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Sensing by Sampling

e Long-established paradigm for digital data acquisition
— uniformly sample data at Nyquist rate (2x Fourier bandwidth)

d too

— sample —
Y P much
data!

Sensing by Sampling
e Long-established paradigm for digital data acquisition

- uniformly sample data at Nyquist rate (2x Fourier bandwidth)
- compress data
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Applications du jour:
Compressive sensing
Sparse Bayesian learning
Inpainting, denoising, ...
Data streaming
Information theory, theoretical computer science, ...
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Key question: Which dictionary D should we use?

Existing Solutions

e Dictionary design

— functional space assumptions <> Besov, Sobolev, Triebel...
ex. natural images <> smooth regions + edges

~ induced norms/designed bases & frames |
ex. wavelets, curvelets, etc. -

e Dictionary learning

- regularization D* =argminp 5, .. 2y 2 {||yz~ — D3 + )‘Hxiul,TV}

— clustering <> identify clustering of data (k-SVD)

— Bayesian <> non-parametric approaches
Indian buffet processes

Dictionary Selection Problem—DiSP - g

e Given

V={¢1,...0n}, ¢ € R

— sparsity and dictionary size k&n

— training data Y={y1,...,ym} € RdxXM

— candidate columns

e Choose D to maximize variance reduction:
- reconstruction accuracy L,(A) = min, ||ys — ®| 4|3
- var. reduct. for s-th data: F,(D) = L,(0) — minacp aj<k Ls(A)
— overall var. reduction: F(D)= 1Y F,(D)

Want to solve:

D* = arg max|p|<,, I'(D)

Combines Dictionary Design and Learning

Combinatorial Challenges in DiSP

1. Evaluation of Fy(D) = Ls(0) — MinAcp | A|<k L(A)
Ls(A) = ming ||ys — <I>|AZBH§ \

Sparse reconstruction problem!

2. Finding D* (NP-hard)
D* = argmax|p|<, £'(D) F(D) =13, F\(D)

Key observations:
- F(D) <>  approximately submodular

— submodularity <> efficient algorithms
with provable guarantees

(Approximate) Submodularity

e Set function F submodular, if DC D' CVandve V\D' (x

F(DU{v}) — F(D) > F(D' U {v}) — F(D')
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e Set function F approximately submodular, if

F(DU{v}) — F(D) > F(D'U{v}) — F(D') —¢

A Greedy Algorithm

Greedy algorithm: A* = argmax 4 F'(A)

- Start with A «— ()
— Fori=1:k do
= Choose y* =argmax F(AU{y}) — F(A)
Y

= Set A<—AU{y*}

How well does this greedy algorithm do?

Submodularity and the Greedy Algorithm

Theorem [Nemhauser et al, ‘78]
For the greedy solution Ag, it holds that

F(Ag) = (1 —1/¢) max F(A)

Krause et al '08: For approximately submodular F:

F(Ag) > (1 —1/e) |r£|aéz F(A) —ke

Key question:
Is the variance reduction F approximately submodular?

Answer: Not always, but in many practical settings...

A Sufficient Condition: Incoherence

Incoherence of columns ysll{v}f

p= maxy(; jy.i; | (i, §5)|

= MaXy(; j),ij |COS Vi j|

Define: w.., = (Ys, d0)>

Yeiipny A

F, (D)= max w ' '
s( ) |A§k,AgD; s,V (modular approximation)
v

AN

Proposition: [’ (D) is submodular! Furthermore,
[E5(D) — Fs(D)| < ku

Thus FS (D) is approximately submodular!

An Algorithm for DiSP: SDSgmp

Algorithm SDSgp

— Use Orthogonal Matching Pursuit to evaluate F for fixed D
— Use greedy algorithm to select columns of D

Theorem:
SDS,up Will produce a dictionary such that

F(Domp) > (1 —1/e) |111>1|a<X F(D)—k(bn+2—1/e)u

e Need n k to be much less than d

Improved Guarantees: SDSya

Algorithm SDS,,

— Optimize modular approximation [’ instead of F
— Use greedy algorithm to select columns of D

Theorem:
SDSy, Will produce a dictionary such that

F(Dpyra) > (1 —1/e) I%llix F(D)—(2—-1/e)ku

SDS,, is much faster, and has better guarantees

SDSyup empirically performs better in some settings
(in particular when p is large)

Experiment: Finding a Basis in a Haystack

e V union of 8 orthonormal, 64-dimensional bases

(Discrete Cosine Transform, Haar, Daubechies 4 & 8,
Coiflets 1, 3, 5 and Discrete Meyer)

e Pick dictionary D™ of size n=64 at random

e Generate 100 sparse (k=5) signals at random

D

e Use SDS to pick dictionary of increasing size

e Evaluate

— fraction of correctly recovered columns
— variance reduction

— running time

Reconstruction Performance
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SDSyump has perfect reconstruction accuracy for this data

SDSy, comparable the variance reduction performance

Fraction per basis

Algorithm Running Times
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SDS,, is a few orders of magnitude faster!

Battle of Bases on Natural Image Patches

Seek a dictionary among existing bases

discrete cosine transform (DCT), wavelets (Haar,
Daub4), Coiflets, noiselets, and Gabor (frame)
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SDSyup prefers DCT+Gabor
SDS,, chooses Gabor (predominantly)
Optimized dictionary improves compression

Experiment: Inpainting

e Dictionary selection from dimensionality-reduced
measurements

e Take Barbara with 50% pixels missing at random
e Partition the image into 8x8 patches

e Optimize dictionary based on observed pixel values

e “Inpaint” the missing pixels via sparse reconstruction
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Greedy (Mod.) Greedy (OMP) Nonlocal TV Bayesian
30.3195dB 31.9071dB 32.8615dB 35.1789dB

Comparable to state-of-the art nonlocal TV;
Orders of magnitude faster!

Conclusions

e Dictionary Selection <> new problem
dictionary learning
+
dictionary design

e Incoherence assumptions <> approximate
submodularity

e Two algorithms <> SDSy, and SDSyup
with guarantees

e Extensions to structured sparsity in the paper

e Novel connection between sparsity and submodularity



