
Submodular Function Maximization
Andreas Krause (ETH Zurich)

Daniel Golovin (Google)

Submodularity1 is a property of set functions with deep theoretical consequences and far–

reaching applications. At first glance it appears very similar to concavity, in other ways it

resembles convexity. It appears in a wide variety of applications: in Computer Science it

has recently been identified and utilized in domains such as viral marketing (Kempe et al.,

2003), information gathering (Krause and Guestrin, 2007), image segmentation (Boykov and

Jolly, 2001; Kohli et al., 2009; Jegelka and Bilmes, 2011a), document summarization (Lin

and Bilmes, 2011), and speeding up satisfiability solvers (Streeter and Golovin, 2008). In

this survey we will introduce submodularity and some of its generalizations, illustrate how it

arises in various applications, and discuss algorithms for optimizing submodular functions.

Our emphasis here is on maximization; there are many important results and applications

related to minimizing submodular functions that we do not cover2.

As a concrete running example, we will consider the problem of deploying sensors in a

drinking water distribution network (see Figure 1) in order to detect contamination. In this

domain, we may have a model of how contaminants, accidentally or maliciously introduced

into the network, spread over time. Such a model then allows to quantify the benefit f(A)

of deploying sensors at a particular set A of locations (junctions or pipes in the network) in

terms of the detection performance (such as average time to detection). Based on this notion

of utility, we then wish to find an optimal subset A ⊆ V of locations maximizing the utility,

maxA f(A), subject to some constraints (such as bounded cost). This application requires

solving a difficult real-world optimization problem, that can be handled with the techniques

discussed in this chapter (Krause et al. 2008b show in detail how submodular optimization

can be applied in this domain.) We will also discuss more complex settings, for example how

one can incorporate complex constraints on the feasible sets A, robustly optimize against

adversarially chosen objective functions f , or adaptively select sensors based on previous

observations.

Several algorithms for submodular optimization described in this survey are implemented

in an open source Matlab toolbox3 (Krause, 2010).



2

1 Submodular functions

Submodularity is a property of set functions, i.e., functions f : 2V → R that assign each

subset S ⊆ V a value f(S). Hereby V is a finite set, commonly called the ground set. In our

example, V may refer to the locations where sensors can be placed, and f(S) the utility

(e.g., detection performance) obtained when placing sensors at locations S. In the following,

we will also assume that f(∅) = 0, i.e., the empty set carries no value. Submodularity has

two equivalent definitions, which we will now describe. The first definition relies on a notion

of discrete derivative, often also called the marginal gain.

Definition 1.1 (Discrete derivative) For a set function f : 2V → R, S ⊆ V , and e ∈ V ,

let ∆f (e | S) := f(S ∪ {e})− f(S) be the discrete derivative of f at S with respect to e.

Where the function f is clear from the context, we drop the subscript and simply write

∆(e | S).

Definition 1.2 (Submodularity) A function f : 2V → R is submodular if for every

A ⊆ B ⊆ V and e ∈ V \B it holds that

∆(e | A) ≥ ∆(e | B) .

Equivalently, a function f : 2V → R is submodular if for every A,B ⊆ V ,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

For submodular maximization, the intuition provided by the first definition is often help-

ful: Suppose we interpret S ⊂ V as a set of actions which provide some benefit f(S). Then

the first definition says that for a submodular function f , after performing a set A of ac-

tions, the marginal benefit of any action e does not increase as we perform the actions in

B \A. Therefore, submodular set functions exhibit a natural diminishing returns property.

Figure 1 illustrates this effect in our sensor placement application. In this example, the

marginal benefit provided by placing a sensor at a fixed location s′ given that we deployed

sensors at locations s1, s2 does not increase as we deploy more sensors (s3 and s4).

An important subclass of submodular functions are those which are monotone, where

enlarging the argument set cannot cause the function to decrease.

Definition 1.3 (Monotonicity) A function f : 2V → R is monotone if for every A ⊆ B ⊆
V , f(A) ≤ f(B).

Note that a function f is monotone iff all its discrete derivatives are nonnegative, i.e., iff

for every A ⊆ V and e ∈ V it holds that ∆(e | A) ≥ 0. Further note that the important

subclass of monotone submodular functions can be characterized by requiring that for all

A ⊆ B ⊆ V and e ∈ V it holds that ∆(e | A) ≥ ∆(e | B). This is slightly different from

Definition 1.2 in that we do not require e /∈ B.

Typically, and in most of this chapter, we will assume that f is given in terms of a value

oracle, a black box that computes4 f(S) on any input set S.
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Figure 1 Illustration of the diminishing returns effect in context of placing sensors in a water dis-
tribution network to detect contaminations. The blue regions indicate nodes where contamination
is detected quickly using the existing sensors S. The red region indicates the additional coverage
by adding a new sensor s′. If more sensors are already placed (b), there is more overlap, hence
less gain in utility: ∆(s′ | {s1, s2}) ≥ ∆(s′ | {s1, . . . , s4}).

1.1 Examples

Submodular functions comprise a broad class of functions that arise in several applications.

Here are some examples.

Modular functions and generalizations. The simplest example of submodular func-

tions are modular functions, those for which the inequalities characterizing submodularity

hold with equality, i.e., for all A,B ⊆ V it holds that f(A) + f(B) = f(A∪B) + f(A∩B).

Such functions are analogous to linear functions, insofar as their discrete derivatives are

constant: ∆(e | B) = ∆(e | A) for all A,B and e /∈ A ∪ B. Assuming f(∅) = 0, they can

always be expressed in the form f(S) =
∑
e∈S w(e) for some weight function w : V → R.

Another example is the composition of any monotone modular function g : 2V → R and

any concave function h : R→ R — for example, f(S) =
√
|S|.

Weighted coverage functions. An important example of a submodular function is the

weighted coverage of a collection of sets: Fix a set X, a nonnegative modular function

g : 2X → R, and a collection V of subsets of X. Then for a subcollection S ⊆ V , the

function

f(S) := g
(⋃
v∈S

v
)

=
∑

x∈
⋃

v∈S v

w(x),

is monotone submodular. Hereby w : X → R is the weight function representing g. In our

example, X may refer to a set of contamination events, w(x) quantifies the severity of event

x, and with each possible sensor location v ∈ V we associate the subset v ⊆ X of events

detected. Perhaps the simplest example is where g(A) = |A| is the cardinality function

(which is modular), in which case the problem of maximizing f(S) is the well-known max-

cover problem. In fact, f(S) is submodular even for arbitrary submodular functions g. It is

monotone iff g is monotone.
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The rank function of a matroid. Another important class of submodular functions

arises in the context of matroids:

Definition 1.4 (Matroid) A matroid is a pair (V, I) such that V is a finite set, and

I ⊆ 2V is a collection of subsets of V satisfying the following two properties:

• A ⊆ B ⊆ V and B ∈ I implies A ∈ I
• A,B ∈ I and |B| > |A| implies ∃ e ∈ B \A such that A ∪ {e} ∈ I.

Sets in I are called independent, and matroids generalize the concept of linear indepen-

dence found in linear algebra. An important function associated with a matroid (V, I),

which describes it completely, is its rank function f(S) := max {|U | : U ⊆ S,U ∈ I}. The

rank function of any matroid is monotone submodular (Birkhoff, 1933).

Facility location. Suppose we wish to select, out of a set V = {1, . . . , n}, some locations

to open up facilities in order to serve a collection of m customers. If we open up a facility at

location j, then it provides service of value Mi,j to customer i, where M ∈ Rm×n. If each

customer chooses the facility with highest value, the total value provided to all customers

is modeled by the set function

f(S) =

m∑
i=1

max
j∈S

Mi,j .

Hereby we set f(∅) = 0. If Mi,j ≥ 0 for all i, j, then f(S) is monotone submodular (Frieze,

1974). This model is quite general, and captures other applications as well. In our sensor

placement example, Mi,j could refer to the benefit provided by sensor j in scenario i,

quantified, e.g., in terms of the expected reduction in detection time (Krause et al., 2008b).

Entropy. Given a joint probability distribution P (X) over a discrete-valued random vector

X = [X1, X2, . . . , Xn], the function f(S) = H(XS) is monotone submodular (Fujishige,

1978), where H is the Shannon entropy, i.e.,

H(XS) = −
∑
xS

P (xS) log2 P (xS)

where we use the notational convention that XS is the random vector consisting of the

coordinates of X indexed by S, and likewise xS is the vector consisting of the coordinates of

an assignment x indexed by S. If the random variables are real-valued, with a probability

density function f , the differential entropy

H(XS) = −
∫
P (xS) log2 P (xS)dxS

is submodular as well, but not generally monotone.



Submodular Function Maximization 5

Mutual information. Given a joint probability distribution P (X,Y) over two dependent

random vectors, X = [X1, X2, . . . , Xn] and Y = [Y1, Y2, . . . , Ym], consider the mutual infor-

mation: f(S) = I(Y; XS) = H(Y) −H(Y | XS), which quantifies the expected reduction

of uncertainty about Y upon revelation of XS . In general, the function f is not submodular :

Suppose X1, X2 ∼ Bernoulli(0.5), and Y = X1 XOR X2. Then f(∅) = f({1}) = f({2}) = 0,

but f({1, 2}) = 1, violating submodularity. However, if the variables X are conditionally

independent given Y, i.e., for all disjoint sets A,B ⊂ V if holds that XA ⊥ XB | Y, then

f is monotone submodular (Krause and Guestrin, 2005). This holds both for discrete and

continuous distributions. In our example, we may associate a variable Yv with the water

quality at location v ∈ V , and Xv is a noisy measurement of Yv that we obtain if we place a

sensor at location v. Then f(S) quantifies how much we can reduce our uncertainty about

the water quality everywhere when deploying sensors at locations S.

Symmetric mutual information. Let V = {1, 2, . . . , n}. Given any joint probability dis-

tribution P over a random vector X = [X1, X2, . . . , Xn], the function f(S) = I(XS ; XV \S)

is submodular. However, f is not monotone in general, since f(∅) = f(V ) = 0, and unless

X1, X2, . . . , Xn are independent, it will be the case that f(S) > 0 for some S. This function

has been used by Narasimhan et al. (2005) for information-theoretic clustering problems,

and by Krause et al. (2008a) for the purpose of sensor placement.

More generally, if Y = [Y1, Y2, . . . , Ym] is another random vector, and X and Y have joint

distribution P (X,Y) the conditional mutual information I(XS ; XV \S | Y) is submodular

(but not monotone). This function arises in the context of structure learning in probabilistic

graphical models, as studied by Narasimhan and Bilmes (2004).

Cut capacity functions. Fix any undirected graph G = (V,E) with nonnegative edge ca-

pacities c : E → R+. Let ∂S be the boundary of S ⊆ V , defined as ∂S := {{u, v} ∈ E : |S ∩ {u, v} | = 1}.
Then the function f(S) =

∑
e∈∂S c(e) is submodular (Schrijver, 2003). The same is true for

directed graphs, if we define ∂S := {(u, v) ∈ E : u ∈ S, v /∈ S}. Note that f is not generally

monotone: In particular, f(∅) = f(V ) = 0.

1.2 Properties of submodular functions

Submodular functions have many useful properties. For example, submodularity is pre-

served under taking nonnegative linear combinations. In other words, if g1, . . . , gn : 2V → R
are submodular, and α1, . . . , αn ≥ 0, then f(S) :=

∑n
i=1 αigi(S) is submodular as well.

This is readily proved using the definition of submodularity based on discrete derivatives.

This insight is extremely useful, as it allows to build complex submodular objectives from

simpler constituents (c.f., Kempe et al. 2003; Leskovec et al. 2007; Stobbe and Krause

2010). Submodularity is also preserved when we take the residual : if g : 2V → R is sub-

modular, and A,B ⊂ V are any disjoint sets, then the residual f : 2A → R defined via

f(S) := g(S ∪ B) − g(B) is submodular. Monotone submodular functions remain so un-

der truncation: if g : 2V → R is submodular, so is f(S) := min {g(S), c} for any constant

c. While truncation preserves submodularity, in general, the minimum and maximum of

two submodular functions are not submodular, i.e., for submodular functions f1 and f2, the
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functions fmin(S) = min(f1(S), f2(S)) and fmax(S) = max(f1(S), f2(S)) are not necessarily

submodular.

Interestingly, there are many natural connections between submodular functions and

both convex and concave functions. For example, for a function g : N→ R, the set function

f(S) = g(|S|) is submodular if and only if g is concave. In contrast, similar to convex

functions, which can be minimized efficiently, (unconstrained) submodular minimization

is possible in (strongly) polynomial time (c.f., Schrijver 2003). See (Lovasz, 1983) for a

discussion about the relationship between submodular, concave and convex functions.

Submodular set functions can also be extended to continuous functions (defined over

the unit cube [0, 1]|V |) in several natural ways. See Section 3.2 for more details on such

extensions.

2 Greedy maximization of submodular functions

As argued in Section 1.1, submodular functions arise in many applications, and therefore it

is natural to study submodular optimization. There is a large amount of work on minimizing

submodular functions (c.f., Fujishige 2005; Schrijver 2003). In this chapter, we will focus

on the problem of maximizing submodular functions. That is, we are interested in solving

problems of the form

max
S⊆V

f(S) subject to some constraints on S. (1)

The simplest example are cardinality constraints, where we require that |S| ≤ k for some k.

In our example, we may wish to identify the k best locations to place sensors. Unfortunately,

even this simple problem is NP-hard, for many classes of submodular functions, such as

weighted coverage (Feige, 1998) or mutual information (Krause and Guestrin, 2005). While

there are specialized branch and bound algorithms for maximizing submodular functions

(Nemhauser and Wolsey, 1981; Goldengorin et al., 1999; Kawahara et al., 2009), ultimately

their scalability is limited by the hardness of Problem 1. Therefore, in the remaining of this

chapter we focus on efficient algorithms with theoretical approximation guarantees.

The greedy algorithm. In the following, we will consider the problem of approximately

maximizing monotone submodular functions. A simple approach towards solving Problem 1

in the case of cardinality constraints is the greedy algorithm, which starts with the empty

set S0, and in iteration i, adds the element maximizing the discrete derivative ∆(e | Si−1)

(ties broken arbitrarily):

Si = Si−1 ∪ {arg max
e

∆(e | Si−1)}. (2)

A celebrated result by Nemhauser et al. (1978) proves that the greedy algorithm provides

a good approximation to the optimal solution of the NP-hard optimization problem.

Theorem 1.5 (Nemhauser et al. 1978) Fix a nonnegative monotone submodular function

f : 2V → R+ and let {Si}i≥0 be the greedily selected sets defined in Eq. (2). Then for all
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positive integers k and `,

f(S`) ≥
(

1− e−`/k
)

max
S:|S|≤k

f(S).

In particular, for ` = k, f(Sk) ≥ (1− 1/e) max|S|≤k f(S).

Proof Nemhauser et al. only discussed the case ` = k, however their very elegant argument

easily yields the slight generalization above. It goes as follows. Fix ` and k. Let S∗ ∈
arg max {f(S) : |S| ≤ k} be an optimal set of size k (due to monotonicity of f we can assume

w.l.o.g. it is of size exactly k), and order the elements of S∗ arbitrarily as {v∗1 , . . . , v∗k}. Then

we have the following sequence of inequalities for all i < `, which we explain below.

f(S∗) ≤ f(S∗ ∪ Si) (3)

= f(Si) +

k∑
j=1

∆
(
v∗j | Si ∪

{
v∗1 , . . . , v

∗
j−1
})

(4)

≤ f(Si) +
∑
v∈S∗

∆(v | Si) (5)

≤ f(Si) +
∑
v∈S∗

(f(Si+1)− f(Si)) (6)

≤ f(Si) + k (f(Si+1)− f(Si)) (7)

Eq. (3) follows from monotonicity of f , Eq. (4) is a straightforward telescoping sum, Eq. (5)

follows from the submodularity of f , Eq. (6) holds because Si+1 is built greedily from Si in

order to maximize the marginal benefit ∆(v | Si), and Eq. (7) merely reflects the fact that

|S∗| ≤ k. Hence

f(S∗)− f(Si) ≤ k (f(Si+1)− f(Si)) . (8)

Now define δi := f(S∗) − f(Si), which allows us to rewrite Eq. (8) as δi ≤ k (δi − δi+1),

which can be rearranged to yield

δi+1 ≤
(

1− 1

k

)
δi (9)

Hence δ` ≤
(
1− 1

k

)`
δ0. Next note that δ0 = f(S∗) − f(∅) ≤ f(S∗) since f is nonnegative

by assumption, and by the well-known inequality 1− x ≤ e−x for all x ∈ R we have

δ` ≤
(

1− 1

k

)`
δ0 ≤ e−`/kf(S∗). (10)

Substituting δ` = f(S∗)− f(S`) and rearranging then yields the claimed bound of f(S`) ≥(
1− e−`/k

)
f(S∗).

The slight generalization allowing ` 6= k is quite useful. For example, if we let the greedy

algorithm pick 5k sensors, the approximation ratio (compared to the optimal set of size k)

improves from ≈ .63 to ≈ .99.

For several classes of submodular functions, this result is the best that can be achieved

with any efficient algorithm. In fact, Nemhauser and Wolsey (1978) proved that any al-

gorithm that is allowed to only evaluate f at a polynomial number of sets will not be
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able to obtain an approximation guarantee better than (1 − 1/e). (Subsequently, Vondrák

(2010) provided more refined results on the best possible approximation factor in terms of

a parameter called the curvature of f .)

Matroid constraints. Going beyond cardinality constraints, the greedy algorithm is also

guaranteed to provide near-optimal solutions for more complex constraints. In our sensing

example, in order to preserve energy, each sensor may decide when to activate. The problem

of optimizing such a sensing schedule requires maximizing a submodular function subject

to a partition matroid constraint (Krause et al., 2009).

Suppose (V, I) is a matroid, and we wish to solve the problem

max
S∈I

f(S),

then the greedy algorithm, which starts with SG and sets

SG ← SG ∪
{

arg max
e/∈SG:SG∪{e}∈I

∆(e | SG)
}

(11)

until there is no more e such that SG ∪ {e} ∈ I (i.e., there is no element which can

be added to create a feasible solution), is guaranteed to produce a solution SG so that

f(SG) ≥ 1
2 maxS∈I f(S).

Even more generally, suppose (V, I1), . . . , (V, Ip) are p matroids, and I =
⋂
i Ii. That is, I

consists of all subsets of V that are independent in all p matroids. Even though (V, I) is not

generally a matroid anymore, the greedy algorithm 11 is guaranteed to produce a solution

so that f(SG) ≥ 1
p+1 maxS∈I f(S). In fact, this results holds even more generally whenever

(V, I) is a p-extensible system, a combinatorial notion which generalizes the intersections of

p matroids (Calinescu et al., 2011).

Min-cost coverage. Instead of maximizing a monotone submodular function subject to

constraints, it is also natural to search for minimum cost sets that achieve a given amount

q of submodular value. In particular, we may wish to solve

S∗ = arg min
S

|S| s.t. f(S) ≥ q, (12)

for some quota 0 ≤ q ≤ f(V ) of value. In our sensing example, we may wish to deploy

as few sensors as possible, while guaranteeing that all possible contamination scenarios are

eventually detected.

Wolsey (1982) proves the following result about the greedy algorithm:

Theorem 1.6 (Wolsey 1982) Suppose f : 2V → N is monotone submodular and integer-

valued, and let 0 ≤ q ≤ f(V ). Let S0, S1, . . . be the sequence of sets picked by the greedy

algorithm, and let ` be the smallest index such that f(S`) ≥ q. Then

` ≤
(

1 + ln max
v∈V

f({v})
)
OPT,

where OPT = minS |S| s.t. f(S) ≥ q.
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In fact, Wolsey proves the special case q = f(V ), but the result above immediately follows

by applying his result to the submodular function min{f(S), q}. Wolsey also proves that

the same result holds in the case where the elements of V have non-uniform cost, using a

slightly modified greedy algorithm (see also Section 3.1).

Speeding up the greedy algorithm through lazy evaluations. In some applications,

evaluating the function f can be expensive. In our example, evaluating f may require run-

ning computationally costly water quality simulations. In this case, even applying the stan-

dard greedy algorithm can be infeasible. Fortunately, submodularity can be exploited algo-

rithmically to implement an accelerated variant of the greedy algorithm, originally proposed

by Minoux (1978). In each iteration i, the greedy algorithm must identify the element e with

maximum marginal gain ∆(e | Si−1), where Si−1 is the set of elements selected in the previ-

ous iterations. The key insight is that, as a consequence of submodularity of f , the marginal

benefits of any fixed element e ∈ V are monotonically nonincreasing during the iterations of

the algorithm, i.e., ∆(e | Si) ≥ ∆(e | Sj) whenever i ≤ j. Instead of recomputing ∆(e | Si−1)

for each element e ∈ V (requiring O(n) computations of f), the accelerated greedy algo-

rithm maintains a list of upper bounds ρ(e) (initialized to ∞) on the marginal gains sorted

in decreasing order. In each iteration, the algorithm extracts the maximal element

e ∈ arg max
e′:Si−1∪{e′}∈I

ρ(e′)

from the ordered list. It then updates the bound ρ(e) ← ∆(e | Si−1). If, after this update,

ρ(e) ≥ ρ(e′) for all e′ 6= e, then submodularity guarantees that ∆(e | Si−1) ≥ ∆(e′ | Si−1)

for all e′ 6= e, and therefore the greedy algorithm has identified the element of largest

marginal gain, without having to compute ∆(e′ | Si−1) for a potentially large number of

elements e′. It sets Si ← Si−1 ∪ {e} and repeats until there is no further feasible element

which can be added. This idea of using lazy evaluations can lead to orders of magnitude

performance speedups, and is useful beyond the greedy algorithm (c.f., Leskovec et al. 2007).

3 Beyond the greedy algorithm: Handling more complex
constraints

In this section, we will survey some work on submodular optimization beyond the standard

greedy algorithm discussed in Section 2. Using more complex algorithms allows to handle

maximization subject to more complex constraints. We will mostly focus on the case of

monotone functions, but also mention results about optimizing non-monotone functions.

3.1 Knapsack constraints

Instead of selecting a set of at most k elements, in many applications, the elements v ∈ V
may have non-uniform costs c(s) ≥ 0, and we may wish to maximize f subject to a budget

that the total cost cannot exceed:

max
S

f(S) s.t.
∑
v∈S

c(v) ≤ B.
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Thus, we would like to maximize f(S) subject to a (w.l.o.g.) nonnegative modular constraint,

also called Knapsack constraint (as the problem of maximizing a modular f subject to a

modular constraint c is called the Knapsack problem). Naturally, the standard (uniform

cost) greedy algorithm, selecting the next affordable element of maximum marginal gain

can perform arbitarily badly, as it ignores cost. It can be easily modified to take cost into

account: The cost-benefit greedy algorithm starts with S0 = ∅, and iteratively adds

Si+1 = Si ∪

{
arg max

v∈V \Si:c(v)≤B−c(Si)

∆(e | Si)
c(v)

}
, (13)

i.e., the element v that maximizes the benefit cost ratio among all elements still affordable

with the remaining budget. For the min-cost covering problem (12), Wolsey (1982) proves

a generalization of Theorem 1.6 for this cost-benefit greedy algorithm. Unfortunately, for

the budgeted maximization problem, even though this modified algorithm takes cost into

account, it can still perform arbitrarily badly. However, perhaps surprisingly, at least one

of the greedy solutions – the solution Suc returned by the uniform cost or the one Scb pro-

vided by the cost-benefit greedy algorithm cannot perform too badly: it can be shown that

max{f(Suc), f(Scb)} ≥ 1−1/e
2 OPT (Leskovec et al., 2007). In fact, a more computationally

complex algorithm, which enumerates all sets S of size 3, and augments them using the cost-

benefit greedy algorithm, is known to provide a 1− 1/e approximation (Sviridenko, 2004).

3.2 Submodular maximization using the multilinear extension

One important idea, which has seen a number of applications in submodular optimization,

is the use of extensions. Suppose f : 2V → R is a set function. By identifying sets S

with binary vectors eS (in which the i-th component is 1 if i ∈ S, and 0 otherwise),

we can equivalently represent f as a function defined over corners of the unit cube: f̃ :

{0, 1}n → R, where n = |V |, and f̃(eS) = f(S). From this perspective, it is natural to

extend f̃ to the entire unit cube [0, 1]n. There are several important extensions. The Lovaśz

extension (Lovasz, 1983) extends f̃ to a convex function f̂ : [0, 1]n → R, for which (at

least some of) its minimizers are attained at a corner of [0, 1]n. Minimization of f̂ over

[0, 1]n is possible using the ellipsoid method, which proved that unconstrained submodular

minimization is possible in polynomial time. However, for the purpose of (constrained)

submodular maximization, a different extension, pioneered by Vondrák (2008) has proven

to be very useful: The multilinear extension of f , f̂ : [0, 1]n → R is defined as

f̂(x) =
∑
S⊆V

f(S)
∏
i∈S

xi
∏
j /∈S

(1− xj).

Thus, f̂(x) is the expected value of f over sets, where each element i is included indepen-

dently with probability xi. Several recent algorithms for submodular maximization are built

around (approximately) solving the problem

max f̂(x) s.t. x ∈ F

over some domain F ⊆ [0, 1]n, and then rounding the continuous solution to obtain a

near-optimal set.
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The first application of this elegant idea, due to Vondrák (2008), is the continuous greedy

algorithm for maximizing a submodular function subject to matroid constraints. In this

application, the feasible set F is the matroid polytope, the convex hull of the independent

sets of the underlying matroid. Conceptually, the algorithm traces the continuous particle,

parameterized as a function x : [0, 1] → F , originating at x(0) = 0, and following the

differential equation

ẋ = arg max
v∈F

(
vT · ∇f̂(x)

)
.

Calinescu et al. (2011) prove that for matroid polytopes F , it holds that

f̂(x(1)) ≥ (1− 1/e) max
x∈F

f̂(x),

thus at time 1, the particle has reached a point which provides a (1 − 1/e) approximation

of the optimal value of f̂ over F . Calinescu et al. also show how this continuous differential

equation can be approximated by a discrete process up to arbitrarily small error. They also

show how the continuous solution y can be efficiently rounded to a feasible discrete solution

without loss in objective value, using pipage rounding (Ageev and Sviridenko, 2004). This

result affirmatively closed the long-standing open question of whether the optimal approx-

imation ratio of (1 − 1/e), which the standard greedy algorithm achieves for cardinality

constraints, can be achieved for arbitrary matroids (for which the standard algorithm only

gives a 1/2 approximation).

However, this general technique of relaxing constrained submodular maximization to a

continuous problem, and rounding the obtained solution has proven to be far more general.

For example, Kulik et al. (2009) have shown how to obtain a (1−1/e−ε) approximation for

the problem of maximizing a monotone submodular functions subject to multiple knapsack

constraints. Recently, Chekuri et al. (2011) have used the multilinear relaxation to obtain a

.38/k approximation for maximizing a monotone submodular function subject to k matroid

and a constant number of knapsack constraints (as well as an even more general class of

other downward-closed constraints).

3.3 Submodular optimization over graphs

Another natural class of constraints arise when solving submodular optimization problems

on graphs. Suppose that we identify the elements V as vertices of a (weighted) graph

G = (V,E,w) with edges E, and a function w that assigns each edge a nonnegative weight.

In this setting, we may wish to maximize a submodular function f(S) defined over the

vertices, subject to the constraint that the set S forms a path, or a tree on G of weight at

most B. Similarly, we may wish to obtain a tree (path) on G of submodular value q, and with

approximately minimal total weight. These problems have natural applications in placing

sensors under communication constraints, where the vertices V denote possible locations

for sensors, f the informativeness of having sensors at a set of locations, and edges and their

weights denote the communication cost between arbitrary pairs of locations (Krause et al.,

2011b). Another application is in planning informative paths for mobile sensors (Singh et al.,

2007). In these applications, greedy algorithms can be shown to perform arbitrarily poorly.
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Calinescu and Zelikovsky (2005) develop a polynomial-time algorithm, which, given an

integral-valued monotone submodular function f and a quota 0 ≤ q ≤ f(V ), and any ε > 0,

produce a tree of cost at most O
(

1
ε

1
ln lnn (lnn)2+ε log q

)
times the optimal cost. For the

related problem of path constraints, Chekuri and Pal (2005) develop an algorithm that,

given a budget B > 0 and nodes s, t ∈ V produces an s–t path of length at most B (if

such exists) of submodular value Ω( OPT
logOPT ). However, the running time of the algorithm is

(n logB)O(logn), which is only quasi-polynomial in n. Nevertheless, Singh et al. (2007) show

how this algorithm can be scaled to fairly large problems, and present results on planning

informative paths for robotic sensors. For submodular functions that satisfy an additional

locality property, which arises naturally in spatial monitoring problems, improved algorithms

can be obtained, both for tree (Krause et al., 2006) and path (Singh et al., 2009) constraints.

3.4 Robust submodular optimization

In our example of placing sensors in a drinking water distribution network, we may wish to

protect against malicious contaminations (Krause et al., 2008b). In this case, there may be

a collection of m possible intrusion scenarios (e.g., locations whether contaminants could be

introduced), and for each of the scenarios, we use a separate monotone submodular function

fi(S) that quantifies the benefit (e.g., chance of detection) of having sensors at locations

S, in scenario i. The problem of optimally placing sensors to protect against an adversary

who wants to maximize their chances to go undetected therefore requires to solve

S∗ = arg max
|S|≤k

min
i
fi(S), (14)

where f1, . . . , fm are monotone submodular functions.

Unfortunately, the function fmin(S) = mini fi(S) is not generally submodular. More-

over, the greedy algorithm applied to fmin can perform arbitrarily poorly. In fact, Krause

et al. (2008c) prove that Problem (14) is extremely inapproximable: Unless P=NP, no ef-

ficient algorithm can provide a solution S such that fmin(S) ≥ α(n)OPTk, where OPTk =

max|S′|≤k fmin(S′), for any function α that may even depend on the problem size n (for

example, it is not efficiently possible to even recoup an exponentially small fraction of the

optimal value). Perhaps surprisingly, given the hardness of the problem, it is possible to pro-

vide a different kind of approximation guarantee. Krause et al. (2008c) develop Saturate,

an algorithm that is guaranteed to efficiently obtain a set S such that fmin(S) ≥ OPTk,

and |S| ≤
(
1 + maxv ln

∑
i fi({v})

)
k. Thus, it is possible to obtain a set S that provides as

much value as the best set of size k, at a cost that is logarithmically larger than k. This

logarithmic approximation is optimal under reasonable complexity-theoretic assumptions.

Problem 14 is much more general. For example, Schulman et al. (2011) have recently applied

Saturate in personal robotics in order to plan where to grasp objects.

Instead of committing to a fixed set S ⊆ V , in some applications it may be possible to

select a probability distribution over sets. For example, when controlling a sensor network in

a building to protect against intrusions, we may wish to obtain a randomized sensing strat-

egy that performs as well as possible against an intruder who attempts to evade detection,
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knowing the randomized strategy. This problem is formalized as

p∗ = arg max
p:p(S)>0⇒|S|≤k

U(p) where U(p) = min
i

ES∼p[fi(S)] .

Thus, we wish to obtain a distribution p∗ over feasible sets S, such that our value is max-

imized in expectation, even under an adversarially chosen objective. Solving this problem

optimally is a formidable task, as even representing the optimal distribution may require

exponential space. However, Krause et al. (2011a) show how it is possible, for any ε > 0, to

efficiently obtain a distribution p̂ over O(lnm/ε2) sets such that U(p̂) ≥ (1−1/e)U(p∗)− ε.

3.5 Nonmonotone submodular functions

While most work has focused on maximizing monotone submodular functions, several ap-

plications require maximizing nonmonotone submodular functions. For example, suppose

we have a monotone submodular function f , and a modular cost function c, assigning each

element v a cost c(v). In this setting, we may wish to solve the unconstrained problem

max
S

f(S)− c(S).

Here, the function g(S) = f(S) − c(S) is submodular, but nonmonotone. Another exam-

ple is maximizing the symmetric mutual information f(S) = I(XS ; XV \S) (c.f., §1.1). For

arbitrary submodular functions f , even verifying whether there exists a set S such that

f(S) > 0 is NP-hard (Feige et al., 2007), thus no approximation is possible. However, there

have been recent breakthroughs on maximizing arbitrary nonnegative submodular functions

(i.e., f(S) ≥ 0 for all sets S).

Feige et al. (2007) prove that a local-search algorithm which iteratively adds or removes

elements, ensuring that each addition or removal increases the function value by at least a

multiplicative factor of (1+ ε
n2 ) terminates with a set S such that either S or V \S provides

a ( 1
3 −

ε
n ) approximation to the optimal unconstrained solution. They also prove that a

more expensive, randomized local search procedure produces a solution with is a ( 2
5 − o(1))

approximation to the optimal value. This is contrasted by their hardness result, proving

that no approximation better than 1
2 is achievable in the value oracle model. Krause and

Horvitz (2008) present an application of unconstrained submodular maximization to the

problem of trading off utility and privacy in online services.

Further improvements have been obtained utilizing the multilinear extension as discussed

above. In particular, Gharan and Vondrák (2011) show that a simulated annealing algorithm

is guaranteed to obtain a 0.41 approximation for unconstrained maximization, and 0.325

approximation for maximization subject to a matroid constraint. Most recently, Chekuri

et al. (2011) show how the factor 0.325 can also be obtained for a constant number of

knapsack constraints, and how a 0.19/k approximation is achievable for maximizing any

nonnegative submodular function subject to k matroid and a constant number of knapsack

constraints.
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4 Online maximization of submodular functions

In the previous sections, we have assumed that we are given an objective function f that

we wish to maximize. In some applications, the objective may not be known in advance.

However, if we perform the same task repeatedly while facing objectives f1, . . . , fT drawn

from some distribution, we might hope to learn to perform well on average over time. This

is the premise behind no–regret algorithms, which are widely used in machine learning.

In many interesting applications the (unknown) objective functions ft are monotone sub-

modular. One example that we discuss below is learning to hybridize different algorithms

for a computationally hard problem to generate a meta-algorithm which may outperform all

of its constituent algorithms. Other examples include online sensor selection, news recom-

mendation systems, online advertising and others. As we will see below, there are analogues

of Theorem 1.5 in this no–regret setting, i.e., it is possible to learn to optimize submodular

functions in an online manner.

4.1 The no–regret setting

Suppose we face the problem of repeatedly, over T rounds, choosing an action from a set

V . In each round t, after selecting an action v ∈ V , you observe either the reward of

every action (in the so-called full information feedback model) in that round, or merely the

reward of the action you selected (in the so–called bandit feedback model). Let rt(v) denote

the reward of action v in round t. Orthogonal to the feedback model, the rewards may be

stochastic, in which case the reward functions {rt : t = 1, 2, . . . , T} are drawn from some

fixed (but unknown) distribution, or non-stochastic, in which case they may be arbitrary

(even possibly chosen by an adversary). At first glance it seems impossible to give any

interesting performance guarantees for the non-stochastic bandit setting. However, there

are many beautiful results in this area based on the notion of minimizing the regret against

the best action in hindsight (c.f., Cesa-Bianchi and Lugosi 2006).

Definition 1.7 (Regret) The regret of action sequence v1, . . . , vT is

RT = max
v∗

T∑
t=1

rt(v
∗)−

T∑
t=1

rt(vt)

and the average regret is RT /T .

There is a large literature on no–regret algorithms, to which we cannot do justice here.

However, a key point is that if the reward functions are bounded, e.g., if rt(v) ∈ [0, 1]

for all v and t, then in many settings, such as the case where V is finite, there are ran-

domized algorithms whose expected regret grow as o(T ), so that the average regret RT /T

converges to zero as T → ∞. There are algorithms which achieve O(|V | log T ) expected

regret for stochastic rewards with bandit feedback (Auer et al., 2002), O(
√
T log |V |) for

the non-stochastic rewards with full information feedback (Freund and Schapire, 1999), and

O
(√

T |V | log |V |
)

for the non-stochastic rewards with bandit feedback (Auer et al., 2003).

This means that in all settings we can converge to the performance of the best action in

hindsight.
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Now, suppose that instead of choosing an element v ∈ V in each round you had to choose

a set S ⊆ V of bounded cardinality, say, |S| ≤ k? Näıvely using the algorithms for the

single action case (k = 1) by treating each feasible set as a distinct action has two major

disadvantages. First, the algorithms require time at least linear in the number of feasible

sets, namely
(|V |
k

)
. Second, the average regret will shrink very slowly in the bandit feedback

model, so that at least
(|V |
k

)
rounds are required before the regret bounds are meaningful.

Unfortunately, for arbitrary reward functions rt(S), there is not much one can do about this

situation. However, if the reward functions rt(·) are monotone submodular, this structure

can be exploited to get regret bounds roughly k times that of the original problem, with

the caveat that the regret is against a (1 − 1/e) approximation to the best feasible set in

hindsight. We call such a regret measure the (1− 1/e)-regret. Formally, for any α ≥ 0 the

α-regret is defined as follows.

Definition 1.8 (α-Regret) The α-regret of a sequence of sets S(1), . . . , S(T ) is

Rα = α · max
S∗ feasible

T∑
t=1

rt(S
∗)−

T∑
t=1

rt

(
S(t)

)
and the average α-regret is Rα/T .

4.2 Submodular maximization in the no–regret setting

Suppose rt : 2V → [0, 1] are monotone submodular, with bounded range. (We rescale so

that the range is [0, 1].) For clarity of exposition, we will focus here on a natural partially

transparent feedback model defined as follows, but results in other models are available. For

an ordered set S, let Si be the first i elements of S. In the partially transparent feedback

model, after selecting ordered set S(t), the marginal benefit of each action is revealed,

assuming they were added in order. Formally, we observe rt

(
S
(t)
i

)
− rt

(
S
(t)
i−1

)
for each

i = 1, 2, . . . , k. In this model, it is possible to obtain results like the following.

Theorem 1.9 (Streeter and Golovin 2007) There is an efficient algorithm which incurs

expected (1 − 1/e)-regret at most O
(
k
√
T |V | log |V |

)
, in the non–stochastic setting with

partially transparent feedback.

Hence it is possible to ensure the expected average (1−1/e)-regret converges to zero at a

rate proportional to 1/
√
T , so that asymptotically the algorithm achieves at least (1− 1/e)

of the optimal reward obtained by any fixed set of size k.

One algorithm obtaining the claimed regret bound, called the online greedy algorithm,

combines the greedy algorithm with no-regret algorithms for the bandit feedback setting in

a simple manner: There are k instantiations of such no-regret algorithms A1, . . . ,Ak, each

with a set of actions V to choose among. In each round t, each Ai selects an action vti and the

set S(t) = {vt1, . . . , vtk} is selected. For its trouble, Ai receives reward rt

(
S
(t)
i

)
− rt

(
S
(t)
i−1

)
,

where S
(t)
j = {vti : i ≤ j}.

At a very high level, the key reason that the online greedy algorithm performs well is

that the greedy algorithm is noise-resistant in the following sense. Suppose that instead
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of selecting Si = Si−1 ∪ {arg maxv ∆(v | Si−1)} a “noisy” version of the greedy algorithm

selects Si = Si−1 ∪ {vi} such that ∆(vi | Si−1) = maxv ∆(v | Si−1) − εi for some εi ≥ 0.

Then a relatively straightforward modification of the proof by Nemhauser et al. (1978),

which may be found in (Streeter and Golovin, 2008), shows that

f(Sk) ≥ (1− 1/e) max
S:|S|≤k

f(S)−
k∑
i=1

εi. (15)

It turns out that the online greedy algorithm can be interpreted as a noisy version of the

(standard) greedy algorithm running on a larger instance (which encodes all T instances

the online greedy algorithm encounters), where the noise εi is exactly the regret of Ai.
Using known regret bounds for the case of selecting a single action then yields Theorem 1.9.

Streeter and Golovin (2007) also provide results for other feedback models showing it is

possible to obtain expected average (1− 1/e)-regret which converges to zero as T →∞, up

to and including the bandit feedback model in which only the reward of the set selected,

namely rt

(
S
(t)
i−1

)
, is observed at the end of round t (though in this very harsh feedback

model the convergence rate on (1− 1/e)-regret is much slower).

4.3 Applications of online maximization of submodular functions

There are several applications that can benefit from the results mentioned in §4.2. These

include online sensor selection, database query optimization, news recommendation sys-

tems, online ad selection, and combining multiple heuristics for computationally hard prob-

lems (Streeter and Golovin, 2008; Golovin et al., 2010b; Munagala et al., 2005; Babu et al.,

2004; Streeter et al., 2009; Radlinski et al., 2008; Streeter et al., 2007a). Here we discuss

the problem of combining multiple heuristics in detail.

Combining multiple heuristics online Certain computationally hard problems such as

integer programming and boolean satisfiability are ubiquitous in industrial and scientific

applications, and a great deal of effort has gone into developing heuristics which solve them

as quickly as possible in practice. Typically, there is no single heuristic which outperforms

all others on every instance. Rather, heuristics often complement each other, so that there

are opportunities for combining them into a meta-heuristic that outperforms its constituent

heuristics in practice — in some cases by an order of magnitude or more. Before giving a

concrete example where this effect occurs, we must clarify how heuristics are “combined.”

For this purpose, we use a task switching schedule:

Definition 1.10 (Run and Task Switching Schedule) For a heuristic h and τ ∈ R+, a run

is a pair (h, τ) representing the execution of h until either the problem is solved, or until τ

time units have expired, after which execution is terminated. A task switching schedule is a

sequence of runs, {(hi, τi)}i≥0, and it’s length is
∑
i≥0 τi.

A task switching schedule σ, such as the one illustrated in Figure 2, represents a meta-

heuristic which performs its constituent runs in order and terminates immediately upon

finding a solution. For example, the schedule (h1, 1), (h2, 1) will first run h1 until either the
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Figure 2 Illustration of a task switching schedule over five heuristics output by the online greedy
algorithm.

solution is found or one time unit elapses, whichever comes first. If the first run terminates

without finding the solution, the schedule next runs h2 until either the solution is found or

one time unit elapses, whichever comes first, and then terminates.

How is it that the best task switching schedule can outperform the best heuristic in it?

A simple concrete example of this is for boolean satisfiability (SAT) where there are many

randomized heuristics. Any fixed randomized heuristic h defines a family of deterministic

heuristics consisting of the h run with random seed r, denoted by hr, for each possible ran-

dom seed. Empirically, the running time distribution of h with different seeds on an given

SAT instance Φ is commonly heavy tailed. Hence it makes sense to periodically terminate

h and restart it with a fresh random seed. In an example given by Streeter et al. (2007b),

a particular heuristic solver had about a 20% chance of solving an instance after running

for 2 seconds, but also a 20% chance that a run will not terminate after having run for

1000 seconds. Hence restarting the solver every 2 seconds rather than simply running it

once until a solution is found reduces the mean time to solution by over an order of magni-

tude. When multiple solvers with complementary strengths are available, the potential for

speedups increases. In experiments, when given access to state–of–the-art solvers entered

into various academic competitions, the algorithm we are about to describe generated a

meta-solver, which significantly outperformed all of the constituent solvers 5.

Two natural performance measures are total execution time to solve a set of instances, and

percent of instances solved within a fixed time limit. The optimal task switching schedule

will often outperform the best heuristic on both measures simultaneously. While there are

strong empirical and theoretical results for both performance measures given by Streeter

and Golovin (2008), for clarity of exposition here we focus on the latter.

Fix an arbitrary computational problem for which we have a finite set of (possibly random-

ized) heuristics H, and fix a time bound B ∈ Z+. We formulate the problem of combining

heuristics as a problem of online maximization of submodular functions as follows. Con-

struct a ground set V = H ×
{

1̃, 2̃, . . . , B̃
}

of potential-runs in which (h, τ̃) ∈ V represents

a random run which is the actual run (h, τ) with probability 1/τ and is (h, 0) (i.e., it does

nothing) otherwise. A sequence of instances of our problem arrives online, one per round.

In each round t the instance is represented by a monotone submodular function rt which

takes in a set of potential runs as input and gives the probability that at least one of them

solves the instance. Formally,

rt(S) := 1 −
∏

(h,τ̃)∈S

(
1− 1

τ
P [run (h, τ) solves instance t]

)
. (16)
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Given a set S of potential runs of size B, we sample a task switching schedule by sampling

their actual runs independently for each potential runs. The result is a set of runs R whose

total length is B in expectation, and whose probability of solving the tth instance is precisely

rt(S) in expectation. Hence in each round t we can use the online greedy algorithm to select

an ordered set of potential runs S(t), from which we can sample a task switching schedule

R(t). Executing R(t) allows us to feedback unbiased estimates of the marginal increase in rt
from all of the potential runs, so that we are in the partially transparent feedback model.

Hence we can generate a sequence
{
S(t)

}T
t=1

that has vanishing average (1 − 1/e)-regret

against any fixed set of potential runs. With slightly more work, one can show that the

resulting sampled sequence of task switching schedules
{
R(t)

}T
t=1

has vanishing average

(1− 1/e)-regret against any fixed task switching schedule of length B.

4.4 Online maximization with irrevocable choices: the submodular

secretaries problem

In the no–regret setting of Section 4.1, the choices in any round are not constrained by

what one did in previous rounds, and (typically) the goal is to perform well on average.

By contrast, in the competitive online setting, one is faced with a sequence of irrevocable

decisions among options that are revealed over time, and the goal is to do well in hindsight

against any set of choices which were feasible given the revealed options. For example, in the

secretary problem, you must hire exactly one applicant from a pool of applicants (of known

size). Each applicant has a score, which is revealed during their interview. The applicants

are interviewed in random order, and at the end of each interview you must irrevocably

hire or reject the applicant being interviewed. The goal is to find a strategy maximizing the

expected score of the hired applicant.

In submodular secretary problems, the applicants (denoted by the set V ) are also inter-

viewed in random order, and at the end of each interview you must irrevocably hire or

reject the applicant being interviewed. However, now you are allowed to hire any subset of

applicants in a feasible class F ⊆ 2V (e.g., the independent sets of a matroid), and upon hir-

ing a set S of applicants your reward is f(S) for some nonnegative (possibly nonmonotone)

submodular function f . Here, the function f is revealed to you during the interview process;

after interviewing a set A of applicants, you are granted access to an oracle computing f(S)

for any S ⊆ A. The goal is to find a strategy maximizing the expected reward of the hired

secretaries, measured with respect to f .

Submodular secretary problems generalize several important problems in practice, such

as online bipartite matching (for e.g., matching display ads with search engine users) and

certain caching problems. Gupta et al. (2010) and Bateni et al. (2010) provide constant

competitive6 algorithms for the uniform matroid (where F = {S ⊆ V : |S| ≤ k} for some k).

Gupta et al. also give a O(log r)-competitive algorithm when F consists of the independent

sets of a matroid of rank r, and Bateni et al. give an O(` log2 r)-competitive algorithm when

F is the intersection of the independent sets of ` matroids of rank at most r.
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5 Adaptive submodularity

In some applications we may wish to adaptively select a set, observing and taking into

account feedback after selecting any particular element. For example, we may wish to se-

quentially activate sensors, adaptively taking into account measurements provided by the

sensors selected so far when selecting the next sensor7. In such adaptive optimization prob-

lems, we must optimize over policies, i.e., functions from the information we have obtained

to the next action. There are many variants of the problem, depending on which modeling

assumptions (e.g., about the planning horizon, prior knowledge of the environment, and

how the environment is affected by our actions) and goals (e.g., worst-case vs. average case

reward) are suitable. Many such problems are notoriously intractable. In this section, we

will review the notion of adaptive submodularity (Golovin and Krause, 2011b), a recent

generalization of submodularity to adaptive optimization, that allows to develop efficient,

provably near-optimal policies to an interesting class of adaptive optimization problems.

Example applications that exhibit adaptive submodular structure include problems in

active learning, where we must adaptively select data points to label to maximize the per-

formance of a classifier trained on the selected data points, machine diagnosis, where we

must adaptively select tests to run on a patient or system to determine the best treatment

plan, and certain adaptive resource deployment problems, where we irrevocably commit re-

sources over time and may observe the benefits of our previous commitments before making

additional commitments.

5.1 The adaptive submodularity framework

In order to formalize adaptive optimization, we need to describe the process of how we

gather information. We model the state of the world abstractly as a random variable Φ,

using φ to refer to a concrete value that Φ can take. In our sensing application, Φ may refer

to the water quality at all nodes in the network. We presume a Bayesian model, so that we

have a prior probability P [φ] distribution over Φ. 8 We suppose there is a set of actions V

we can perform and a set of outcomes O we might observe. We interpret the world state

φ as a function from actions to outcomes of those actions, i.e., φ : V → O and φ(v) is the

outcome of performing action v. In our sensing application, φ(v) may refer to the particular

measurement we obtain if we have a sensor at location v, and the world is in state φ. We

represent the actions we have performed, as well as the outcomes we have observed as a

partial function ψ from actions to outcomes. Hereby, the domain of ψ, denoted dom(ψ), is

the set of actions performed up until that point. We call φ a realization (of the world-state)

and ψ a partial realization. In our example, ψ may encode water quality measurements

obtained at a subset dom(ψ) of nodes in the network. We assume there is an objective

function f : 2V × OV → R+ indicating the reward f(A, φ) obtained from actions A under

realization of the world state φ. A policy π can then be represented as a function from

partial realizations ψ to the actions, so that π(ψ) is the action taken by π upon observing

ψ. See Figure 3 for an illustration. If ψ is not in the domain of π, then π terminates upon

observing ψ. Finally, define V (π, φ) to be the set of actions played by π under realization

φ. Informally, two natural optimization problems that arise are to get the most value out
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of a fixed number of actions, and to get a certain amount of value with as few actions as

possible. We formalize these as follows.

Figure 3 A policy and its representation as a decision tree.

Adaptive stochastic maximization. Based on the notation above, the expected reward

of a policy π is

favg(π) := E [f(V (π,Φ),Φ)] =
∑
φ

P [φ] f(V (π, φ), φ).

The goal of the Adaptive Stochastic Maximization problem is to find a policy π∗ such that

π∗ ∈ arg max
π

favg(π) subject to |V (π, φ)| ≤ k for all φ, (17)

where k is a budget on how many actions can be played (e.g., we would like to adaptively

choose k sensor locations such that the selected sensors provide as much information as

possible in expectation).

Adaptive stochastic minimum cost cover. Alternatively, we can specify a quota q of

reward that we would like to obtain, and try to find the cheapest policy achieving that quota

(e.g., we would like to achieve a certain amount of information, as cheaply as possible in

expectation). Formally, we define the average cost cavg(π) of a policy as the expected number

of actions it plays, so that cavg(π) := E [|V (π,Φ)|]. Our goal of this Adaptive Stochastic

Minimum Cost Cover problem is then to find

π∗ ∈ arg min
π

cavg(π) such that f(V (π, φ), φ) ≥ q for all φ, (18)

i.e., the policy π∗ that minimizes the expected number of items picked such that under all

possible realizations, at least reward q is achieved.

Problems (17) and (18) are intractable in general, even to approximate to a factor of

O(|V |1−ε), under reasonable complexity-theoretic assumptions. However, if f is satisfies

certain conditions, which generalize monotonicity and submodularity, then the classic results

bounding the performance of the greedy algorithm generalize. The following definitions are

from (Golovin and Krause, 2011b), and presume that in order to observe ψ, all the actions

in dom(ψ) must have already been performed. They rely on a generalization of the discrete

derivative ∆(v | S) to the adaptive setting.
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Definition 1.11 (Conditional Expected Marginal Benefit) Given a partial realization ψ

and an item v, the conditional expected marginal benefit of v conditioned on having observed

ψ, denoted ∆(v |ψ), is

∆(v |ψ) := E [f(dom(ψ) ∪ {v} ,Φ)− f(dom(ψ),Φ) | ψ] (19)

where the expectation is taken with respect to P [φ | ψ].

Definition 1.12 (Adaptive Monotonicity) A function f : 2V × OV → R+ is adaptive

monotone with respect to distribution P [φ] if the conditional expected marginal benefit of

any item is nonnegative, i.e., for all ψ with P [ψ] > 0 and all v ∈ V we have

∆(v |ψ) ≥ 0. (20)

Definition 1.13 (Adaptive Submodularity) A function f : 2V × OV → R+ is adaptive

submodular with respect to distribution P [φ] if the conditional expected marginal benefit

of any fixed item does not increase as more items are selected and their states are ob-

served. Formally, f is adaptive submodular w.r.t. P [φ] if for all ψ and ψ′ such that ψ is a

subrealization of ψ′ (i.e., ψ ⊆ ψ′), and for all v ∈ V \ dom(ψ′), we have

∆(v |ψ) ≥ ∆(v |ψ′) . (21)

Adaptive submodularity generalizes the classical notion of submodularity, in the sense

that it reduces to submodularity in the case when the world state realization Φ is deter-

ministic. The same is true for adaptive monotonicity. Not surprisingly, there is a natural

generalization of the greedy algorithm as well, called the adaptive greedy algorithm, which

iteratively selects the action maximizing the conditional expected marginal benefit, condi-

tioned on the outcomes of all of its previous actions:

While not done

Select v∗ ∈ arg maxv ∆(v |ψ);

Observe φ(v∗);

Set ψ ← ψ ∪ {(v∗, φ(v∗))};

(22)

For adaptive stochastic maximization, the algorithm terminates after selecting k actions.

For adaptive stochastic minimum cost cover, it stops when it has achieved the quota q of

value, i.e., when it has observed ψ such that f(dom(ψ), φ) ≥ q for all ψ ⊆ φ (treating φ and

ψ as relations, i.e., sets of input–output pairs).

Remarkably, it turns out that the adaptive greedy algorithm has performance guarantees

that generalize various classic results for the greedy algorithm, for example, Theorem 1.5.

Theorem 1.14 (Golovin and Krause 2011b) Let πgreedy
` be the greedy policy implicitly

represented by the pseudocode in (22), run for ` iterations (so that it selects ` actions), and

let π∗k be any policy selecting at most k actions for any realization φ. Then

favg(π
greedy
` ) ≥

(
1− e−`/k

)
favg(π

∗
k) (23)

where recall favg(π) := E [f(V (π,Φ),Φ)] is the expected reward of π.
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Asadpour et al. (2008) prove Theorem 1.14 for a special case of stochastic submodular

maximization. Golovin and Krause (2011b) also provide results for the adaptive stochastic

min-cost cover problem (18) that generalize Theorem 1.6. Furthermore, Golovin and Krause

(2011a) prove generalizations of results for maximizing monotone submodular functions un-

der matroid constraints. Similarly, lazy evaluations (as discussed in §2) can still be applied

to accelerate the adaptive greedy algorithm.

5.2 Example Applications

As mentioned in the beginning of this section, the adaptive submodularity framework has

many applications. In some cases, greedily maximizing an adaptive submodular objective

is already the algorithm of choice in practice. The framework then immediately provides

theoretical justification in the form of approximation guarantees, and allows us to speed

up existing algorithms. One example is active learning in the noiseless case (c.f., Kosaraju

et al. 1999; Dasgupta 2004; Golovin and Krause 2011b), in which we must adaptively select

data points to be labelled for us (at some cost) until we can infer the labeling of all data

points, while attempting to minimize the cost. In some other cases it is possible to frame

the problem in the form of optimizing a carefully designed adaptive submodular objective.

Given such an objective, the adaptive greedy algorithm may be used with this new objective

to obtain a new approximation algorithm for the problem. Recent work on active learning

with noise (Golovin et al., 2010a; Bellala and Scott, 2010), where the labels we receive may

sometimes be incorrect, falls under this category. Active learning with noise can also be

used to tackle sequential experimental design problems, in which an algorithm adaptively

selects experiments to perform in order to distinguish scientific theories.

Another class of problems where adaptive submodularity is useful is for adaptively com-

mitting resources to achieve some goal. For example, in adaptive sensor placement one can

deploy a set of sensors one by one, and decide where to place the next sensor based on the

data obtained from previous sensors. In adaptive viral marketing, one must adaptively select

people to target with a viral ad campaign – for example, to receive a free subscription to

some service – on the premise that some of those targeted will enjoy the service, convince

their friends to join, who will in turn convince their friends, and so on. For more informa-

tion on these applications, see (Golovin and Krause, 2011b). Golovin et al. (2011) consider

a dynamic resource allocation problem for conservation planning, in which a conservation

agency with a fixed annual budget selects additional land parcels to buy each year while at-

tempting to maximize the probability that certain (rare or endangered) species persist in the

wild. Liu et al. (2008) consider a joint query optimization problem for streaming database

systems; their problem is a special case of stochastic set cover, as discussed by Golovin and

Krause (2011b).

5.3 Worst–Case Adaptive Optimization

Guillory and Bilmes (2010, 2011) provide a different recent approach to adaptive optimiza-

tion based on submodularity, tailored to the worst–case scenario in which the outcome of

any action is chosen adversarially. In their model there is a set of hypotheses H, actions V
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with costs c : V → R+, and outcomes O, as well as a set of monotone submodular functions

{fh : h ∈ H} of type 2V×O → R+, and a threshold α ∈ R+. Upon performing action v, an

adversary selects outcome o ∈ v(h∗), where h∗ is an adversarially chosen hypothesis. The

goal is to adaptively select, as cheaply as possible, actions until the resulting set of action–

outcome pairs achieves α reward measured with respect to fh∗ . Guillory and Bilmes provide

elegant reductions of this problem to a standard min-cost submodular cover problem, in-

cluding one which, surprisingly, works even in the presence of certain types of adversarially

selected noise. This allows them to obtain logarithmic approximations for these problems.

They empirically tested their algorithms on a movie recommendation task in which users

are asked a sequence of questions in an attempt to recommend movies for them to watch

immediately.

6 Conclusions

We have reviewed the concept of submodular functions, a natural discrete analogue of con-

vex functions. Focusing on the problem of maximizing submodular functions, we reviewed

guarantees about efficient greedy methods, as well as more complex algorithms that can

handle complex combinatorial constraints. We discussed extensions of submodular opti-

mization to the online (no-regret and secretary) settings, as well as recent generalizations

of submodularity to adaptive (interactive) optimization problems such as active learning.

While much progress was recently made, there are many interesting open problems, such

as developing approximation algorithms for handling yet more general classes of constraints.

In particular, the online- and adaptive extensions are still rather little explored. Lastly,

while we focused on submodular maximization, there is a large literature on submodular

minimization, with many open problems, such as the development of efficient methods

for large-scale submodular minimization, and approximation algorithms for constrained

minimization.

Submodularity is a broadly useful powerful concept, and we believe there are many in-

teresting applications of submodular optimization to machine learning, AI and computer

science in general yet to be discovered.
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Notes

1 The study of submodular functions goes back at least to lattice theory (Bergmann, 1929).
Edmonds (1970) first studied submodular functions in context of discrete optimization. See
(Fujishige, 2005) and (Schrijver, 2003) for an in-depth discussion of submodular functions and
their properties. This chapter focuses on modern results on submodular maximization.

2 There has been extensive research into algorithms for minimizing submodular functions (c.f.,
Fujishige 2005; Schrijver 2003). Interestingly, unconstrained submodular minimization can be
done efficiently, even if f can only be evaluated via a membership oracle (i.e., a black-box
subroutine), whereas unconstrained maximization is NP-hard for general (non-monotone)
submodular functions, since it includes the maximum cut problem as a special case (via the
cut capacity example in Section 1.1). There are also efficient online algorithms for submodular
minimization in the no-regret framework (Hazan and Kale, 2009; Jegelka and Bilmes, 2011b),
which complement the results in Section 4.

3 The SFO toolbox for submodular optimization is available for download under
http://mloss.org/software/view/201/

4 In some applications (c.f., Kempe et al. 2003), calculating f(S) may itself be difficult. In those
cases, we may only be able to approximately evaluate f(S) up to some multiplicative relative
error α. Fortunately, most results about maximizing submodular functions are robust against
such error (c.f., Goundan and Schulz 2007; Calinescu et al. 2011; Streeter and Golovin 2008;
Golovin and Krause 2011b).

5 Empirical evaluations of the online submodular maximization approach to combining
heuristics appear in (Streeter et al., 2008) and (Streeter and Golovin, 2008). Additionally, a
solver named MetaProver 1.0 developed based on these ideas competed in the SAT and FNT
divisions of the 4th International Joint Conference on Automated Reasoning CADE ATP
System Competition (http://www.cs.miami.edu/~tptp/CASC/J4/), where it won both
divisions.

6 In the context of the submodular secretary problem, an algorithm is α-competitive if, in
expectation over the random ordering of the interviews, it obtains at least α times the optimal
value.

7 Note that in contrast with the secretary problems of Section 4.4, in the adaptive optimization
problems of Section 5 the information we acquire depends on what action we select.

8 In general adaptive optimization problems, actions can alter the state of the world, however
the framework described in Section 5 considers cases where the world state is a fixed sample
from the distribution, and does not change in response to our actions.

References

Ageev, A. A., and Sviridenko, M. I. 2004. Pipage Rounding: a New Method of Constructing
Algorithms with Proven Performance Guarantee. Journal of Combinatorial Optimization, 8.

Asadpour, Arash, Nazerzadeh, Hamid, and Saberi, Amin. 2008. Stochastic Submodular Maximiza-
tion. Pages 477–489 of: WINE ’08: Proc. of the 4th International Workshop on Internet and
Network Economics. Berlin, Heidelberg: Springer-Verlag.
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Kempe, David, Kleinberg, Jon, and Tardos, Éva. 2003. Maximizing the spread of influence through
a social network. Pages 137–146 of: KDD ’03: Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. New York, NY, USA: ACM.

Kohli, Pushmeet, Kumar, Pawan, and Torr, Philip. 2009. P3 & Beyond: Move Making Algorithms
for Solving Higher Order Functions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(9), 1645 – 1656.

Kosaraju, S. Rao, Przytycka, Teresa M., and Borgstrom, Ryan S. 1999. On an Optimal Split
Tree Problem. Pages 157–168 of: Proc. of the 6th Intl. Workshop on Algorithms and Data
Structures. London, UK: Springer-Verlag.

Krause, A., and Guestrin, C. 2005. Near-optimal Nonmyopic Value of Information in Graphical
Models. In: Proc. of Uncertainty in Artificial Intelligence (UAI).

Krause, A., and Horvitz, E. 2008. A Utility-Theoretic Approach to Privacy and Personalization.
In: Proc. 23rd Conference on Artificial Intelligence (AAAI), Special Track on AI & the Web.

Krause, A., Guestrin, C., Gupta, A., and Kleinberg, J. 2006. Near-optimal Sensor Placements:
Maximizing Information while Minimizing Communication Cost. In: Proceedings of the Fifth
International Symposium on Information Processing in Sensor Networks (IPSN).

Krause, A., Singh, A., and Guestrin, C. 2008a. Near-optimal Sensor Placements in Gaussian Pro-
cesses: Theory, Efficient Algorithms and Empirical Studies. In: Journal of Machine Learning
Research, vol. 9.

Krause, Andreas. 2010. SFO: A Toolbox for Submodular Function Optimization. Journal of
Machine Learning Research (JMLR), 11, 1141–1144.

Krause, Andreas, and Guestrin, Carlos. 2007. Near-optimal observation selection using submodular
functions. Pages 1650–1654 of: AAAI’07: Proceedings of the 22nd national conference on
Artificial intelligence. AAAI Press.



Submodular Function Maximization 27

Krause, Andreas, Leskovec, Jure, Guestrin, Carlos, VanBriesen, Jeanne, and Faloutsos, Christos.
2008b. Efficient Sensor Placement Optimization for Securing Large Water Distribution Net-
works. Journal of Water Resources Planning and Management, 134(6), 516–526.

Krause, Andreas, McMahan, Brendan, Guestrin, Carlos, and Gupta, Anupam. 2008c. Robust Sub-
modular Observation Selection. Journal of Machine Learning Research (JMLR), 9(December),
2761–2801.

Krause, Andreas, Rajagopal, Ram, Gupta, Anupam, and Guestrin, Carlos. 2009. Simultaneous
Placement and Scheduling of Sensors. In: In Proc. ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN).

Krause, Andreas, Roper, Alex, and Golovin, Daniel. 2011a. Randomized Sensing in Adversarial
Environments. In: IJCAI ’11: Proceedings of the 22nd International Joint Conference on
Artificial Intelligence. To appear.

Krause, Andreas, Guestrin, Carlos, Gupta, Anupam, and Kleinberg, Jon. 2011b. Robust Sen-
sor Placements at Informative and Cost-Effective Locations. ACM Transactions on Sensor
Networks, 7(4).

Kulik, A., Shachnai, H., and Tamir, T. 2009. Maximizing submodular functions subject to multiple
linear constraints. In: Proc. of ACM-SIAM SODA.

Leskovec, Jure, Krause, Andreas, Guestrin, Carlos, Faloutsos, Christos, VanBriesen, Jeanne, and
Glance, Natalie. 2007. Cost-effective outbreak detection in networks. Pages 420–429 of: KDD
’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining. New York, NY, USA: ACM.

Lin, Hui, and Bilmes, Jeff. 2011. A Class of Submodular Functions for Document Summariza-
tion. In: In North American chapter of the Association for Computational Linguistics/Human
Language Technology Conference (NAACL/HLT-2011).

Liu, Zhen, Parthasarathy, Srinivasan, Ranganathan, Anand, and Yang, Hao. 2008. Near-optimal
algorithms for shared filter evaluation in data stream systems. Pages 133–146 of: SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data.
New York, NY, USA: ACM.

Lovasz, L. 1983. Submodular functions and convexity. Mathematical Programming - State of the
Art, 235–257.

Minoux, M. 1978. Accelerated greedy algorithms for maximizing submodular set functions. Opti-
mization Techniques, LNCS, 234–243.

Munagala, Kamesh, Babu, Shivnath, Motwani, Rajeev, Widom, Jennifer, and Thomas, Eiter. 2005.
The pipelined set cover problem. Pages 83–98 of: Proceedings of the International Conference
on Database Theory.

Narasimhan, Mukund, and Bilmes, Jeff. 2004. PAC-learning bounded tree-width Graphical Models.
In: Uncertainty in Artificial Intelligence.

Narasimhan, Mukund, Jojic, Nebojsa, and Bilmes, Jeff. 2005. Q-clustering. In: NIPS.

Nemhauser, G. L., and Wolsey, L. A. 1978. Best algorithms for approximating the maximum of a
submodular set function. Math. Oper. Research, 3(3), 177–188.

Nemhauser, G. L., and Wolsey, L. A. 1981. Maximizing submodular set functions: formulations and
analysis of algorithms. Studies on Graphs and Discrete Programming, volume 11 of Annals of
Discrete Mathematics.

Nemhauser, George L., Wolsey, Laurence A., and Fisher, Marshall L. 1978. An analysis of approx-
imations for maximizing submodular set functions - I. Mathematical Programming, 14(1),
265–294.

Radlinski, Filip, Kleinberg, Robert, and Joachims, Thorsten. 2008. Learning Diverse Rankings
with Multi-Armed Bandits. Pages 784–791 of: ICML.

Schrijver, Alexander. 2003. Combinatorial optimization : polyhedra and efficiency. Volume B, Part
IV, Chapters 39-49. Springer.



28

Schulman, John D., Goldberg, Ken, and Abbeel, Pieter. 2011. Grasping and Fixturing as Submod-
ular Coverage Problems. In: ISRR.

Singh, Amarjeet, Krause, Andreas, Guestrin, Carlos, Kaiser, William J., and Batalin, Maxim A.
2007 (January). Efficient Planning of Informative Paths for Multiple Robots. Pages 2204–2211
of: International Joint Conference on Artificial Intelligence (IJCAI).

Singh, Amarjeet, Krause, Andreas, and Kaiser, William. 2009. Nonmyopic Adaptive Informative
Path Planning for Multiple Robots. In: Proc. International Joint Conference on Artificial
Intelligence (IJCAI).

Stobbe, Peter, and Krause, Andreas. 2010. Efficient Minimization of Decomposable Submodular
Functions. In: Proc. Neural Information Processing Systems (NIPS).

Streeter, Matthew, and Golovin, Daniel. 2007. An Online Algorithm for Maximizing Submodular
Functions. Tech. rept. CMU-CS-07-171. Carnegie Mellon University.

Streeter, Matthew, and Golovin, Daniel. 2008. An Online Algorithm for Maximizing Submodular
Functions. Pages 1577–1584 of: NIPS.

Streeter, Matthew, Golovin, Daniel, and Smith, Stephen F. 2007a. Combining Multiple Heuristics
Online. Pages 1197–1203 of: AAAI ’07: Proceedings of the Twenty–Second AAAI Conference
on Artificial Intelligence. Menlo Park, California: AAAI Press.

Streeter, Matthew, Golovin, Daniel, and Smith, Stephen F. 2007b. Restart Schedules for Ensembles
of Problem Instances. Pages 1204–1210 of: AAAI ’07: Proceedings of the Twenty–Second AAAI
Conference on Artificial Intelligence. Menlo Park, California: AAAI Press.

Streeter, Matthew, Golovin, Daniel, and Smith, Stephen F. 2008. Combining Multiple Constraint
Solvers: Results on the CPAI’06 Competition Data. Pages 11–18 of: Proceedings of the Second
International CSP Solver Competition.

Streeter, Matthew, Golovin, Daniel, and Krause, Andreas. 2009. Online Learning of Assignments.
Pages 1794–1802 of: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., and Culotta,
A. (eds), NIPS ’09: Advances in Neural Information Processing Systems 22.

Sviridenko, M. 2004. A Note on Maximizing a Submodular Set Function Subject to Knapsack
Constraint. Operations Research Letters, 32, 41–43.
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