
Near-optimal Observation Selection using Submodular Functions

Andreas Krause
Carnegie Mellon University

Carlos Guestrin
Carnegie Mellon University

Abstract

AI problems such as autonomous robotic exploration, auto-
matic diagnosis and activity recognition have in common the
need for choosing among a set of informative but possibly ex-
pensive observations. When monitoring spatial phenomena
with sensor networks or mobile robots, for example, we need
to decide which locations to observe in order to most effec-
tively decrease the uncertainty, at minimum cost. These prob-
lems usually are NP-hard. Many observation selection objec-
tives satisfy submodularity, an intuitive diminishing returns
property – adding a sensor to a small deployment helps more
than adding it to a large deployment. In this paper, we survey
recent advances in systematically exploiting this submodu-
larity property to efficiently achieve near-optimal observation
selections, under complex constraints. We illustrate the ef-
fectiveness of our approaches on problems of monitoring en-
vironmental phenomena and water distribution networks.

Introduction
In many artificial intelligence applications, we need to ef-
fectively collect information in order to make best decisions
under uncertainty. In this setting, we usually need to trade-
off the informativeness of the observation and the cost of
acquiring the information. When monitoring spatial phe-
nomena using sensor networks, for example, we can decide
where to place sensors. Since we have a limited budget,
we want to place the sensors only at the most informative
locations. Hence we want to select a set A ⊆ V of lo-
cations, and want to maximize some objective F (A) mea-
suring the informativeness of the selected locations, subject
to a constraint on the number of sensors we can place, i.e.,
|A| ≤ k. If we collect information using mobile robots,
or if the placed sensors need to communicate wirelessly,
we have more complex constraints on how we can make
these observations. In the multi-robot case, for example,
the chosen locations must lie on a collection of paths. In
the wireless communication case, the locations need to be
close enough to enable efficient wireless communication.
These optimization problems are generally NP-hard (Krause
& Guestrin 2005b). Therefore, heuristic approaches have
commonly been applied, which cannot provide performance
guarantees. In our recent work (Krause & Guestrin 2005c;
Guestrin, Krause, & Singh 2005; Krause et al. 2006; 2007;
Singh et al. 2007), we have presented several efficient algo-
rithms for approximately solving these optimization prob-
lems. In contrast to the heuristic approaches, our algorithms
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Figure 1: (a) Monitoring Lake Fulmor [courtesy of NAMOS
(http://robotics.usc.edu/∼namos) & CENS (http://cens.ucla.edu)];
(b) Water network sensor placement in BWSN challenge.

have rigorous theoretical performance guarantees. In or-
der to achieve these guarantees, we exploit a key property
of many natural observation selection objectives: In most
problems, adding an observation helps more, if we have
made few observations so far, and helps less if we already
have made many observations. This intuitive diminishing re-
turns property is formalized by the concept of submodular-
ity, which will be introduced in the following. We will illus-
trate the methodology on two important observation selec-
tion problems we have considered in the past, environmental
monitoring, and securing water distribution networks.

Applications and Selection Objectives
Environmental Monitoring
Consider, for example, the monitoring of algae biomass in
a lake. High levels of pollutants, such as nitrates, can lead
to the development of algal blooms. These nuisance algal
blooms impair the beneficial use of aquatic systems. Mea-
suring quantities, such as pollutants, nutrients, and oxygen
levels, can provide biologists with a fundamental character-
ization of the ecological state of such a lake. Unfortunately,
such sensors are expensive, and it is impractical to cover the
lake with these devices. Hence, a set of robotic boats (as in
Fig. 1 (a)) have been used to move such sensors to various
locations in the lake (Dhariwal et al. 2006). In order to make
most effective measurements, we want to move the robots,
such that the few observed values help us predict the algae
biomass everywhere in the lake as well as possible.

Geometric objectives. A common approach for observa-
tion selection has been to use a geometric approach. With
every potential sensing location s ∈ V , one associates a ge-
ometric shape Rs, a sensing region, which is usually taken
as a disk (c.f., Bai et al. 2006), or a cone (for modeling cam-
era viewing fields). Once an observation has been made,
all points in the sensing region Rs are considered observed.
The objective function is then FG(A) = |

⋃
s∈A Rs|, where

|
⋃

s∈A Rs| is the cardinality (or volume) of the covered set.



Probabilistic objectives. The assumption made by
geometric objectives is that every location is either fully
observed or unobserved. Often, observations are noisy,
and by combining several observations we can achieve
better coverage. To address this uncertainty, the spatial
phenomena is often modeled probabilistically. In the
above example, we would discretize the lake into finitely
many locations V , associate a random variable Xs with
every location s ∈ V and describe a joint distribution
P (XV) = P (Xs1 , . . . ,Xsn) over all random variables. We
can then use observations at a set XA = xA to predict the
phenomenon everywhere, by considering the conditional
distributions P (XV\A | XA = xA). We can also use this
conditional distribution to quantify the uncertainty in the
prediction. A good observation selection will have small
uncertainty in the prediction everywhere.

Several such objective functions have been considered in
the literature. In (Guestrin, Krause, & Singh 2005), we con-
sider the mutual information between a set of chosen lo-
cations and their complement. This criterion is defined as
FMI(A) = I(XA;XV\A) = H(XV\A) − H(XV\A | XA).
It hence measures the decrease in Shannon entropy in the
unobserved locations (prior uncertainty H(XV\A)) achieved
by making observations, leading to posterior uncertainty
H(XV\A | XA). As a model, we use Gaussian Processes
(GPs), which have been frequently used to model spatial
phenomena (c.f., Cressie 1991). The distribution P (XV) is
then a multivariate normal distribution and the mutual infor-
mation can be computed in closed form.

Securing Water Distribution Systems
Water distribution networks (as in Fig. 1 (b)), which bring
the water to our taps, are complex dynamical systems, with
impact on our everyday lives. Accidental or malicious intro-
duction of contaminants in such networks can have severe
impact on the population. Such intrusions could potentially
be detected by a network of sensors placed in the water dis-
tribution system. The high cost of the sensors makes opti-
mal placement an important issue. We recently participated
in the Battle of Water Sensor Networks (BWSN), an interna-
tional challenge for designing sensor networks in several re-
alistic settings. A set of intrusion attacks S was considered;
each attack refers to the hypothetical introduction of con-
taminants at a particular node of the network, at a particular
time of day, and for a specified duration. Using EPANET 2.0
(Rossman 1999), a simulator provided by the EPA, the im-
pact of any given attack can be simulated, as well as, for any
considered sensor placement A ⊆ V , the expected time to
detection and estimated affected population computed. An
optimal sensor placement minimizes these objectives.
Minimizing adverse effects. In the water distribution set-
ting, we want to minimize adverse effects caused by a con-
taminant introduction. For every possible contamination at-
tack i ∈ S, we can compute the penalty πi(t) incurred when
detecting the intrusion at time t (where t = 0 at the start of
the simulation). For example, πi can measure the estimated
population affected (across the entire network) by attack i at
time t. For a sensor s ∈ V and attack i ∈ S, we can use the
simulation to determine the time of detection, T (s, i). Nat-

urally, for a set of sensors, T (A, i) = mins∈A T (s, i). We
can then define the penalty reduction for a sensor placement
A ⊆ V as Ri(A) = πi(Tmax) − πi(T (A, i)). The final
objective is then the expected penalty reduction, where the
expectation is taken w.r.t. a probability distribution P over
the attacks: FR(A) =

∑
i P (i)Ri(A).

Submodularity of Observation Selection
In the previous section, we presented a collection of practi-
cal observation selection objectives, FG, FMI, and FR. All
these objectives (and many other practical ones) have the
following key property in common: Adding an observation
helps more if we have made few observations so far and
helps less if we have made many observations. This dimin-
ishing returns property is visualized in Fig. 2(c). The score
obtained is a concave function of the number of observations
made. This effect is formalized by the concept of submod-
ularity (c.f., Nemhauser, Wolsey, & Fisher 1978). A real-
valued function F , defined on subsets A ⊆ V of a finite set
V is called submodular if for all A ⊆ B ⊆ V and for all s ∈
V\B, it holds that F (A∪{s})−F (A) ≥ F (B∪{s})−F (B).
Hence, many observation selection problems can be reduced
to the problem of maximizing a submodular set function
subject to some constraints (e.g., the number of sensors
we can place). Constrained maximization of submodular
functions (and all objective functions discussed here) in
general is NP-hard. The following sections survey efficient
approximation algorithms with provable quality guarantees.

Optimizing Submodular Functions
Cardinality and Budget Constraints. We first consider
the problem where each location s ∈ V has a fixed positive
cost c(s), and the cost of an observation selection A ⊆ V ,
c(A) is defined as c(A) =

∑
s∈A c(s). The problem then is

to solve the following optimization problem:
A∗ = argmaxA F (A) subject to c(A) ≤ B, (1)

for some nonnegative budget B. The special case c(A) =
|A| is called the unit cost case.

A natural heuristic which has been frequently used for the
unit cost case is the greedy algorithm. This algorithm starts
with the empty setA = ∅, and iteratively, in round j, it finds
the location sj = argmaxs F (A ∪ {s}) − F (A), i.e., the
location which increases the objective the most, and adds
it to the current set A. The algorithm stops after B sensors
have been chosen. Surprisingly, this straight-forward heuris-
tic has strong theoretical guarantees:
Theorem 1 (Nemhauser, Wolsey, & Fisher (1978)) If F
is a submodular, nondecreasing set function and F (∅) = 0,
then the greedy algorithm is guaranteed to find a set A,
such that F (A) ≥ (1− 1/e) max|A|=B F (A).
Hence, the greedy solution achieves an objective value that
achieves at least a factor (1 − 1/e) (≈ 63%) of the optimal
score. In order to apply Theorem 1, we must verify that the
objective functions are indeed nondecreasing and F (∅) = 0.

1FMI is approximately nondecreasing (Guestrin, Krause, &
Singh 2005), which preserves the approximation guarantee up to
an arbitrarily small additive error.



A set function is called nondecreasing if for all A ⊆ B ⊆ V
it holds that F (A) ≤ F (B). All objective functions
discussed above are nondecreasing1, and satisfy F (∅) = 0.

The results extend to cases, where c(s) is arbitrary.
Here, a slight modification of the algorithm, combining
the greedy selection of the location with highest benefit-
cost ratio sj = argmaxs

F (A∪{s})−F (A)
c(s) , with a par-

tial enumeration scheme achieves the same constant fac-
tor (1 − 1/e) approximation guarantee (Sviridenko 2004;
Krause & Guestrin 2005a).
Path Constraints. In the robotic lake monitoring example
described above, the observation selection problem is even
more complex: Here, the locations s ∈ V are nodes in a
graph G = (V, E , d), with edge weights d : E → R encod-
ing distance. The goal is to find a collection of paths Pi in
this graph, one for each of the k robots, providing highest
information F (P1 ∪ · · · ∪ Pk), subject to a constraint on
the path length. Fig. 2(a) visualizes this setting. In this set-
ting, the simple greedy algorithm – selecting most informa-
tive observations, such that the robot always keeps enough
fuel to return to the goal – performs arbitrarily badly.

In (Singh et al. 2007), we show that the multiple robot
problem can be reduced to optimizing paths for a single
robot. We prove that if we have any single robot algorithm
achieving an approximation guarantee of η (i.e., the solu-
tions are at most a fraction (1/η) from optimal), a simple
sequential allocation strategy – iteratively optimizing one
path at a time – achieves (nearly) the same approximation
guarantee (η+1) for the case of multiple robots.

Chekuri & Pal (2005) proposed an algorithm for op-
timizing a single path P subject to a path-length con-
straint, achieving near-maximum submodular objective
value F (P). This algorithm achieves an approximation
guarantee of η = log |P∗|, where P∗ is the the optimal path.
Unfortunately, the algorithm is only pseudopolynomial; its
running time is O((|V|B)log |V|). In (Singh et al. 2007),
in addition to generalizing this algorithm to multiple robots
with guarantee η+1, we present a spatial decomposition ap-
proach and devise branch and bound schemes, which make
the algorithm of Chekuri & Pal practical. In our approach,
the lake is partitioned into a grid of cells. These cells are
considered nodes in a new graph with far fewer nodes, and
the algorithm of Chekuri et.al. is applied on this new graph.
Using an adapted version of our approach, computational
cost can be traded off with the achieved objective value.

Theorem 2 Let P∗ be the optimal solution for the single
robot problem with a budget of B and spatial decomposition
into M cells of size L. Then our algorithm finds a solution P̂
with information value of at least F (P̂) ≥ 1−1/e

1+log2 N F (P∗),
whose cost is no more thanO(LB), in timeO((MB)log M ).
Communication Constraints. Often, when placing sen-
sors, the sensors must be able to communicate with each
other. In the case of wireless sensor networks (WSN), for
example, the sensors need to communicate through lossy
links which deteriorate with distance, causing message loss
and increased power consumption. We can also model this
problem by considering the potential locations as nodes in a

graph G = (V, E , d). In (Krause et al. 2006), we assign the
expected number of retransmissions (i.e., the expected num-
ber of times a message has to be resent in order to warrant
successful transmission) between locations u and v as edge
cost d(u, v). The cost of a set of locations A ⊂ V is then the
minimum cost of connecting the locations A in the graph G.
More precisely, the cost c(A) of a placement is the sum of
the edge costs of the cheapest (Steiner) tree containing the
nodes in A. Under this new cost function, we consider the
maximization problem (1). Here, as in the path constraint
case, the greedy algorithm performs arbitrarily poorly. In
(Krause et al. 2006), we present a randomized approxima-
tion algorithm for approximately solving this problem. This
algorithm exploit an additional property of many observa-
tion selection objectives: Intuitively, sensors which are far
apart make roughly independent observations. Formally, re-
quire that there are constants r ≥ 0 and 0 < γ ≤ 1, such
that, if two sets of locations A and B are at least distance r
apart, it holds that F (A∪B) ≥ F (A)+γF (B). In this case,
we say that F is (r, γ)-local. This locality property is em-
pirically satisfied for mutual information FMI as we show in
(Krause et al. 2006). For geometric objectives, FG is (r, γ)
local for γ = 1 and r = 2maxs diam(Rs).
Theorem 3 Given a graph G = (V, E, d), and an (r, γ)-
local monotone submodular function F , we can find a tree
T with cost O(r log |V|) × c(T ∗), spanning a set A with
F (A) ≥ Ω(γ) × F (A∗). The algorithm is randomized and
runs in polynomial-time.
Theorem 3 shows that we can solve the problem (1) to pro-
vide a sensor placement for which the communication cost
is at most a small factor (at worst logarithmically) larger,
and for which the expected sensing quality is at most a
constant factor worse than the optimal solution. Fig. 2(b)
compares the performance of our approximation algorithm –
pSPIEL – with the (intractable) optimal algorithm (exhaus-
tive search), as well as two reasonable heuristics, when opti-
mizing a WSN to monitor temperature in a building. pSPIEL
performs much closer to the optimal solution.

We used pSPIEL to design a WSN for monitoring light
in the Intelligent Workplace at CMU. Fig. 2(d) compares a
manual deployment of 20 sensor motes with 19 motes de-
ployed by pSPIEL. Surprisingly, pSPIEL does not extend
the placement in the Western area of the building. During
data collection, the Western part was unused at night; hence
accurate indoor light prediction requires many sensors in the
Eastern part. Daylight intensity can be well predicted even
without sensors in the Western part. pSPIEL lead to a 30%
decrease in RMS error, and reduced the communication cost.

Extensions
Online guarantees for observation selection. The
(1 − 1/e) bound for the greedy algorithm is offline, as we
can state it before running the algorithm. However, we can
exploit submodularity even further to compute – often much
tighter – online bounds on the optimal solution. We look at
the current solution A, obtained, for example, by the greedy
or any other algorithm. For each observation s which has
not been considered yet, let δs = F (A∪{s})−F (A) be the
improvement in score we would get by adding observation
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Figure 2: (a) Informative paths planned for 3 boats on Lake Fulmor. (b) pSPIEL achieves near-optimal cost-benefit ratio. (c) Submodularity
gives tight online bounds for any selection. (d) WSN deployments in CMU’s Intelligent Workplace (M20: manual, pS19: using pSPIEL).

s. Assume we want to select k observations. Let s1, . . . , sk

be the k observations for which δs is largest. Then F (A∗) ≤
F (A) +

∑k
j=1 δsj . This bound allows us to get guarantees

about arbitrary observation selections A. Fig. 2(c) shows
offline and online bounds achieved for placing an increasing
number of sensors, when optimizing the time to detection
when securing water networks. The online bound is much
tighter, and closer to the score achieved by the greedy al-
gorithm. These bounds also allows us to use mixed-integer
programming (MIP) (Nemhauser & Wolsey 1981), which
can be used to solve for the optimal observation selection,
or to acquire even tighter bounds on the optimal solution by
computing the linear programming relaxation.

Fast implementation. Submodularity can also be used to
speed up the greedy algorithm. The key observation is that
the incremental benefits δs(A) = F (A ∪ {s}) − F (A) are
monotonically nonincreasing inA. By exploiting this obser-
vation, we can “lazily” recompute only the δs(A) only for
the “most promising” locations s (Robertazzi & Schwartz
1989). On the large BWSN network, this lazy implemen-
tation decreased the running time from 30 hours to 1 hour.

Robust Sensor Placement. Sensor nodes are susceptible
to failures, e.g., through loss of power. In (Krause et al.
2007), we describe an approach for optimizing placements
which are robust against failures. The key observation is that
submodular functions are closed under nonnegative linear
combinations. Hence, the expected placement score over
all possible failure scenarios is submodular. Similarly, this
observation can also be used to handle uncertainty in the
model (network links, parameter uncertainty, etc.).

Multicriterion Optimization. Often, we have multiple
objectives F1, . . . , Fm which we want to simultaneously op-
timize. In the water network example, we want to simulta-
neously maximize the likelihood of detecting an intrusion,
as well as minimize the expected population affected by
an intrusion. In general, two placements A and B might
be incomparable, i.e., neither A nor B is better in all m
criteria. Hence, the goal in multicriterion optimization is
to find Pareto-optimal placements A, i.e., those such that
there cannot exist a placement B for which Fi(B) ≥ Fi(A)
for 1 ≤ i ≤ m, and Fj(B) > Fj(A) for some j. A
common technique for finding such Pareto-optimal solu-
tions is scalarization, i.e., choosing a set of positive weights
λ1, . . . , λm > 0 and maximizing F (A) =

∑
i λiFi(A).

Since positive linear combinations of submodular functions
are still submodular, the resulting scalarized problem is a

submodular maximization problem, which can be addressed
using algorithms surveyed in this paper.

Implications for AI
Observation selection problems are ubiquitous in AI. We
now discuss several examples of fundamental AI problems
which could potentially be addressed using our algorithms.

Fault Diagnosis. A classical AI problem is probabilis-
tic fault diagnosis as considered, e.g., by Zheng, Rish, &
Beygelzimer (2005). Here, one wants to select a set of tests
to probe the system (e.g., a computer network), in order
to diagnose the state XU of unobservable system attributes
U (e.g., presence of a fault). As criterion of informative-
ness, Zheng, Rish, & Beygelzimer (2005) use the informa-
tion gain FIG(A) = I(XA;XU ) of the selected tests A ⊆ V
about the target attributes U . Krause & Guestrin (2005c)
show that for a wide class of probabilistic graphical mod-
els, this criterion FIG is submodular. Often, the cost of a
test depends on the tests already chosen (i.e., test A might
be cheaper if test B has been chosen). Algorithms as sur-
veyed in this paper can potentially be used to approximately
solve problems with such complex constraints. Related ap-
plications are test selection for expert systems, e.g., in the
medical domain, as well as optimizing test cases for soft-
ware testing coverage.

Robotic Exploration. An important problem in robotics
is Simultaneous Localization and Mapping (SLAM) (c.f.,
Sim & Roy (2005)). There, robots make observations in or-
der to simultaneously localize themselves, and detect land-
marks to create a map. Commonly, probabilistic models
such as Kalman Filters and extensions thereof are used to
track the uncertainty about the state variables XU (landmark
and robot locations). Using such a probabilistic model, ob-
servations A can be actively collected by controlling the
robot, with the goal of maximizing the information gain
I(XA;XU ) about the unobserved locations, as considered
by Sim & Roy (2005). Since the robot’s movement is con-
strained by obstacles, algorithms as those surveyed in this
paper can potentially be used to plan such informative paths.
Minimizing Human Attention. In this paper, we consid-
ered problems where each observation is expensive to ac-
quire. In many applications however, we have an abundance
of information at our disposal, and the scarce resource is
the attention of the human, to which this information should
be presented. One example is active learning (c.f., Hoi et
al. (2006)), where the goal is to learn a classifier, but the
training data is initially unlabeled. A human expert can be



requested to label a set of examples, but each label is expen-
sive. In some applications, complex constraints are present;
e.g., when labeling a stream of video images, labeling a se-
quence of consecutive images is cheaper than labeling in-
dividual images. Hoi et al. (2006) show that certain active
learning objectives are (approximately) submodular, hence
our algorithms could potentially be used in this context.

Another example is information presentation. Here, we
want to, e.g., choose a subset of email requests to display,
or automatically summarize a large document, etc. In these
problems, each selection of emails or sentences achieves a
certain utility to the user, which is to be maximized. We
also have complex constraints (e.g., reading long emails is
more “expensive”; when reading an email in a communica-
tion thread, the initiating email has to be presented as well,
etc.), which could potentially be addressed using our algo-
rithms. Here, the key open research challenge is to under-
stand, which classes of utility functions are submodular.

Influence Maximization. Kempe, Kleinberg, & Tar-
dos (2003) show that the problem of selecting a set of people
in a social network with maximum influence is a submodu-
lar optimization problem. Here, an initial set of people are,
e.g., targeted by a marketing campaign. The probability that
any person (initially untargeted) in the network becomes in-
fluenced, depends on how many of their neighbors are al-
ready influenced, as well as the strength of their interaction.
Rather than simply asking for the best set of k people to tar-
get in order to maximize the influence on the whole network,
one could use our algorithms to consider more complex con-
straints. For example, a marketing tour (e.g., an author sign-
ing books) could proceed through the country, and the cost
to influence the next person depends on the tour’s current lo-
cation, and the problem would be to find the optimum such
tour (or multiple tours at the same time).

Monotonic Constraint Satisfaction. A key problem in
AI is finding satisfying assignments to logical formulas,
or maximizing the number of satisfied clauses. Consider
the special case, where we are given a boolean formula
f(x1, . . . , xn) = C1 ∧ · · · ∧ Cm, where each Ci is a
clause with weight wi ≥ 0, and containing the disjunc-
tion of any set of positive literals (i.e., the formula does
not contain negations). For a subset A ⊆ {1, . . . , n} of
indices of variables xi set to true, the function F (A) =∑

i:Ci satisfied by some xi∈A wi is monotonic and submodular.
Hence, the problem of selecting a set A of k variables to
set to true maximizing the weight of satisfied clauses is a
submodular maximization problem. Our algorithms could
also allow us to find such assignments subject to more com-
plex constraints among the variables, e.g., where setting x1

to true reduces the cost of setting x4 to true.

Conclusions
We have reviewed recent work on optimizing observation se-
lections. Many natural observation selection objectives are
submodular. We demonstrated how submodularity can be
exploited to develop efficient approximation algorithms with
provable quality guarantees for observation selection. These
algorithms can handle a variety of complex combinatorial

constraints, e.g., requiring that the selected observations lie
on a collection of paths. Submodularity also provides a pos-
teriori bounds for any algorithm, and can be extended to,
e.g., handle failing sensors, and multi-criterion optimization.

We are convinced that even beyond the problems con-
sidered in this paper, submodular optimization can help to
tackle important AI search problems, and submodularity is
a concept which can be more widely considered in AI.
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