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Abstract minimax solution to this game. However, in many cases, we

How should we manage a sensor network to opti-
mally guard security-critical infrastructure? How
should we coordinate search and rescue helicopters
to best locate survivors after a major disaster? In
both applications, we would like to control sensing
resources in uncertain, adversarial environments. In
this paper, we introduce RSENSE, an efficient algo-
rithm which guarantees near-optimal randomized
sensing strategies whenever the detection perfor-
mance satisfies submodularity, a natural diminishing
returns property, for any fixed adversarial scenario.
Our approach combines techniques from game the-
ory with submodular optimization. The RSENSE
algorithm applies to settings where the goal is to
manage a deployed sensor network or to coordinate
mobile sensing resources (such as unmanned aerial
vehicles). We evaluate our algorithms on two real—
world sensing problems.

1 Introduction

We consider the problem of optimizing sensing strategies in
adversarial environments. Consider, for example, the prob-
lem of controlling Pan-Tilt-Zoom (PTZ) cameras in order to
maximize the chance of detecting intrusions. Or consider the
problem of planning paths for a team of search helicopters
to locate survivors after a major disaster. In both problems,
we have to choose among possible observations (where to
point the cameras, where to send the helicopters), in order to
maximize worst-case performance (protect against adversarial
intrusions, or ensure uniformly high detection probability).
These problems can be modeled as a game, where one player
wishes to choose a set of observations, and the other player
chooses a scenario (an intrusion or survivor location). Due to
the combinatorial number of observation sets, however, the
payoff matrix of this game is exponentially large. Fortunately,
in many applications, for a fixed scenario the utility of the
sensing player satisfies submodularity (c.f., Fujishige, 2005), a
natural diminishing returns property, which states that adding
an observation helps more if we have made few observations,
and less if we already have made many observations. If we
have to commit to a fixed set of observations (e.g., deploy
a set of static sensors), the goal then is to compute a (pure)

can avoid committing in advance and can play randomized
strategies (mixed strategies in game—theory parlance), which
are probability distributions over observation sets in this case.
For example, we may wish to randomize the parameters of the
PTZ cameras, or we may wish to randomize the surveillance
paths taken by the mobile sensors. In such cases, the goal is
to compute a minimax randomized strategy, which maximizes
the expected performance against the worst-case scenario for it.
In principle, such randomized strategies can provide arbitrarily
better expected performance than deterministic strategies.

In this paper, we develop an efficient algorithm, RSENSE,
for computing such randomized strategies in matrix games,
whenever the performance measure of the sensing player is
submodular. More generally, we show that whenever one of
the players uses an approximation algorithm (such as an ex-
isting algorithm for constrained submodular maximization) to
compute best responses in the game, this algorithm can be used
to efficiently compute randomized strategies while preserving
the approximation guarantee of the player’s algorithm. The
algorithm applies under a variety of natural objective functions
(such as variance reduction, or probability of detection), and
constraints (e.g., selecting the best k sensor locations; control-
ling PTZ cameras; or planning paths for mobile sensors with
constraints on the path lengths). In many cases, optimizing
for the worst-case may be too pessimistic. We thus also con-
sider the problem of trading off worst-case and average-case
(with respect to some known prior distribution) performance,
and develop an efficient algorithm, TRSENSE, for optimizing
this tradeoff. We empirically evaluate our algorithms on two
real-world sensing tasks: The problem of choosing sensing
locations to minimize worst-case prediction error in environ-
mental monitoring, and the problem of coordinating search
and rescue helicopters to maximize the worst-case probability
of detecting survivors after a major disaster. Our results indi-
cate, among other things, that randomized sensing strategies
can dramatically outperform deterministic strategies obtained
using existing techniques, and that effective tradeoffs between
worst-case and average-case performance can be achieved.

2 The Randomized Sensing Problem

Suppose we would like to monitor an environment, discretized
into a finite set V' of locations. We can obtain observations
from a subset A C V of those locations in order to detect



adversarial incursions. Suppose the adversary has a finite set
T of strategies for possible incursions. With any given strat-
egy ¢ € Z, we associate a sensing quality objective function
F; : 2Y — [0,1] that models whether, and how well, obser-
vations at locations .4 would allow us to detect incursion .
For example, an incursion ¢ could be associated with a set of
locations B; that the adversary must traverse, and the sensing
quality could be one if the adversary traverses a location with
a sensor and zero otherwise, i.e., F;(A) = min {1, |B; N Al}.
We give other concrete examples of sensing quality functions
in Section 4.1. However, note that F; encodes everything
we need to know about ¢, and allows us to abstract away the
application—specific details of what constitutes an incursion
under certain assumptions. Specifically, we assume, w.l.o.g.,
that F;(@)) = 0 for all 4, i.e., zero sensors provide no utility, and
also that F; is scaled so that F;(A) < 1 for all A. Furthermore,
we assume that each F; is monotonic, i.e., F;(A) < F;(B)
whenever A C . Thus, adding sensors can only help. Many
natural sensing quality functions, such as those considered
in Section 4.1, satisfy an additional, natural property called
submodularity: Forany A C B C Vand s € V\B itholds that
Fi(AU{s})— F;(A) > F;(BU{s}) — F;(B). Thus adding a
new observation helps more if we have made few observations
so far, and less if we have already made many observations.

First consider the setting where there is only one possible
incursion strategy ¢ € Z. In this case, we wish to find, for
example, the set A* of k locations to observe that maximizes
the sensing quality F;(A), i.e., A" = argmax 4 <, Fi(A).
This optimization problem is NP-hard for most interesting
classes of objective functions. However, a seminal result of
Nembhauser et al. [1978] proves that a simple greedy algorithm,
that starts with the empty set Ay = () and iteratively adds the
element maximizing the improvement in value,

Api1 = Ay U {argmax F; (A, U {s})},
seEV\ Ay

achieves a near-optimal solution: It holds that F}(Ag) >
(1 —1/e) max4j<i Fi(A). Moreover, under reasonable com-
plexity theoretic assumptions, no polynomial time algorithm
can provide a (1 — 1/e + €) guarantee for any ¢ > 0 [Feige,
1998]. This insight has been exploited in sensor placement
and information gathering [Krause and Guestrin, 2007].
Now suppose there is more than one possible incursion
strategy (|Z| > 1). If we have to commit to a fixed set of loca-
tions (e.g., by deploying security cameras), then the adversary
gets to see these locations and may pick the worst possible
intrusion for them. Thus, our goal would be to pick the set

A" = argmaxmin F;(A). (1)
|A|<k 1€T

Krause et al. [2008] show that this problem is extremely in-
tractable: Under reasonable complexity assumptions, it is not
possible to achieve any approximation to this problem, i.e., for
any function g(n) that can depend on the size n of the problem
instance, it is not possible to efficiently obtain a solution A’
such that min; F;(A") > g(n) max) 4<j min; F;(A).

Now instead of deploying a fixed set of sensors in advance,
suppose that we can randomize: For example, we have de-
ployed a network of PTZ cameras, and at every time-step we

wish to randomly point each camera in a particular direction.
Or we have mobile sensors (e.g., search helicopters), and as-
sign random locations / routes to these sensors. We presume
the adversary will eventually learn this distribution (e.g., by
watching how our sensing assets are used over time). In this
case, the goal becomes to obtain a distribution P over sets
such that even an intrusion optimized against this distribution
does as little damage as possible, i.e., we are interested in

P = i P(AF;(A 2
ar}gj,;g;)axrlxél%lg (A)F;(A) )

where P is the set of all distributions whose support contains
only feasible observation sets. Note we could allow the ad-
versary to randomize over incursions, however because the
adversary gets to select ¢ after we select P, the adversary
derives no benefit from randomization. In contrast, with ran-
domization we can do arbitrarily better than deploying a fixed
set of sensors: Suppose there are two incursions Z = {1, 2},
and two locations, V = {1,2}. The sensing quality func-
tions are such that F;(A) = 1iff i € A and 0 otherwise.
Suppose we are allowed to pick one observation. In this
case, it can be seen that max| 4<; min; F;(A) = 0, whereas
maxpep mingez Y 4 P(A)F;(A) = 1.

However, solving Problem (2) is a formidable task: The
optimal distribution might have exponentially large support.
Perhaps surprisingly, in this paper we show how we can, for
any ¢ > 0, efficiently find a distribution P’ such that

V(P) =z (1= 1/e)max V(P) - ¢,

where V(P) = min; ) , P(A)F;i(A) is the sensing quality
of distribution P in the worst case. Note that, in contrast to
Problem (1) which is extremely inapproximable, for Prob-
lem (2) we can give essentially the same approximation guar-
antees as for the classical, non-adversarial case, up to some
absolute error ¢ that can be made arbitrarily small.

In fact, this result can be generalized. In many applications,
we have more complex constraints than simply choosing the
best k sensor locations. For example, we may have deployed
a network of PTZ cameras, and must choose one pan, tilt and
zoom setting for each camera. Or we may have mobile sensors
(e.g., security personnel) and must choose patrols (i.e., paths
to move along while observing) of bounded length for each
one. More generally, we assume that we would like to pick
a distribution P over sets A such that each set A satisfies
some constraints, i.e., A € C for some constraint set C C 2V.
We call the following problem the randomized submodular
sensing problem:

P = V(P). 3)

arg max
P:P(A)>0=AeC

In the following, we will show that we can (approximately)
solve Problem (3) whenever we can (approximately) solve
the problem max 4¢¢ F'(A) for any monotonic submodular
function F'. For both applications mentioned above (control
of PTZ cameras and planning paths for mobile sensors), ap-
proximation algorithms for the problem max 4¢¢ F;(A) are
known [Vondrék, 08; Singh et al., 2009]. We provide detailed
examples of randomized sensing problems in Section 4.1.



3 The RSENSE Algorithm

We now describe our approach towards Problem (3). The
key idea is to consider P as a mixed strategy (i.e., a distribu-
tion over pure strategies) in an (exponentially-large) zero-sum
matrix game, where the rows enumerate all feasible sensor
placements A, the columns enumerate all intrusion strategies
i, and the matrix entry M(.A,¢) has value F;(A) € [0,1].
For distributions P over placements and () over incursions,
we write M(P,Q) Y2 P(A)Q>)F;(A), and set
V(P) = ming M(P, Q) as the performance of P against
an adversarially chosen randomized' incursion.

In a seminal result, Freund and Schapire [1999] show that a
simple multiplicative update algorithm can be used to approxi-
mate optimal mixed strategies in an (arbitrary) matrix game,
as long as 1) one of the players has a small (polynomial size)
number of choices, and 2) the other player can compute best
responses, i.e., can compute max p M (P, Q) for any distribu-
tion Q. In the following, we review this algorithm, adapted to
the context (and using the notation) of our application.

This iterative algorithm generates a sequence of distribu-
tions (); and best responses P;. Here, ()1 is the uniform
distribution. In each iteration ¢, P; is the best response to @),

P, = argmax M(P, Q:),
P

and given P;, Q441 is computed by

ﬂM(Pt )

Qe4+1(1) = Q4 (4) 7

where Z; = 3=, Q,(i) M+ is a normalization factor, 3 =
1/(1++/21In|Z|/T), and T is a specified bound on the number
of iterations. Freund and Schapire [1999] show? that the
average best response, P = Zthl P,, satisfies

V(P) > mng(P) —Ar 1,

where Ar 7 =4/ 2In II‘ + o II\ (’)(\/ hlm) Thus, T =

@(loi—fl) iterations suffice to ensure A7z = O(g).

It takes O(]Z]) evaluations of M to obtain Q11 from @
and P;. Let us assume that the number of intrusion scenarios
|Z| is polynomially bounded and M can be efficiently evalu-
ated. Then in order to apply the above algorithm to our setting,
the key problem is computing the best response P;. It can be
seen that we can restrict ourselves to considering only deter-
ministic strategies, i.e., those that put all probability mass on a
single set of sensor locations A; (formally P; = J 4,, where
0 4 is the Dirac delta function which equals one if its argument
is A and zero otherwise). Thus, to compute the best response,
we need to solve the problem

A; = arg max Z Q:(i)F;(A). 4)

AeC

Since non-negative linear combinations of monotonic submod-
ular functions remain monotonic submodular, computing the

"Note this minimum can be achieved by some pure strategy i, so
that V(P) = min;ez 1\/I(P7 ’L)
?See their proof of von Neumann’s minimax theorem.

best response (4) requires solving a constrained submodular
maximization problem. As discussed in Section 2, for most
interesting objective functions this is an NP-hard problem,
but fortunately there exist approximation algorithms for a
variety of constraints. Now the key question is: Suppose we
use an a-approximation algorithm for solving Problem (4),
and thus each P; is an «-best response to distribution Q.
What does this imply for the randomized submodular sensing
problem (3)? It may well be possible that simply using a-best
responses can lead to arbitrarily poor performance. In fact,
exactly this is known to be the case when naively using an
a-approximate algorithm in online optimization [Kalai and
Vempala, 2005]. Fortunately, and perhaps surprisingly given
the similarity of online optimization and computing equilibria
in matrix games, this is not the case. We call the resulting
algorithm RSENSE, and show:

Theorem 1. Suppose we have an algorithm that, given mono-
tone submodular function F : 2¥ — [0, 1] and constraint sys-
tem C, will find A" € C such that F(A') > amax4¢cc F(A)

for some o > 0. Fixe > O and let T = 4[1115#] Then
RSENSE, run for T iterations with this subroutine, produces
a sequence Ay, ..., Ar such that the average distribution

P=1 Z;‘ll 0.4, satisfies
V(P) >«

> V(P) -

max
P:P(A)>0=>AeC
The proof of this theorem will follow from a more general
result proved in the next section. In the case of both RSENSE
and the TRSENSE algorithm of §3.1, the running time is

dominated by the time to make O( 1n6\21| ) calls to the a-best
response subroutine, plus the time to evaluate the payoff

matrix M a total of O(|Z|In |Z|/£?) times.

3.1 Trading Off Worst-Case and Average-Case
Performance

In many cases, assuming adversarial incursions may be overly
pessimistic. For example, when monitoring a public property
with security cameras, we may simultaneously want to protect
the property against incursions, while also ensuring that we
achieve good coverage “on average”. In such settings, we
may both care about the sensing quality of distribution P in
the worst case (i.e., V(P)), and about M (P, R), for some
specified distribution R, e.g., the uniform distribution, or a
distribution that puts more weight on certain incursions. Thus,
a natural problem is to trade off these two quantities, which
we can do using the scalarized objective

V(P) := AV(P) + (1 — AM(P, R), (5)

using tradeoff parameter A € [0, 1]. Setting A = 1 means we
only care about worst-case and A = 0 means we only care
about average-case performance. Note that since the function
F(A) = M(A, R) is submodular, the setting A = 0 is just the
classical problem of constrained submodular maximization.

A natural approach towards extending our RSENSE al-
gorithm for this tradeoff is to optimize the best response
not with respect to the distribution @), but with respect to
AQ: + (1 — MR, i.e., setting

P, = argmax M(P, \Q; + (1 —
P

AR).



We call this generalization the TRSENSE algorithm, and prove
the following result:

Theorem 2. Suppose we are given an arbitrary distribution
R, X\ € [0,1], and an algorithm meeting the conditions of
Theorem 1 (i.e., one which finds a-best responses). Fix e > 0

and letT = 4(11#] Then TRSENSE, run for T iterations
with this subroutine, produces a sequence Ay, ..., Ar such

that the average distribution P = % Z?:l 0.4, satisfies
V)\ (P) —E&.

VA(P) Z «

max
P:P(A)>0=AeC

Proof. Let v = maxp ming M(P,A\Q + (1 — A\)R). Then

1
v o zt:mgxM(P, AQ: + (1 = MR) (6)
1 1
< zt: “M(P,AQu+ (1= M)R) M
1 1
< (OE ménXt:M(Pt, AQ + (1— )\)R)>+QAT7I ®)
1 _ 1
=2 mén M(P,AQ+ (1—-MNR) + EAT,I )
1. - 1
= —Vi\(P)+ ~Arz. (10)
o [0

Hereby, (6) holds since Q; is a feasible (but not necessarily op-
timal) distribution; (7) holds since we use an a-approximation
algorithm to compute P;; (8) holds since it is (up to scaling by
1/a) a restatement of the fact that the multiplicative weight
algorithm (as played by our simulation of the adversary) has
regret bound Ar 7 [Freund and Schapire, 1999]; (9) holds due
to the definition of P and M; and (10) holds by the definition
of V. O

4 Experimental Results

We perform experiments on two case studies. The questions
we wish to answer are:

1. What is the potential benefit of selecting a distribution
over observation sets rather than a fixed set?

2. What kind of distributions P(.A) does RSENSE choose?

3. How efficient is the RSENSE algorithm?

4. How does RSENSE compare to prior work?

5. How do average and worst-case performance trade-off?

4.1 Data Sets and Experimental Setup

Environmental Monitoring. We conduct out first set of ex-
periments on an environmental monitoring task. The goal
is to use robotic sensors to monitor spatial phenomena. In
particular, we consider the problem of monitoring acidity of
a lake near the University of California, Merced, using the
NIMS-RD robot developed by Harmon et al. [2006]. This
robot is suspended and can move along a horizontal transect
of the lake, as well as lower and raise its sensing unit to ob-
tain pH measurements at particular locations and depths. We
discretize a horizontal transect of the lake into a finite set of
86 locations V. With each location s, we associate a random
variable X5, and model the joint probability distribution over
the random vector Xy, using a nonstationary Gaussian process

(GP) model of the phenomenon, estimated from data provided
by Krause et al. [2008]. Given measurements X4 = X4
at a subset A C V of locations, this model allows us to
quantify the predictive variance Var(X; | X4 = x4) for
the pH value & at any given location 7. Our goal is to choose
a set A* of k measurement locations in order to minimize
the worst-case prediction error max; { Var(X; | X4)}, where
Var(X; | Xa) = Ex  [Var(X; | X4 = x4)] is the expected
squared prediction error. In our model with constant prior
variance Var(X;) = const, this problem is equivalent to max-
imizing the worst-case variance reduction min; F;(A), where

F1<A) = Var(/'\,’i) — Var(XZ- | XA).

F; is monotonic, and F;()) = 0. Furthermore, as shown by
Das and Kempe [2008], under some conditions on the GP
distribution, each function F; is submodular.

Urban Search and Rescue. Our second set of experiments
is on a problem of managing static and mobile sensors for
the purposes of urban search and rescue (S&R). We take a
map of the city of Southampton, as provided as part of the
Robocup Rescue Challenge?, and illustrated in Figure 3(a).
We discretize the environment into 500 possible measurement
locations V, and 6500 points Z that we would like to monitor.
For each possible measurement location s € V, we use a line-
of-sight algorithm to determine the locations R that can be
seen from s. Suppose we choose a set .4 of observations. We
assume that sensors are noisy, thus for a sensor s and location
1 € R, with probability p, s fails to observe i. We choose
p = 0.2. Suppose each sensor failure occurs independently.
Then the chance of detecting a survivor at location ¢ is

Fj(A) = 1 — pl{seAicR}

It can be shown that each F;;(A) is monotonic and submodular.
More complex models can be handled as well. E.g., the failure
probability may depend on the distance of 7 and s, and the
sensor failures may be correlated in a complex manner. While
these extensions can be handled by our framework, we do not
discuss them further due to space limitations.

4.2 Results

Random vs. Deterministic Strategies. We first wish to un-
derstand, how much better, in expectation, we can perform
if we are allowed to choose a distribution P(.A) over mea-
surement sets A instead of committing to a fixed set .A. The
problem of choosing a fixed set A was studied by Krause et
al. [2008], who developed the SATURATE algorithm, a bi-
criterion algorithm (with optimal approximation guarantees
under reasonable complexity assumptions) for Problem (1). In
this paper, we compare our RSENSE algorithm (which is al-
lowed to pick distributions P(.A4)) with this existing approach.
Figure 1(a) compares the (expected) worst-case remaining
variance achieved by both algorithms on the environmental
monitoring problem. It can be seen that RSENSE can ex-
ploit the power of randomization to achieve less predictive
variance than SATURATE, which produces a fixed set (i.e., a

Shttp://www.robocuprescue.org/
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deterministic strategy). For example, with 10 observations,
RSENSE achieves approximately the same variance reduction
as SATURATE with 20 observations.

Figure 1(e) presents the worst-case detection probability for
the search and rescue task. Interestingly, unless more than 120
sensors are deployed, the worst-case score of the determin-
istic solution stays zero, as there remain some locations that
fewer sensors must leave unobserved. On the other hand, the
performance of the RSENSE solution increases approximately
linearly, until a near-maximal performance is obtained already
using only 100 measurements.

Illustration of Distributions. Figure 2(a) visualizes the
worst-case distribution () over functions F; (top), and the
final distribution over sensing locations obtained by RSENSE
(bottom), for the environmental monitoring problem. For the
sensing plot, we visualize the marginal probability of whether
an observation is made at each location and depth. Notice
the distributions are non-trivial due to the non-stationarity
of the GP distribution, i.e., the fact that the decay in spatial
correlation is not translation invariant: The monitored
phenomenon is “rougher” (less spatially correlated) for larger
coordinates. Thus, more observations are needed to achieve
low predictive variance.

Figure 2(b) presents the distributions for the S&R task. No-
tice that the worst-case distribution () over objectives F; (black
dots) puts most probability mass close to the boundaries of
buildings, which are difficult to observe due to the line-of-
sight constraints. Little probability mass (lighter gray) is put
in the open spaces that are easy to observe. Notice that the
sensor distribution (blue circles) puts more probability mass
(larger radius) away from boundaries, preferring instead loca-

tions where each measurement can observe multiple boundary
points. Also note that both distributions are rather sparse.

Convergence. Figure 1(b) illustrates the convergence prop-
erties of RSENSE for environmental monitoring. For a fixed
number of 10 sensors, we plot the (empirical) gap between an
(approximate due to NP-hardness) upper bound and a lower
bound on the optimal sensing quality. Specifically, the gap

is computed as M(P’, ) — V(P) where P’ is an a-best re-
sponse to the “average incursion distribution” ) = % > Q1

and P = % >, P.. We also plot the theoretical bound

e(T) = 24/In|Z|/T from Theorem 1. Notice that the em-
pirical gap qualitatively behaves as predicted by the theory,
even though the bound is loose by some constant factor. Fig-
ure 1(f) shows the same experiment for the S&R problem,
which exhibits qualitatively similar behavior.

Running Time Comparison with Prior Art. Next, we
compare RSENSE with a linear programming (LP) based
double-oracle algorithm that has been proposed by Halvorson
et al. [2009] for a similar problem (as reviewed in more detail
in Section 5). Their algorithm also relies on a best-response
oracle, and we use the same as for RSENSE. For a fixed error
tolerance of at most 1% of variance, Figure 1(c) compares
how the running time of both algorithms depends on the num-
ber of observations for environmental monitoring. Notice
that RSENSE has a very weak dependence on this number,
in contrast to the LP-based algorithm, which has orders of
magnitude larger running time for larger numbers of sensors
(and could require exponentially many iterations in the worst
case). Figure 1(g) shows the same experiment on the S&R
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problem. Note that while for small numbers of sensors the LP
solution is faster, for larger numbers of sensors, the LP run-
ning time is orders of magnitudes larger than that of RSENSE.
For example, when selecting 64 observations, RSENSE takes
approximately 8 minutes, compared to approximately 8 hours
for the LP solution.

Trading Off Average-Case and Worst-Case Performance.
We also use our TRSENSE algorithm to optimize the tradeoff
between average and worst case. Hereby, we use the uniform
distribution over the open space to evaluate the average case
performance. We vary the tradeoff parameter A between 0 and
1 and plot the worst-case and average-case scores obtained
for all the solutions. Figure 1(d) presents the results for
environmental monitoring (using 10 observations), Figure 1(h)
presents the results for S&R. Both tradeoff curves exhibit
a strong knee; there are solutions which attain near-optimal
scores simultaneously with respect to the average-case and
worst-case scores.

Informative Path Planning. For the S&R problem, we also
consider the problem of planning paths for mobile sensors,
rather than choosing fixed sets of sensor locations. In this case,
the feasible sets C are all paths of a given maximum length.
Maximizing submodular functions subject to such constraints
is a much more difficult optimization problem than choosing
k arbitrary locations, and the greedy algorithm can potentially
perform arbitrarily badly [Singh ez al., 2009]. Instead, we use
an approximation algorithm developed by Singh et al. [2009]
to compute best responses. Figure 3(b) illustrates samples
from the distribution over paths chosen by RSENSE. Note how
the paths route around the high ground to maximize visibility,
and while each path covers only a small area, together they
almost cover everything. Figure 3(c) presents the expected
worst-case detection probability as a function of the maximum
allowed path length.

5 Related Work

The problem of computing randomized sensing strategies in
adversarial environments has been studied by several groups.



Kiekintveld et al. [2009] develop efficient algorithms for
finding Stackelberg equilibria (i.e., distributions over sensing
strategies which are worst-case optimal) for large security
games. In contrast to this paper, these approaches do not
assume that the payoff matrices are zero-sum. However, the
existing approaches cannot handle general submodular objec-
tive functions, which RSENSE can. For example, they cannot
model how multiple sensors can help to observe the same
intrusion. Perhaps closest in spirit is an approach by Halvor-
son et al. [2009] for computing randomized sensing strategies
in multi-step hider and seeker games. Their approach does
handle special cases of submodular objectives. They further
consider a combinatorial number of adversarial actions (paths
taken by an invader). They develop a double-oracle algorithm,
which iteratively increases the strategy sets of hider and
seeker by computing best responses (one of them greedy), and
solving a linear program at every iteration in order to compute
optimal strategies for the considered sets of actions. The algo-
rithm terminates when the best responses are contained in the
actions already considered, in which case an optimal solution
has been found. However, the worst-case number of iterations
required by this algorithm may be exponential. The RSENSE
algorithm, in contrast, is guaranteed to obtain near-optimal so-
lutions in a polynomial number of iterations. Furthermore, in
our experiments on a problem that both algorithms can handle,
we show that RSENSE outperforms the LP-based algorithm
in terms of running time for large numbers of sensors.

Constrained maximization of submodular functions has
been exploited for sensor placement and information gathering
tasks (c.f., Krause and Guestrin, 2007). However, in contrast
to this work, existing approaches do not address worst-case
performance. An exception is the SATURATE algorithm
[Krause et al., 2008], which however cannot be used to
generate randomized strategies as considered in this paper.
Further note that RSENSE benefits from existing work on
constrained submodular maximization, which can be used as
black-box subroutine for computing best responses. Streeter
and Golovin [2008] develop an algorithm for the related
problem of online maximization of submodular functions.
They show that their algorithm achieves no (1 — 1/e)
regret. While their algorithm is guaranteed to produce a
sequence of solutions for repeated play which performs
near-optimally, it cannot handle more complex constraints
(such as planning informative trajectories for mobile sensors).
Kakade et al. [2009] develop a framework for turning general
approximation algorithms into no-regret algorithms. However,
they require that the objective functions are linear (modular),
and hence their results do not apply in our setting.

6 Conclusions

We tackled the problem of computing randomized sensing
strategies in adversarial environments. We developed the
RSENSE algorithm, which applies whenever the individual
objective functions associated with the intrusions are mono-
tonic submodular, which is the case in many sensing tasks.
We proved that RSENSE can efficiently obtain provably near-
optimal distributions. More generally, we proved that any -
approximation algorithm for computing best responses against

mixed strategies in matrix games can be used to obtain a-
approximate mixed strategies. We also considered trading off
worst-case and average-case performance. We developed the
TRSENSE algorithm and proved that it attains a near-optimal
tradeoff. We extensively evaluated and demonstrated the effec-
tiveness of our algorithms on two real-world sensing case stud-
ies. We believe that our results provide new insights for both in-
formation gathering and solving large matrix games in general.
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