the partition is guaranteed to have bounded
diameter, i.e.,diam(Ci) ≤ αr.

(ii) Each nodes ∈ V is r-padded in the partition with probability
at leastρ. (A nodes is r-paddedif all nodest at distance at
mostr from s are contained in the same cluster ass.)

The parameterρ can be chosen as a constant (in our implementa-
tion, ρ = 1

2
). In this paper, we use the term padded decomposition

to refer both to the distribution, as well as samples from the dis-
tribution, which can be obtained efficiently using Alg. 2 [10]. In
pSPIEL, for a fixed value of the locality parameterr, we gradually
increaseα, stopping when we achieve a partition, in which at least
half the nodes arer-padded. This rejection sampling is the only
randomized part of our algorithm, and, in expectation, the number
of required samples is polynomial.
Our algorithm strips away nodes that are notr-padded, suggesting a
risk of missing informative locations. The following Lemma proves
that we will not lose significant information in expectation.

LEMMA 2. Consider a submodular functionF (·) on a ground
setV, a setB ⊆ V, and a probability distribution over subsetsA of
B with the property that, for some constantρ, we havePr [v ∈ A] ≥
ρ for all v ∈ B. ThenE[F (A)] ≥ ρF (B).

The proof of this Lemma appears in the Appendix. LetA∗ be the
optimal solution for the covering or maximization problem, and let
A∗r denote a subset of nodes inA∗ that arer-padded. Lemma 2
proves that, in expectation, the information provided byA∗r is at
most a constant factorρ worse thanA∗. Since the cost of collecting
data fromA∗r is no larger than that ofA∗, this lemma shows that our
padded decomposition preserves near-optimal solutions.

The greedy algorithm. After having sampled a padded decompo-
sition, we run the greedy algorithm as presented in Alg. 1 on the
r-padded nodes in each clusterCi, with k set toni, the number of
padded elements in clusterCi. Let us label the nodes asgi,1, gi,2,
. . . , gini

in the order they are chosen by the greedy algorithm, and
let Ci,j = {gi,1, . . . , gi,j} denote the greedy set after iterationj.
From [9] we know that each setCi,j is at most a factor(1 − 1/e)
worse than the optimal set ofj padded elements in that cluster. Fur-
thermore, from(r, γ)-locality and using the fact that the nodes are
r-padded, we can prove that
F (C1,j1∪· · ·∪Cm,jm)≥γ

Pm
k=1F (Ck,jk)≥γ

�
1−1

e

�Pm
k=1F (C∗k,jk

)

for any collection of indicesj1, . . . , jm, whereC∗k,jk
denotes the

optimal selection ofjk nodes within clusterk.

The modular approximation graph G′. In step 3),pSPIELcre-
ates the auxiliarymodular approximation graph(MAG) G′ from
G. Intuitively, this MAG will approximateG, such that running the
Quota-MST algorithm on it will decide how many nodes should
be picked from each cluster. The nodes ofG′ are the greedy sets
Ci,j . The greedy sets for clusteri are arranged in a chain with
edgeei,j connectingCi,j andCi,j+1 for every i andj. For a set
of nodesB, if cMST (B) is the cost of a minimum spanning tree
(MST) connecting the nodes inB by their shortest paths, the weight
of ei,j in G′ is the difference in costs of the MSTs ofCi,j and
Ci,j+1 (or 0 if this difference becomes negative), i.e.,c(ei,j) =
max [cMST (Ci,j+1)− cMST (Ci,j), 0] . We also associate a “re-
ward” reward(Ci,j) = F (Ci,j)−F (Ci,j−1) with each node, where

F (Ci,0)
4
= 0. Note that, by telescopic sum, the total reward of the

first k elements in chaini is F (Ci,k), and the total cost of the edges
connecting them iscMST (Ci,k), which is at most 2 times the the
cost of a minimum Steiner tree connecting the nodes inCi,k in the

original graphG. By property (i) of the padded decomposition,
cMST (Ci,k) ≤ α r k. By associating these rewards with each
node, we define amodularset functionF ′ on G′, such that for a
setB of nodes inG′, its valueF ′(B) is the sum of the rewards of
all elements inB. Fig. 3(b) presents an example of a chain asso-
ciated with cluster 1 in Fig. 3(a). Additionally, we connect every
pair of nodesCi,1, Cj,1 with an edge with cost being the shortest
path distance betweengi,1 and gj,1 in G. This fully connected
subgraph is called thecore of G′. Fig. 3(c) presents the modular
approximation graph associated with the padded decomposition of
Fig. 3(a).

Solving the covering and maximization problems inG′. The
modular approximation graphG′ reduces the problem of optimiz-
ing a submodular set function inG to one of optimizing amod-
ular set functionF ′ (where the value of a set is the sum of re-
wards of its elements) inG′ to minimize communication costs.
This is a well studied problem, and constant factor approxima-
tion algorithms have been found for the covering and maximization
problems. The (rooted)Quota-MSTproblem asks for a minimum
weight treeT (with a specified root), in which the sum of rewards
exceeds the specified quota. Conversely, theBudget-MSTproblem
desires a tree of maximum reward, subject to the constraint that the
sum of edge costs is bounded by a budget. The best known approx-
imation factors for these problems is2 for rooted Quota-MST [7],
and3 + ε (for anyε > 0) for unrooted Budget-MST [14]. We can
use these algorithms to get an approximate solution for the cover-
ing and maximization problems inG′. From Sec. 6, we know that
it suffices to decide which chains to connect, and how deep to de-
scend into each chain; any such choice will give a subtree ofG′. To
find this tree, we consider allCi,1 for eachi as possible roots, and
choose the best tree as an approximate solution. (For the Budget-
MST problem, we only have an unrooted algorithm, but we can use
the structure of our modular approximation graph to get an approx-
imately optimal solution.) We omit all details due to space limita-
tions. Fig. 3(d) illustrates such a Quota-MST solution.

Transferring the solution from G′ back to G. The Quota- or
Budget-MST algorithms select a treeT ′ in G′, which is at most
a constant factor worse than the optimal such tree. We use this so-
lution T ′ obtained forG′ to select a treeT ⊆ G: For every cluster
i, if Ci,j ∈ T ′ we markgi,1, . . . , gi,j in G. We then selectT
to be an approximately optimal Steiner tree connecting all marked
nodes inG, obtained, e.g., by computing an MST for the fully con-
nected graph over all marked vertices, where the cost of an edge
betweens andt is the shortest path distance between these nodes
in G. This treeT is the approximate solution promised in Theo-
rem 1. (Fig. 3(e) presents the expansion of the Quota-MST from
Fig. 3(d).)

Additional implementation details. pSPIELrelies heavily on the
monotonic submodularity and locality assumptions. In practice,
since we may not know the constantsr andγ, we run the algorithm
multiple times with different choice forr. Since the algorithm is
randomized, we repeat it several times to achieve a good solution
with high probability. Finally, since we do not knowγ, we can-
not directly specify the desired quota when solving the covering
problem. To alleviate all these intricacies, we use the following
strategy to select a good placement: For a fixed number of itera-
tions, randomly sample anr between0 and the diameter ofG. Also
sample a quotaQ between0 andQmax, the maximum submodu-
lar function value achieved by the unconstrained greedy algorithm.
RunpSPIELwith these parametersr andQ, and record the actual
placement, as well as the communication cost and sensing quality
achieved by the proposed placement. AfterN iterations, these val-
ues result in a cost-benefit curve, which can be used to identify a
good cost-benefit tradeoff as done in Sec. 7.



(a) Placements

Metric M20 pS19 pS12
RMS 91.0 51.2 71.5
MAD 67.0 31.3 45.1

Pred. c. 24.4 19.9 15.3
Real c. 22.9 21.8 15.0

(b) Costs and prediction qualities
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(c) Cost-benefit for light data
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(d) RMS error for light data
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(e) Small temperature data set
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(f) Cost-benefit for temperature
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(g) Cost-benefit for precipitation
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Figure 4: Experimental results. (a) shows the expert placement (top) and a placement proposed bypSPIEL. (b) presents root-mean-
squares (RMS) and mean-absolute-deviation (MAD) prediction errors for the manual placement and two placements frompSPIEL.
(c) compares the cost-benefit tradeoff curves for the light data GP on a 187 points grid. (d) compares the root-mean-squares error for
the light data. (e) compares trade-off curves for a small subset of the temperature data. (f) shows tradeoff curves for the temperature
GPs on a 10x10 grid. (g) compares tradeoffs for precipitation data from 167 weather stations. (h) compares the locality parameterr
and the lossγ incurred by the modular approximation for the temperature GPs.

7. EXPERIMENTS
In order to evaluate our method, we computed sensor placements
for three real-world problems: Indoor illumination measurement,
the temperature prediction task as described in our running exam-
ple, and the prediction of precipitation in the United States’ Pacific
Northwest.

System implementation. We developed a complete system imple-
mentation of our sensor placement approach, based on Tmote Sky
motes. The data collection from the pilot deployment is based on
the TinyOS SurgeTelos application, which we extended to collect
link quality information. Once per epoch, every sensor sends out
a broadcast message containing its unique identifier. Upon receipt
of these messages, every sensor will compile a bitstring, indicating
from which neighbor it has heard in the current epoch. This trans-
mission log information will then be transmitted, along with the
current sensor readings, via multi-hop routing to the base station.
After enough data has been collected, we learn GP models for sens-
ing quality and communication cost, which are subsequently used
by thepSPIELalgorithm. Our implementation ofpSPIELuses a
heuristically improved approximatek-MST algorithm as described
in [12]. UsingpSPIEL, we generate multiple placements and plot
them in a trade-off curve as described in Sec. 6. We then identify an
appropriate trade-off by selecting good placements from this trade-
off curve.

Proof-of-concept study. As a proof-of-concept experiment, we
deployed a network of 46 Tmote Sky motes in the Intelligent Work-
place at CMU. As a baseline deployment, we selected 20 locations
(M20) that seemed to capture the overall variation in light inten-
sity. After collecting the total solar radiation data for 20 hours, we
learned GP models, and usedpSPIELto propose a placement of 19
motes (pS19). Fig. 4(a) shows the 20 and 19 motes deployments.
After deploying the competing placements, we collected data for 6
hours starting at 12 PM and compared the prediction accuracy for
all placements, on validation data from 41 evenly distributed motes.

Fig. 4(b) presents the results. Interestingly, the proposed placement
(pS19) drastically reduces the prediction error by about50%. This
reduction can be explained by the fact that there are two compo-
nents in lighting: natural and artificial. Our baseline deployment
placed sensors spread throughout the environment, and in many
intuitive locations near the windows. On the other hand,pSPIEL
decided not to explore the large western area, a part of the lab that
was not occupied during the night, and thus had little fluctuation
with artificial lighting. Focusing on the eastern part,pSPIELwas
able to make sufficiently good natural light predictions through-
out the lab, and better focus of the sources of variation in artificial
light. We repeated the evaluation for a 12 motes subsample (pS12),
also proposed bypSPIEL, which still provides better prediction
than the manual placement of 20 nodes (M20), and significantly
lower communication cost. We also compared the predicted com-
munication cost using the GPs with the measured communication
cost. Fig. 4(b) shows that the prediction matches well to the mea-
surement. Figs. 4(c) and 4(d) show thatpSPIELoutperforms the
Greedy heuristic explained below, both in the sensing quality and
communication cost tradeoff and in predictive RMS error.

Indoor temperature measurements. In our second set of experi-
ments, we used an existing deployment (c.f.,Fig. 1(a)) of 52 wire-
less sensor motes to learn a model for predicting temperature and
communication cost in a building. After learning the GP models
from five days of data, we usedpSPIELto propose improved sen-
sor placements. We comparedpSPIELto two heuristics, and—for
small problems—with the optimal algorithm which exhaustively
searches through all possible deployments. The first heuristic,Greedy-
Connect, runs the unconstrained greedy algorithm (Alg. 1), and
then connects the selected sensors using a Steiner tree approxima-
tion. The second heuristic,Distance-weighted Greedy, is inspired
by an algorithm that provides near-optimal solutions to the Quota-
MST problem [1]. This heuristic initially starts with all nodes in
separate clusters, and iteratively merges – using the shortest path –
clusters maximizing the following greedy criterion:



gain(C1, C2) =
mini∈1,2(F (C1 ∪ C2)− F (Ci))

dist(C1, C2)
.

The intuition for this greedy rule is that it tries to maximize the
benefit-cost ratio for merging two clusters. Since it works near-
optimally in the modular case, we would hope it performs well in
the submodular case also. The algorithm stops after sufficiently
large components are generated (c.f., [1]).
Fig. 4(e) compares the performance ofpSPIELwith the other al-
gorithms on a small problem with only 16 candidate locations. We
used the empirical covariance and link qualities measured from 16
selected sensors. In this small problem, we could explicitly com-
pute the optimal solution by exhaustive search. Fig. 4(e) indicates
that the performance ofpSPIEL is significantly closer to the op-
timal solution than any of the two heuristics. Fig. 4(f) presents a
comparison of the algorithms for selecting placements on a10×10
grid. We used our GP models to predict the covariance and com-
munication cost for this discretization. From Fig. 4(f) we can see
that for very low quotas (less than25% of the maximum), the al-
gorithms performed very similarly. Also, for very large quotas
(greater than80%), pSPIELdoes not significantly outperform not
Greedy-Connect, since, when the environment is densely covered,
communication is not an issue. In fact, if the information quota re-
quires a very dense deployments, the padded decomposition tends
to strip away many nodes, leadingpSPIELto increase the local-
ity constantr, until r is large enough to include all nodes are in a
single cluster. In this case,pSPIELessentially reverts back to the
Greedy-Connectalgorithm. In the important region between25%
and80% however,pSPIELclearly outperforms the heuristics. Our
results also indicate that in this region the steepest drop in out-of-
sample root mean squares (RMS) prediction accuracy occurs. This
region corresponds to placements of approximately10−20 sensors,
an appropriate number for the target deployment Fig. 1(a).
In order to study the effect of the locality parameterr, we gener-
ated padded decompositions for increasing values ofr. For random
subsets of the padded nodes, and for placements frompSPIEL, we
then compared the modular approximation, i.e., the sum of the lo-
cal objective values per cluster, with the mutual information for
the entire set of selected nodes. Asr increases to values close to
2, the approximation factorγ drastically increases from.3 to .7
and then flattens asr encompasses the the entire graphG. This
suggests that the valuer = 2 is an appropriate choice for the local-
ity parameter, since it only incurs a small approximation loss, but
guarantees small diameters of the padded clusters, thereby keeping
communication cost small. For placements proposed bypSPIEL,
the approximation factor is even better.

Precipitation data. In our third application, our goal was to place
sensors for predicting precipitation in the Pacific North-West. Our
data set consisted of daily precipitation data collected from 167
regions during the years 1949–1994 [18]. We followed the pre-
processing from [9]. Since we did not have communication costs
for this data set, we assumed that the link quality decayed as the
inverse square of the distance, based on physical considerations.
Fig. 4(g) compares the sensing quality – communication cost trade-
off curves for selecting placements from all 167 locations.pSPIEL
outperforms the heuristics up to very large quotas.

8. CONCLUSIONS
We proposed a unified approach for placing networks of wireless
sensors. Our approach uses Gaussian Processes, which can be
chosen from expert knowledge or learned from an initial deploy-
ment. We propose to use GPs not only to model the monitored
phenomena, but also for predicting communication costs. We pre-
sented a polynomial time algorithm –pSPIEL– selecting Sensor
Placements at Informative and cost-Effective Locations. Our algo-

rithm provides strong theoretical performance guarantees. We built
a complete implementation on Tmote Sky motes and extensively
evaluated our approach on real-world placement problems. Our
empirical evaluation shows thatpSPIELsignificantly outperforms
existing methods.
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APPENDIX
PROOF OFLEMMA 2. Given a collection of weightsP = {pS :

S ⊆ B}, we writeE(P) =
P

S⊆B pS ·F (S). Note thatE[F (A)] =

E(P0) for P0 = {Pr [A = S] : S ⊆ B}.
Starting with the set of weightsP0, we iteratively apply the fol-
lowing “uncrossing” procedure. As long as there is a pair of sets
S, T ⊆ B such that neither ofS or T is contained in the other,
andpS , pT > 0, we subtractx = min(pS , pT ) from bothpS and
pT , and we addx to bothpS∩T andpS∪T . Note the following
properties of this procedure.

(i) The quantity
P

S⊆B pS remains constant over all iterations.
(ii) For each elementX ∈ B, the quantity

P
S⊆B:X∈S pS re-

mains constant over all iterations,
(iii) The quantity

P
S⊆B pS |S|2 strictly increases every iteration.

(iv) By the submodularity ofF , the quantityE(P) is non-increasing
over the iterations.

By (i) and (iii), this sequence of iterations, starting fromP0, must
terminate at a set of weightsP∗. At termination, the setsS on
which pS > 0 must be totally ordered with respect to inclusion,
and by (ii) it follows thatpB ≥ ρ. Finally, by (iv), we have

E[F (A)] = E(P0) ≥ E(P∗) ≥ ρF (B), (9)

as required.
In order to prove Theorem 1, let us consider the subsetA∗ spanned
by the optimal tree, and letA∗ ⊆ A∗ denote itsr-padded nodes
with respect to a random partition drawn from the padded decom-
position. (Recall that each node isr-padded with probability at
leastρ.) Now Lemma 2 implies thatF (A∗), the expected value of
the nodes inA that arer-padded, is at leastρF (A∗). The algo-
rithm is based on the idea of trying to build a tree that recoups a
reasonable fraction of this “padded value”.
The following lemma will be useful in converting subtrees ofG′
back to solutions of our original problem.

PROPOSITION 3. Given any subtreeT ′ ofG′ with weightW , it
is possible to find a subtreeT ⊆ G spanning the same verticesA′,
with a total length no more thaǹ(T ′), and withF (A′) ≥ γ W .

PROOF. Each edge ofG′ (and hence ofT ′) corresponds to some
shortest path inG, and we can add all these paths together to form a
connected subgraph. LetT be any spanning tree of this subgraph;
clearly, its length is no more thaǹ(T ′). If Vi ⊆ Pi is the subpath
of Pi contained inT ′, then the weight of these verticesV (P ′

i ) is
exactly the total submodular valueF (V (P ′

i )), just by the definition
the weights. Furthermore, since each pair of distinct paths are at
distance at leastr from each other, the locality property assures
that the value of their union is at leastγ W .

PROPOSITION 4. If the graphG contains a subtree of length̀∗

and valueF (A∗), then there is a subtreeT ′ of the graphG′ that
has length at most

`∗ × (α(r + 2) + 2) (10)

and whose expected weight is at least
F (A∗)× (1− e−1)× ρ (11)

PROOF. Let a clusterCi be calledoccupiedif A∗ ∩ Ci 6= ∅;
w.l.o.g., let thes clustersC1, C2, . . . , Cs be occupied. We start
building T ′ by adding a spanning tree on the centers of the clus-
ters that are occupied.

The Cost. Let us bound the length of this center-spanning tree.
SinceA∗ contains a point (sayai) from eachCi, the padding con-
dition ensures that ther-ballsBr(ai) must be disjoint, and hence
the length ofT ∗ is at leastrs. Now, to attachai to zi, we can add
paths of length at mostαr to T ∗; thus causing the resulting tree to
have length̀ ∗ + αrs ≤ (α + 1)`∗. Since this is a Steiner tree on

the centers, we can get a spanning tree of at most twice the cost;
hence the cost of the edges connecting the spanning centers is at
most

2(α + 1) `∗. (12)

Now consider an occupied clusterCi, and let|A∗ ∩ Ci| = ni be the
number of padded nodes inCi. We now add toT ′ the subpath of
Pi containing firstni nodes{Zi = Gi,1, Gi,2, . . . , Gi,ni}. Note
that the length of edges added for clusterCi is at mostαrni; sum-
ming over all occupied clusters gives a total length ofαr

P
i ni ≤

αr|A∗| ≤ αr`∗, since each edge inT ∗ has at least unit length.
Adding this to (12) proves the claim on the length ofT ′.

The Weight. Finally, let us calculate the weight of the treeT ′: by
the properties of the greedy algorithm used in the construction of
G′, theweightof the setSini added in clusterCi is at least

(1− e−1)F (A∗ ∩ Ci) (13)

Summing this over occupied clusters, we get that the total weight
is at least(1 − e−1)F (A∗), whose expected value is at least(1 −
e−1)ρF (A∗).
Combining these results, we now prove a slightly more detailed
statement of Theorem 1:

THEOREM 5. For the covering problem(1), pSPIELwill find a
solutionT , with cost at most

κQuota `∗ (α(r + 2) + 2) (14)

and whose expected weight is at least
(1− e−1) γρF (A∗), (15)

where`∗ is the weight of the optimum treeA∗. For the maximiza-
tion problem(2), pSPIELwill find a solutionT with cost at most

`∗ (α(r + 2) + 2) (16)

and whose expected weight is at least
κ−1

Budget(1− e−1) γρF (A∗), (17)

whereκQuota and κBudget denote the approximation guarantees
for approximately solving Quota- and Budget-MST problems (cur-
rently,κQuota = 2 andκBudget = 3 + ε, for ε > 0, are the best
known such guarantees [7, 12]).

PROOF. Proposition 4 proves the existence of a treeT ′ in the
graphG′, for which both cost and weight are close to the optimal
treeT in G. The construction in the proof also guarantees that the
treeT ′ contains at least one cluster centerGi,1 for somei (or is
empty, in which caseT is empty). Proposition 3 handles the trans-
fer of the solution to the original graphG. Hence, in order to solve
the covering problem (1) or optimization problem (2) inG, we need
to solve the respective covering and maximization problem in the
modular approximation graphG′, rooted in one of the cluster cen-
ters. AnyκQuota approximate algorithm to the Quota-MST prob-
lem can be used for the covering problem, using a quota ofQ =
(1− e−1)ρ F (A∗). While for the unrooted version of the Budget-
MST problem, there is a constant factorκBudget = 3 + ε approxi-
mation algorithm, unfortunately, there is no known constant-factor
guarantee known for the rooted version. We can however exploit
the structure of the MAG to still get an approximation guarantee
and prove Theorem 1. We simply need to prune all nodes inG′
which are further thanB = `∗ (α(r + 2) + 2) away from the core
of G′, and then run the unrooted approximation algorithm [12] on
G′. If this algorithm, started with budgetB = `∗ (α(r + 2) + 2)
selects nodes from sub-chaini, not including centerGi,1, we in-
stead select the entirei-th chain. By construction, this procedure is
guaranteed not to violate the budget, and the submodular function
value can only increase.


