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Abstract

In many applications, one has to actively select among a set of expensive observations before making
an informed decision. Often, we want to select observations which perform well when evaluated with
an objective function chosen by an adversary. Examples include minimizing the maximum poste-
rior variance in Gaussian Process regression, robust experimental design, and sensor placement for
outbreak detection. In this paper, we present the Submodular Saturation algorithm, a simple and
efficient algorithm with strong theoretical approximation guarantees for the case where the possi-
ble objective functions exhibit submodularity, an intuitive diminishing returns property. Moreover,
we prove that better approximation algorithms do not exist unless NP-complete problems admit
efficient algorithms. We evaluate our algorithm on several real-world problems. For Gaussian Pro-
cess regression, our algorithm compares favorably with state-of-the-art heuristics described in the
geostatistics literature, while being simpler, faster and providing theoretical guarantees. For robust
experimental design, our algorithm performs favorably compared to SDP-based algorithms.
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1 Introduction

In tasks such as sensor placement for environmental temperature monitoring or experimental design,
one has to select among a large set of possible, but expensive, observations. Often, there are several
different objective functions which we want to simultaneously optimize. For example, in the environ-
mental monitoring problem, we want to minimize the marginal posterior variance of our temperature
estimate at all locations simultaneously. In experimental design, we often have uncertainty about the
model parameters, and we want our experiments to be informative no matter what the true param-
eters of the model are. These problems can be interpreted as a game: We select a set of observations
(sensor locations, experiments), and an adversary selects an objective function (location to evaluate
predictive variance, model parameters etc.) to test us on. Often, the individual objective functions
(e.g., the marginal variance at one location, or the information gain for a fixed set of parameters
(1; 2)) satisfy submodularity, an intuitive diminishing returns property: Adding a new observation
helps less if we have already made many observations, and more if we have made few observation
thus far. While NP-hard, the problem of selecting an optimal set of k observations maximizing a
single submodular objective can be approximately solved using a simple greedy forward-selection
algorithm, which is guaranteed to perform near-optimally (3). However, as we show, this simple
myopic algorithm performs arbitrarily badly in the case of an adversarially chosen objective.

In this paper, we address this problem. In particular: (1) We present Saturate, an efficient
algorithm for settings where an adversarially-chosen submodular objective function must be opti-
mized. Our algorithm guarantees solutions which are at least as informative as the optimal solution,
at only a slightly higher cost. (2) We prove that our approximation guarantee is best possible and
cannot be improved unless NP-complete problems admit efficient algorithms. (3) We extensively
evaluate our algorithm on several real-world tasks, including minimizing the maximum posterior
variance in Gaussian Process regression, finding experiment designs which are robust with respect
to parameter uncertainty, and sensor placement for outbreak detection.

2 The adversarial observation selection problem

Observation selection with a single submodular objective. Observation selection problems
can often be modeled using set functions: We have a finite set V of observations to choose from, and a
utility function F which assigns a real number F (A) to each A ⊆ V, quantifying its informativeness.
In many settings, such as the ones described above, the utility F exhibits the property of submodu-
larity : adding an observation helps more, the fewer observations made so far (2). Formally, F is sub-
modular (3) if, for all A ⊆ B ⊆ V and s ∈ V\B, it holds that F (A∪{s})−F (A) ≥ F (B∪{s})−F (B);
F is monotonic if for all A ⊆ B ⊆ V it holds that F (A) ≤ F (B), and F is normalized if F (∅) = 0.
Hence, many observation selection problems can be formalized as

max
A⊆V

F (A), subject to |A| ≤ k, (2.1)

where F is normalized, monotonic and submodular, and k is a bound on the number of observations
we can make. Since solving the problem (2.1) is generally NP-hard (4), in practice heuristics are
often used. One such heuristic is the greedy algorithm. This algorithm starts with the empty set,
and iteratively adds the element s∗ = argmaxs∈V\A F (A∪{s}), until k elements have been selected.
Perhaps surprisingly, a fundamental result by Nemhauser et. al. (3) states that for submodular func-
tions, the greedy algorithm achieves a constant factor approximation: The set AG obtained by the
greedy algorithm achieves at least a constant fraction (1−1/e) of the objective value obtained by the
optimal solution, i.e., F (AG) ≥ (1− 1/e) max|A|≤k F (A). Moreover, no polynomial time algorithm
can provide a better approximation guarantee unless P = NP (4).
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Observation selection with adversarial objectives. In many applications (such as those dis-
cussed below), one wants to simultaneously optimize multiple objectives. Here, we are given a
collection of monotonic submodular functions F1, . . . , Fm, and we want to solve

max
A⊆V

min
i

Fi(A), subject to |A| ≤ k. (2.2)

Problem (2.2) can be considered a game: First, we (the max-player) select a set of observations A,
and then our opponent (the min-player) selects a criterion Fi to test us on. Our goal is to select a
set A of observations which performs well against an opponent who chooses the worst possible Fi

knowing our choice A. Thereby, we try to find a pure equilibrium to a sequential game on a matrix,
with one row per A, and one column per Fi. Note, that even if the Fi are all submodular, G(A) =
mini Fi(A) is not submodular. In fact, we show below that, in this setting, the simple greedy algo-
rithm (which performs near-optimally in the single-criterion setting) can perform arbitrarily badly.

Examples of adversarial observation selection problems. We consider three instances of ad-
versarial selection problems. Sec. 4 provides more details and experimental results for these domains.
Several more examples are presented in the longer version of this paper (5).

Minimizing the maximum Kriging variance. Consider a Gaussian Process (GP) (6) XV defined
over a finite set of locations (indices) V. Hereby, XV is a set of random variables, one variable
Xs for each location s ∈ V. Given a set of locations A ⊆ V which we observe, we can compute
the predictive distribution P (XV\A | XA = xA), i.e., the distribution of the variables XV\A at the
unobserved locations V \ A, conditioned on the measurements at the selected locations, XA = xA.
Let σ2

s|A be the residual variance after making observations at A. Let ΣAA be the covariance matrix
of the measurements at the chosen locations A, and ΣsA be the vector of cross-covariances between
the measurements at s and A. Then, the variance σ2

s|A = σ2
s − ΣsAΣ−1

AAΣAs depends only on the
set A, and not on the observed values xA. Assume that the a priori variance σ2

s is constant for
all locations s (in Sec. 3, we show our approach generalizes to non-constant marginal variances).
We want to select locations A such that the maximum marginal variance is as small as possible.
Equivalently, we can define the variance reduction Fs(A) = σ2

s −σ2
s|A, and desire that the minimum

variance reduction over all locations s is as large as possible. Das and Kempe (1) show that, in
many practical cases, the variance reduction Fs is a monotonic submodular function.

Robust experimental designs. Another application is experimental design under nonlinear dy-
namics (7). The goal is to estimate a set of parameters θ of a nonlinear function y = f(x, θ) + w,
by providing a set of experimental stimuli x, and measuring the (noisy) response y. In many cases,
experimental design for linear models (where y = A(x)T θ + w) with Gaussian noise w can be effi-
ciently solved (8). In the nonlinear case, the common approach is to linearize f around an initial
parameter estimate θ0, i.e., y = f(x, θ0) + V (x)(θ − θ0) + w, where V (x) is the Jacobian of f with
respect to the parameters θ, evaluated at θ0. In (7), it was shown that the efficiency of the design
can be very sensitive with respect to the initial parameter estimates θ0. Consequently, they develop
an efficient semi-definite program (SDP) for E-optimal design (i.e., the goal is to minimize the max-
imum eigenvalue of the error covariance) which is robust against perturbations of the Jacobian V .
However, it might be more natural to directly consider robustness with respect to perturbation of the
initial parameter estimates θ0, around which the linearization is performed. We show how to find
(Bayesian A-optimal) designs which are robust against uncertainty in these parameter estimates.
In this setting, the objectives Fθ0(A) are the reductions of the trace of the parameter covariance,
Fθ0(A) = tr(Σ(θ0)

θ ) − tr(Σ(θ0)
θ|A ), where Σ(θ0) is the joint covariance of observations and parameters

after linearization around θ0; thus, Fθ0 is the sum of marginal parameter variance reductions, which
are individually monotonic and (often) submodular (1), and so Fθ0 is monotonic and submodular as
well. Hence, in order to find a robust design, we maximize the minimum variance reduction, where
the minimum is taken over (a discretization into a finite subset of) all initial parameter values θ0.
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Sensor placement for outbreak detection. Another class of examples are outbreak detection prob-
lems on graphs, such as contamination detection in water distribution networks (9). Here, we are
given a graph G = (V, E), and a phenomenon spreading dynamically over the graph. We define a set
of intrusion scenarios I; each scenario i ∈ I models an outbreak (e.g., spreading of contamination)
starting from a given node s ∈ V in the network. By placing sensors at a set of locations A ⊆ V, we
can detect such an outbreak, and incur a utility Fi(A) (e.g., reduction in detection time or popula-
tion affected). In (9), it was shown that these utilities Fi are monotonic and submodular for a large
class of utility functions. In the adversarial setting, the adversary observes our sensor placement A,
and then decides on an intrusion i for which our utility Fi(A) is as small as possible. Hence, our
goal is to find a placement A which performs well against such an adversarial opponent.

Hardness of the adversarial observation selection problem. Given the near-optimal per-
formance of the greedy algorithm for the single-objective problem, a natural question is if the
performance guarantee generalizes to the more complex adversarial setting. Unfortunately, this is
far from true. Consider the case with two submodular functions, F1 and F2, where the set of obser-
vations is V = {s1, s2, t1, t2}. We set F1(∅) = F2(∅) = 0, and define F1(A) = 1 if s1 ∈ A, otherwise
ε times the number of ti contained in A. Similarly, if s2 ∈ A, we set F2(A) = 1, otherwise ε times
the number of ti contained in A. Both F1 and F2 are submodular and monotonic. Optimizing for
a set of 2 elements, the greedy algorithm maximizing G(A) = min{F1(A), F2(A)} would choose the
set {t1, t2}, since such choice increases G by 2ε, whereas adding si would not increase the score.
However, the optimal solution with k = 2 is {s1, s2}, with a score of 1. Hence, as ε→ 0, the greedy
algorithm performs arbitrarily worse than the optimal solution. Our next hope would be to obtain a
different good approximation algorithm. However, we can show that most likely this is not possible:

Theorem 1. Unless P = NP, there cannot exist any polynomial time approximation algorithm for
Problem (2.2). More precisely: Let n be the size of the problem instance, and γ(·) > 0 be any positive
function of n. If there exists a polynomial-time algorithm which is guaranteed to find a set A′ of size
k such that mini Fi(A′) ≥ γ(n) max|A|≤k mini Fi(A), then P = NP.

Thus, unless P = NP, there cannot exist any algorithm which is guaranteed to provide, e.g., even
an exponentially small fraction (γ(n) = 2−n) of the optimal solution. All proofs can be found in (5).

3 The Submodular Saturation Algorithm

Since Theorem 1 rules out any approximation algorithm which respects the constraint k on the size
of the set A, our only hope for non-trivial guarantees requires us to relax this constraint. We now
present an algorithm that finds a set of observations which perform at least as well as the optimal
set, but at slightly increased cost; moreover, we show that no efficient algorithms can provide better
guarantees (under reasonable complexity-theoretic assumptions). For now we assume all Fi take
only integral values; this assumption is relaxed later. The key idea is to consider the following
alternative formulation:

max
c,A

c, subject to c ≤ Fi(A) for 1 ≤ i ≤ m and |A| ≤ αk. (3.1)

We want a set A of size at most αk, such that Fi(A) ≥ c for all i, and c is as large as possible. Here
α ≥ 1 is a parameter relaxing the constraint on |A|: if α = 1, we recover the original problem (2.2).
We solve program (3.1) as follows: For each value c, we find the cheapest set A with Fi(A) ≥ c for
all i. If this cheapest set has at most αk elements, then c is feasible. A binary search on c allows
us to find the optimal solution with the maximum feasible c. We first show how to approximately
solve Equation (3.1) for a fixed c. For c > 0 define F̂i,c(A) = min{Fi(A), c}, the original function Fi

truncated at score level c; these F̂i,c functions are also submodular (10). Let F c(A) = 1
m

∑
i F̂i,c(A)
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GPC (F c, c)
A ← ∅;
while F c(A) < c do

foreach s ∈ V \ A do δs ← F c(A ∪ {s})− F c(A);
A ← A∪ {argmaxs δs};

Algorithm 1: The greedy submodular partial cover (GPC) algorithm.

Saturate (F1, . . . , Fm, k, α)
cmin ← 0; cmax ← mini Fi(V); Abest ← ∅;
while (cmax − cmin) ≥ 1

m do
c← (cmin + cmax)/2; ∀A define F c(A)← 1

m

∑
i min{Fi(A), c}; A ← GPC(F c, c);

if |A| > αk then cmax ← c; else cmin ← c; Abest = A ;
Algorithm 2: The Submodular Saturation algorithm.

be their average value; submodular functions are closed under convex combinations, so F c is sub-
modular and monotonic. Furthermore, Fi(A) ≥ c for all 1 ≤ i ≤ m if and only if F c(A) = c. Hence,
in order to determine whether some c is feasible, we solve a submodular covering problem:

Ac = argminA⊆V |A|, such that F c(A) = c. (3.2)

Such problems are NP-hard in general (4), but in (11) it is shown that the greedy algorithm (c.f.,
Algorithm 1) achieves near-optimal performance on this problem. Using this result, we find:

Lemma 2. Given monotonic submodular functions F1, . . . , Fm and a (feasible) constant c, Algo-
rithm 1 (with input F c) finds a set AG such that Fi(AG) ≥ c for all i, and |AG| ≤ α|A∗|, where A∗
is the optimal solution, and α = 1 + log (maxs∈V

∑
i Fi(s)) ≥ 1 + log

(
m maxs∈V F c(s)

)
1.

We can compute this approximation guarantee α for any given instance of the adversarial ob-
servation selection problem. Hence, if for a given value of c the greedy algorithm returns a set of
size greater than αk, there cannot exist a solution A′ with |A′| ≤ k with Fi(A′) ≥ c for all i; thus,
the optimal solution to the adversarial observation selection problem must be less than c. We can
use this argument to conduct a binary search to find the optimal value of c. We call Algorithm 2,
which formalizes this procedure, the submodular saturation algorithm (Saturate), as the algorithm
considers the truncated objectives F̂i,c, and chooses sets which saturate all these objectives. The-
orem 3 (given below) states that Saturate is guaranteed to find a set which achieves adversarial
score mini Fi at least as high as the optimal solution, if we allow the set to be logarithmically larger
than the optimal solution.

Theorem 3. For any integer k, Saturate finds a solution AS such that mini Fi(AS) ≥ max|A|≤k mini Fi(A)
and |AS | ≤ αk, for α = 1 + log (maxs∈V

∑
i Fi(s)). The total number of submodular function evalu-

ations is O
(
|V|2m log(

∑
i Fi(V))

)
.

Note, that the algorithm still makes sense for any value of α. However, if α < 1+log (maxs∈V
∑

i Fi(s)),
the guarantee of Theorem 3 does not hold. If we had an exact algorithm for submodular coverage,
α = 1 would be the correct choice. Since the greedy algorithm solves submodular coverage very
effectively, in our experiments, we call Saturate with α = 1, which empirically performs very well.
The worst-case running time guarantee is quite pessimistic, and in practice the algorithm is much
faster: Using a priority queue and lazy evaluations, Algorithm 1 can be sped up drastically (c.f.,
(12) for details). Furthermore, in practical implementations, one would stop GPC once αk + 1
elements have been selected, which already proves that the optimal solution with k elements cannot

1This bound is only meaningful for integral Fi, otherwise it could be arbitrarily improved by scaling the Fi.
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achieve score c. Also, Algorithm 2 can be terminated once cmax − cmin is sufficiently small; in our
experiments, 10-15 iterations usually sufficed.

One might ask, whether the guarantee on the size of the set, α, can be improved. Unfortunately,
this is not likely, as the following Theorem shows:

Theorem 4. If there were a polynomial time algorithm which, for any integer k, is guaranteed
to find a solution AS such that mini Fi(AS) ≥ max|A|≤k mini Fi(A) and |AS | ≤ βk, where β ≤
(1− ε)(1 + log maxs∈V

∑
i Fi(s)) for some fixed ε > 0, then NP ⊆ DTIME(nlog log n).

Hereby, DTIME(nlog log n) is a class of deterministic, slightly superpolynomial (but sub-exponential)
algorithms (4); the inclusion NP ⊆ DTIME(nlog log n) is considered unlikely (4).

Extensions. We now show how the assumptions made in our presentation above can be relaxed.
Non-integral objectives. Most objective functions Fi in the observation selection setting are not

integral (e.g., marginal variances of GPs). If they take rational numbers, we can scale the objectives
by multiplying by their common denominator. If we allow small additive error, we can approximate
their values by their leading digits. An analysis similar to the one presented in (2) can be used to
bound the effect of this approximation on the theoretical guarantees obtained by the algorithm.

Non-constant thresholds. Consider the example of Minimax Kriging Designs for GP regression.
Here, the Fi(A) = σ2

i −σ2
i|A denote the variance reductions at location i. However, rather than guar-

anteeing that Fi(A) ≥ c for all i (which, in this example, means that the minimum variance reduction
is c), we want to guarantee that σ2

i|A ≤ c for all i. We can easily adapt our approach to handle this

case: Instead of defining F̂i,c(A) = min{Fi(A), c}, we define F̂i,c(A) = min{Fi(A), σ2
i − c}, and then

again perform binary search over c, but searching for the smallest c instead. The algorithm, using
objectives modified in this way, will bear the same approximation guarantees.

Non-uniform observation costs. We can extend Saturate to the setting where different obser-
vations have different costs. Suppose a cost function g : V → R+ assigns each element s ∈ V a
positive cost g(s); the cost of a set of observations is then g(A) =

∑
s∈A g(s). The problem is to find

A∗ = maxA⊂V mini Fi(A) subject to g(A) ≤ B, where B > 0 is a budget we can spend on making
observations. In this case, we use the rule δs ←

(
F c(A ∪ {s})− F c(A)

)
/g(s) in Algorithm 1. For

this modified algorithm, Theorem 3 still holds, with |A| replaced by g(A) and k replaced by B.

4 Experimental Results

Minimax Kriging. We use Saturate to select observations in a GP to minimize the maximum
posterior variance. We consider Precipitation data from the Pacific Northwest of the United States
(13). We discretize the space into 167 locations. In order to estimate variance reduction, we consider
the empirical covariance of 50 years of data, which we preprocessed as described in (2).

In the geostatistics literature, the predominant choice of optimization algorithms are carefully
tuned local search procedures, prominently simulated annealing (c.f., (14; 15)). We compare our
Saturate algorithm against a state-of-the-art implementation of such a simulated annealing (SA)
algorithm, first proposed by (14). We use an optimized implementation described recently by (15).
This algorithm has 7 parameters which need to be tuned, describing the annealing schedule, dis-
tribution of iterations among several inner loops, etc. We use the parameter settings as reported
by (15), and report the best result of the algorithm among 10 random trials. In order to compare
observation sets of the same size, we called Saturate with α = 1.

Fig. 1(a) compares simulated annealing, Saturate, and the greedy algorithm which greedily se-
lects elements which decrease the maximum variance the most. We also used Saturate to initialize
the simulated annealing algorithm (using only a single run of simulated annealing, as opposed to
10 random trials). Saturate obtains placements which are drastically better than the placements
obtained by the greedy algorithm. Furthermore, the performance is very close to the performance of
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Figure 1: (a) Saturate, greedy and SA on the precipitation data. Saturate performs comparably with the fine-
tuned SA algorithm, and outperforms it for larger placements. (b) Running times for the same experiment. (c)
Optimizing for the maximum variance (using Saturate) leads to low average variance, but optimizing for average
variance (using greedy) does not lead to low maximum variance.

the simulated annealing algorithm. When selecting 30 and more sensors, Saturate strictly outper-
forms the simulated annealing algorithm. Furthermore, as Fig. 1(b) shows, Saturate is significantly
faster than simulated annealing, by factors of 5-10 for larger problems. When using Saturate in or-
der to initialize the simulated annealing algorithm, the resulting performance almost always resulted
in the best solutions we were able to find, while still executing faster than simulated annealing with
10 random restarts as proposed by (15). These results indicate that Saturate compares favorably
to state-of-the-art local search heuristics, while being faster, requiring no parameters to tune, and
providing theoretical approximation guarantees.

Optimizing for the maximum variance could potentially be considered too pessimistic. Hence
we compared placements obtained by Saturate, minimizing the maximum marginal posterior vari-
ance, with placements obtained by the greedy algorithm, where we minimize the average marginal
variance. Note, that, whereas the reduction of the maximum variance is non-submodular, the aver-
age variance reduction is (often) submodular (1), and hence the greedy algorithm can be expected to
provide near-optimal placements. Fig. 1(c) presents the maximum and average marginal variances
for both algorithms. Our results show that if we optimize for the maximum variance we still achieve
comparable average variance. If we optimize for average variance however, the maximum posterior
variance remains much higher. In the longer version of this paper (5), we present results on two
more real data sets, which are qualitatively similar to those discussed here.

Robust Experimental Design. We consider the robust design of experiments for the Michaelis-
Menten mass-action kinetics model, as discussed in (7). The goal is least-square parameter estima-
tion for a function y = f(x, θ), where x is the chosen experimental stimulus (the initial substrate
concentration S0), and θ = (θ1, θ2) are two parameters as described in (7). The stimulus x is cho-
sen from a menu of six options, x ∈ {1/8, 1, 2, 4, 8, 16}, each of which can be repeatedly chosen.
The goal is to produce a fractional design w = (w1, . . . , w6), where each component wi measures
the relative frequency according to which the stimulus xi is chosen. Since f is nonlinear, f is
linearized around an initial parameter estimate θ0 = (θ01, θ02), and approximated by its Jacobian
Vθ0 . Classical experimental design considers the error covariance of the least squares estimate θ̂,
Cov(θ̂ | θ0,w) = σ2(V T

θ0
WVθ0)

−1, where W = diag(w), and aims to find designs w which minimize
this error covariance. E-optimality, the criterion adopted by (7), measures smallness in terms of the
maximum eigenvalue of the error covariance matrix. The optimal w can be found using Semidefinite
Programming (SDP) (8).

The estimate Cov(θ̂ | θ0,w) depends on the initial parameter estimate θ0, where linearization
is performed. However, since the goal is parameter estimation, a “certain circularity is involved”
(7). To avoid this problem, (7) find a design wρ(θ0) by solving a robust SDP which minimizes the
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error size, subject to a worst-case (adversarially-chosen) perturbation ∆ on the Jacobian Vθ0 ; the
robustness parameter ρ bounds the spectral norm of ∆. As evaluation criterion, (7) define a notion of
efficiency, which is the error size of the optimal design with correct initial parameter estimate, divided
by the error when using a robust design obtained at the wrong initial parameter estimates, i.e.,

efficiency ≡ λmax[Cov(θ̂ | θtrue,wopt(θtrue)))]/λmax[Cov(θ̂ | θtrue,wρ(θ0))],

where wopt(θ) is the E-optimal design for parameter θ. They show that for appropriately chosen
values of ρ, the robust design is more efficient than the optimal design, if the initial parameter θ0

does not equal the true parameter.
While their results are very promising, an arguably more natural approach than perturbing the

Jacobian would be to perturb the initial parameter estimate, around which linearization is performed.
E.g., if the function f describes a process, which behaves characteristically differently in different
“phases”, and the parameter θ controls which of the phases the process is in, then a robust design
should intuitively “hedge” the design against the behavior in each possible phase. In such a case, the
uniform distribution (which the robust SDP chooses for large ρ) would not be the most robust design.

If we discretize the space of possible parameter perturbations (within a reasonably chosen inter-
val), we can use Saturate to find robust experimental designs. While the classical E-optimality
is not submodular (2), Bayesian A-optimality is (often) submodular (1; 2). Here, the goal is to
minimize the trace instead of eigenvalue size as error metric. Furthermore, we equip the parameters
θ with an uninformative normal prior (which we chose as diag([202, 202])), and then minimize the
expected trace of the posterior error covariance, tr(Σθ|A). Hereby, A is a discrete design of 20 ex-
periments, where each option xi can be chosen repeatedly. In order to apply Saturate, for each θ,
we define Fθ(A) as the normalized variance reduction Fθ(A) = 1

Zθ
(σ2

θ − σ2
θ|A). The normalization

Zθ is chosen such that Fθ(A) = 1 if A = argmax|A′|=20 Fθ(A′), i.e., if A is chosen to maximize only
Fθ. Saturate is then used to maximize the worst-case normalized variance reduction.

We reproduced the experiment of (7), where the initial estimate of the second component θ02 of
θ0 was varied between 0 and 16, the “true” value being θ2 = 2. For each initial estimate of θ02, we
computed a robust design, using the SDP approach and using Saturate, and compared them using
the efficiency metric of (7). We first optimized designs which are robust against a small perturba-
tion of the initial parameter estimate. For the SDP, we chose a robustness parameter ρ = 10−3,
as reported in (7). For Saturate, we considered an interval around [θ 1

1+ε , θ(1 + ε)], discretized
in a 5 × 5 grid, with ε = .1. Fig. 2(a) shows three characteristically different regions, A, B, C,
separated by vertical lines. In region B which contains the true parameter setting, the E-optimal
design (which is optimal if the true parameter is known, i.e., θ02 = θ2) performs similar to both
robust methods. Hence, in region B (i.e., small deviation from the true parameter), robustness is not
really necessary. Outside of region B however, where the standard E-optimal design performs badly,
both robust designs do not perform well either. This is an intuitive result, as they were optimized
to be robust only to small parameter perturbations.

Consequently, we compared designs which are robust against a large parameter range. For SDP,
we chose ρ = 16.3, which is the maximum spectral variation of the Jacobian when we consider all
initial estimates from θ02 varying between 0 and 16. For Saturate, we optimized a single design
which achieves the maximum normalized variance reduction over all values of θ02 between 0 and 16.
Fig. 2(a) shows, that in this case, the design obtained by Saturate achieves an efficiency of 69%,
whereas the efficiency of the SDP design is only 52%. In the regions A and C, the Saturate design
strictly outperforms the other robust designs. This experiment indicates that designs which are
robust against a large range of initial parameter estimates, as provided by Saturate, can be more
efficient than designs which are robust against perturbations of the Jacobian (the SDP approach).

Outbreak Detection. Consider a city water distribution network, delivering water to households
via a system of pipes, pumps, and junctions. Accidental or malicious intrusions can cause contam-
inants to spread over the network, and we want to select a few locations (pipe junctions) to install
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Figure 2: (a) Efficiency of robust SDP of (7) and Saturate on a biological experimental design problem. For a large
range of initial parameter estimates, Saturate outperforms the SDP solutions. (b,c) Saturate, greedy and SA in
the water network setting, when optimizing worst-case detection time (Z1) and affected population (Z2). Saturate
performs comparably to SA for Z2 and strictly outperforms SA for Z1.

sensors, in order to detect these contaminations as quickly as possible. In August 2006, the Battle
of Water Sensor Networks (BWSN) (16) was organized as an international challenge to find the best
sensor placements for a real (but anonymized) metropolitan water distribution network, consisting
of 12,527 nodes. In this challenge, a set of intrusion scenarios is specified, and for each scenario
a realistic simulator provided by the EPA (17) is used to simulate the spread of the contaminant
for a 48 hour period. An intrusion is considered detected when one selected node shows positive
contaminant concentration. BWSN considered a variety of impact measures, including the time
to detection (called Z1), and the size of the affected population calculated using a realistic disease
model (Z2). The goal of BWSN was to minimize the expectation of the impact measures Z1 and Z2

given a uniform distribution over intrusion scenarios.
In this paper, we consider the adversarial setting, where an opponent chooses the contamination

scenario with knowledge of the sensor locations. The objective functions Z1 and Z2 are in fact sub-
modular for a fixed intrusion scenario (9), and so the adversarial problem of minimizing the impact of
the worst possible intrusion fits into our model. For these experiments, we consider scenarios which
affect at least 10% of the network, resulting in a total of 3424 scenarios. Figures 2(b) and 2(c) com-
pare the greedy algorithm, Saturate and the simulated annealing (SA) algorithm for the problem
of maximizing the worst-case detection time (Z1) and worst-case affected population (Z2).

Interestingly, the behavior is very different for the two objectives. For the affected population
(Z2), greedy performs reasonably, and SA sometimes even outperforms Saturate. For the detec-
tion time (Z1), however, the greedy algorithm did not improve the objective at all, and SA performs
poorly. The reason is that for Z2, the maximum achievable scores, Fi(V), vary drastically, since
some scenarios have much higher impact than others. Hence, there is a strong “gradient”, as the
adversarial objective changes quickly when the high impact scenarios are covered. This gradient
allows greedy and SA to work well. On the contrary, for Z1, the maximum achievable scores, Fi(V),
are constant, since all scenarios have the same simulation duration. Unless all scenarios are detected,
the worst-case detection time stays constant at the simulation length. Hence, many node exchange
proposals considered by SA, as well as the addition of a new sensor location by greedy, do not
change the adversarial objective, and the algorithms have no useful performance metric. Similarly
to the GP Kriging setting, our results show that optimizing the worst-case score leads to reasonable
performance in the average case score, but not necessarily vice versa.

5 Conclusions

In this paper, we considered the problem of selecting observations which are informative with respect
to an objective function chosen by an adversary. We demonstrated how this class of problems encom-
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passes the problem of finding designs which minimize the maximum posterior variance in Gaussian
Processes regression, robust experimental design, and detecting events spreading over graphs. In
each of these settings, the individual objectives are submodular and can be approximated well using,
e.g., the greedy algorithm; the adversarial objective, however, is not submodular. We proved that
there cannot exist any approximation algorithm for the adversarial problem if the constraint on the
observation set size must be exactly met, unless P = NP. Consequently, we presented an efficient
approximation algorithm, Saturate, which finds observation sets which are guaranteed to be least
as informative as the optimal solution, and only logarithmically more expensive. In a strong sense,
this guarantee is the best possible. We extensively evaluated our algorithm on several real-world
problems. For Gaussian Process regression, we showed that Saturate compares favorably to state-
of-the-art heuristics, while being simpler, faster, and providing theoretical guarantees. For robust
experimental design, Saturate performs favorably compared to SDP based approaches.
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Proofs

Proof of Theorem 1. Consider a hitting set instance with m subsets Si ⊆ V on a ground set V. Our
task is to select a set A ⊆ V with which intersects all sets Si, and such that |A| = k is as small
as possible. For each set Si, define a function Fi such that Fi(A) = 1 if A intersects Si, and 0
otherwise. It can be seen that Fi is clearly monotonic. Fi is also submodular, since for A ⊆ B ⊆ V
and x ∈ V \ B, if Fi(B) = 0 and Fi(B ∪ {x}) = 1, then it x ∈ Si, hence Fi(A ∪ {x}) = 1 and
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Fi(A) = 0. Now assume the optimal hitting set A∗ is of size k. Hence mini Fi(A∗) = 1. If there
were an algorithm for solving Problem (2.2) with approximation guarantee α(n) it would select a set
A′ of size |A′| ≤ k with mini Fi(A′) ≥ α(n) mini Fi(A∗) = α(n) > 0. But mini Fi(A′) > 0 implies
mini Fi(A′) = 1, hence A′ would be a hitting set. Hence, this approximation algorithm would be
able to decide, whether there exists a hitting set of size k, contradicting the NP-hardness of the
hitting set problem (4).

Proof of Theorem 3. Lemma 2 proves that during each of the iterations of the saturation algorithm
it holds that mini Fi(A∗) ≤ cmax, where A∗ is an optimal solution. Furthermore, it holds that
mini Fi(Abest) ≥ cmin, and Abest ≤ αk. Since the Fi are integral, if cmax − cmin < 1

m then it must
hold that mini Fi(Abest) ≥ mini Fi(A∗) as claimed by Theorem 3.

For the running time, since at the first iteration, cmax − cmin ≤ 1
m

∑
i Fi(V), and cmax − cmin is

halved during each iteration, it follows that after 1 + dlog2

∑
i Fi(V)e iterations, cmax − cmin < 1

m ,
at which point the algorithm terminates. During each iteration, Algorithm 1 is invoked once, which
requires O(|V|2m) function evaluations.

Proof of Theorem 4. We use the same hitting set construction as in Theorem 1. If there were an
algorithm for selecting a set A′ of size |A′| ≤ βk with mini Fi(A′) = 1, and β = o(α), then we
would have an approximation algorithm for hitting set with guarantee o(log m) which would imply
NP ⊆ DTIME(nlog log n) (4).

Additional results
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Figure 3: (a,d) compare Saturate, greedy and SA on the building temperature [T] and lake temperature [L] data.
Saturate performs comparably with the fine-tuned SA algorithm. Using Saturate to initialize SA results in the
best performance. (b-f) compare optimizing for the maximum (using Saturate) vs. average (using greedy) variance
on [T], [L] and the water network [W] data. Optimizing for the maximum variance leads to low average variance, but
not necessarily vice versa.
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