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Abstract
Outliers are ubiquitous in modern data sets.
Distance-based techniques are a popular non-
parametric approach to outlier detection as they re-
quire no prior assumptions on the data generating
distribution and are simple to implement. Scaling
these techniques to massive data sets without sacri-
ficing accuracy is a challenging task. We propose
a novel algorithm based on the intuition that out-
liers have a significant influence on the quality of
divergence-based clustering solutions. We propose
sensitivity – the worst-case impact of a data point
on the clustering objective – as a measure of outlier-
ness. We then prove that influence – a (non-trivial)
upper-bound on the sensitivity can be computed by
a simple linear time algorithm. To scale beyond a
single machine, we propose a communication effi-
cient distributed algorithm. In an extensive exper-
imental evaluation, we demonstrate the effective-
ness and establish the statistical significance of the
proposed approach. In particular, it outperforms the
most popular distance-based approaches while be-
ing several orders of magnitude faster.

1 Introduction
“An outlying observation, or outlier, is one that appears to de-
viate markedly from other members of the sample in which
it occurs” [Grubbs, 1969]. Outliers are ubiquitous in modern
data sets. Due to noise, uncertainty and adversarial behavior,
such observations are inherent to many real-world problems
such as fraud detection, activity monitoring, intrusion detec-
tion and many others. Discriminating outliers from normal
(inlier) data has been extensively studied both in statistics and
machine learning [Hodge and Austin, 2004].

The classic parametric approach is to assume the underly-
ing distribution (e.g., a Gaussian mixture), estimate the pa-
rameters on the data set, and discriminate the inliers from the
outliers by means of a statistical test. Estimating parameters
of such models can be computationally intensive, it requires
a set of “normal” data for training, and it fails if the assump-
tions are invalidated [Papadimitriou et al., 2003]. An alter-
native, non-parametric technique is to embed the instances
into a metric space and use distances between the instances

as an indication of outlierness. The following generally ac-
cepted definition is due to Knorr et al. (2000) and general-
izes several statistical outlier detection tests: An object x in
a data set X is an (α, δ)-outlier if at least a fraction α of the
objects in X are at a distance greater than δ from x. The
definition was extended by Ramaswamy et al. (2000) who
propose the following definition: Given two integers, k and
m, an object x ∈ X is deemed an outlier if less than m ob-
jects have a larger distance to the kth nearest neighbor than
x. Finally, Angiulli and Pizzuti (2002) suggested yet another
extension whereby the objects are ranked by the sum of dis-
tances from the k nearest objects. These definitions imply
that one can compute the outlierness score based entirely on
pairwise distances. The popularity of these techniques lies in
the fact that they are easy to implement and require no prior
assumptions on the data generating distribution. As a result,
distance-based methods are ubiquitous in supervised as well
as unsupervised outlier detection.

The aforementioned methods are inherently non-scalable
as they require the computation of pairwise distances be-
tween all input points. A traditional approach to scaling-up
distance-based techniques is indexing whereby one creates a
data structure that provides approximate answers to nearest-
neighbor type queries [Liu et al., 2006; Arya et al., 1998].
An alternative approach is to compute the distances only with
respect to some subset of the data set. The issue with the for-
mer technique is that the effectiveness of the data structure
drastically reduces with the increase in dimensionality. For
the latter techniques it is unclear how much accuracy is sac-
rificed for performance and how to reduce the variance of the
estimated scores.

Our contributions. We provide a linear-time and space tech-
nique for outlier detection. Based on the intuition that outliers
severely influence the result of (distance-based) clustering,
we show that sensitivity – the worst case impact of a point on
all possible clusterings – is an effective measure for the out-
lierness of a point. We show how to approximate this mea-
sure and prove that in general a better approximation is not
possible. Furthermore, we show that the proposed method
is robust with respect to the choice of the distance function.
We demonstrate the effectiveness of the proposed algorithm
by comparing it to a variety of state-of-the-art distance-based
techniques on real-world as well as synthetic data sets.



2 Background and Related Work
We start by describing the framework used to compare
the most popular distance-based outlier detection schemes.
Given a metric space (M,d) and a set X = {xi}ni=1 ⊆ M,
let q : M → [0,+∞) be a function that assigns an outlier-
ness score to each x ∈ X . The scoring function q in conjunc-
tion with a threshold δ ∈ [0, 1] implies a binary classifier

fq,δ(x) =

{
1 q(x) ≥ δ
0 otherwise.

We proceed by parameterizing the most popular distance-
based outlier detection algorithms.

Nearest neighbors (KNN). The most popular distance-based
technique was developed by Knorr et al. (2000), wherein an
object x ∈ X is deemed an (α, δ)-outlier if at least a fraction
α of all objects are more than δ away from x. Formally, if

|{x′ ∈ X | d(x, x′) > δ}| ≥ αn. (1)

Motivated by the problem of finding a good setting for the
parameters α and δ, Ramaswamy et al. (2000) developed an
algorithm based on k nearest neighbors (KNN): outlierness
score is equal to the distance to the k-th nearest neighbor, i.e.

q(x) := dk(x,X ),

where d(x, S) = miny∈S d(x, y). Setting α = (n−k)/n the
set of outliers defined by Equation 1 is the set of outliers

{x ∈ X | q(x) ≥ δ}.

Density-based local outliers (LOF). Breunig et al. (2000)
propose an algorithm which compares the local density
around a point with that of its neighbors. Intuitively, points
with scores significantly larger than one are more likely to
be outliers. Formally, let dk(x,X ) be the distance of x
to its k-th nearest neighbor and let Nk(x) be the set of k
nearest neighbors of x. Reachability-distance is defined as
dr(x, y) = max{dk(y,X ),d(x, y)} and the local reachabil-
ity density as LRD(x) = |Nk(x)|/

∑
y∈Nk(x) dr(x, y). Fi-

nally, the outlierness score is computed as

q(x) :=

∑
y∈Nk(x) LRD(y)

|Nk(x)| LRD(x)
.

Clustering. A natural idea is to first partition the points into
clusters and then use the distance to the closest cluster cen-
ter as the outlierness measure. A popular choice is to run
k-means and use the squared Euclidean distance to the clos-
est center as the measure of outlierness [Hodge and Austin,
2004]. Formally, given the cluster centers S, one defines

q(x) := d(x, S).

Iterative sampling. To scale-up the nearest neighbors ap-
proach, Wu and Jermaine (2006) compute distances from
each x ∈ X to a random subsample Sx ⊆ X (different for
each x) and define

q(x) := dk(x, Sx).

One-time sampling. Instead of sampling a random subsam-
ple for each object, Sugiyama and Borgwardt (2013) propose
sampling a random subsample S ⊂ X and define

q(x) := dk(x, S).

Other methods. In this paper we focus on scalable
unsupervised distance-based techniques with no prior as-
sumptions on the data generating distribution. Hence, we
do not consider One-class SVMs [Schölkopf et al., 1999]
nor parametric models in which an underlying probabil-
ity density is assumed (such as fitting mixtures of Gaussians).

Discussion. The main issue with KNN and LOF is the compu-
tational complexity of O

(
n2d
)
, where d is the dimension of

the underlying metric space. Some speedups can be obtained
for low dimensional data sets by using KD-trees (or Ball-
trees) to approximate the nearest neighbor queries [Liu et al.,
2006]. However, this approach can perform as bad as exhaus-
tive search for higher dimensional data. Both iterative sam-
pling and one-time sampling reduce the computational com-
plexity to O(nds), where s is the subsample size. However,
it is unclear how much accuracy is traded for scalability. The
main concern with the subsampling approaches is the “naive”
nature of the sample. While it is argued that in expectation
both algorithms should approximate KNN, it is critical to con-
trol the variance of the estimate. In fact, given an imbalanced
data set, a random sample will with high probability contain
only the samples from the large clusters. In the experimental
section we show that this is indeed a valid concern. The main
drawback of the CLUSTERING approach is that it completely
disregards the density of points in each cluster which makes
it extremely sensitive to imbalanced data.

3 Sensitivity as a Measure of Outlierness
The intuition behind our approach is that outliers have a large
impact on the quality of distance-based clustering solutions
[Charikar et al., 2001; Hautamäki et al., 2005]. Figure 1 il-
lustrates this with an example. We argue that sensitivity – the
worst-case impact of a data point over all k-clusterings – is a
natural measure of outlierness.

In a k-clustering problem (e.g. k-means) the goal is to min-
imize some additively decomposable distortion measure, i.e.

cost(X , Q) =
1

|X |
∑
x∈X

fQ(x)

where Q ∈ Q is a possible clustering solution with |Q| = k
and fQ(x) is the cost contribution of a single point x ∈ X .
The sensitivity of a point is defined as the maximal ratio
between its contribution and the average contribution, i.e.

σ(x) = sup
Q⊆Q

fQ(x)
1
|X |
∑
x′∈X fQ(x′)

.

This concept was introduced by Langberg and Schulman
(2010) in the context of integration by weighted sampling.
One of the most prominent applications of sensitivity is con-
structing coresets — small weighted subsets of the data set
that approximate the cost function uniformly over all cluster-
ings Q ∈ Q [Feldman and Langberg, 2011]. Intuitively, one



a) Clustering with outliers b) Clustering without outliers

Figure 1: (a) Voronoi tessellation induced by a 3-means solution (red) on the data set (black) containing the outliers (green).
(b) Optimal 3-means solution when outliers are removed. Even in this simple case, outliers have a significant impact.

wants to sample the points that have a big impact on the ob-
jective function. In contrast, we propose influence – an upper
bound on the sensitivity – as a direct measure of outlierness.

Specifically, for k-means clustering, arguably the most
popular distance-based k-clustering problem, we define

fQ(x) = d(x,Q)2 = min
q∈Q
‖x− q‖22,

whereQ ∈ Rd×k and x ∈ X ⊂ Rd. The sensitivity of a point
x ∈ X is thus

σ(x) = sup
Q∈Rd×k

d(x,Q)2

1
|X |
∑
x′∈X d(x′, Q)2

.

In general, σ(x) cannot be efficiently computed as the supre-
mum is with regards to all possible sets of k points in Rd.

Influence. We upper-bound the sensitivity σ(x) by means of
a surrogate function s(x) uniformly over x ∈ X such that
this bound is as tight as possible. To this end, let s(x) be
an upper-bound for σ(x) and consider the difference between
s(x) and σ(x). By definition,

∆ =
1

|X |
∑
x∈X
|s(x)−σ(x)| = 1

|X |
∑
x∈X

s(x)− 1

|X |
∑
x∈X

σ(x).

Hence, obtaining a good approximation for σ(x) is equivalent
to minimizing

S =
1

|X |
∑
x∈X

s(x)

over all upper bounds s(x). A naive approach is to use
s(x) = nwhich is valid by definition. However, such a trivial
bound is useless for detecting outliers as it assigns the same
outlierness score to all points. In what follows we illustrate
how recent approaches to coreset construction can be used to
efficiently obtain a much better, non-trivial bound.1

1Coresets are small summaries of the data set which guarantee
that the solution on the summary is approximately the same as the
solution on the original data set.

Lucic et al. (2016) propose a method that uses approxi-
mate clustering solutions to bound the sensitivity of each
point. First, a rough approximation of the optimal solu-
tion is obtained by running the adaptive seeding step K-
MEANS++ [Arthur and Vassilvitskii, 2007]. Such a solution
B = {b1, . . . , bk} is already O(log k) competitive with the
optimal k-clustering solution.2 The approximate clustering
B induces a Voronoi partitioning on the data set X whereby
the points x ∈ X are assigned to their closest center in B.
Based on this approximate solution, one can derive the fol-
lowing bound on the sensitivity:

s(x) =
2α d(x, bx)2

c̄B︸ ︷︷ ︸
(A)

+
4α
∑
x′∈Xx d(x′, bx)2

|Xx|c̄B︸ ︷︷ ︸
(B)

+
4n

|Xx|︸︷︷︸
(C)

(2)

where c̄B = 1
n

∑
x′∈X d(x′, B)2, bx is the closest center in

B to x in terms of the squared Euclidean distance, and by Xx
the set of all points x′ ∈ X such that bx = bx′ . Furthermore,
if α = 16(log2 k + 2), s(x) is a uniform upper bound for the
influence (i.e. σ(x) ≤ s(x), ∀x ∈ X ) and S = O(k).

We show that, for general data sets, this bound cannot be
improved by more than a constant.
Theorem 1. There exists a data set X such that

S =
1

|X |
∑
x∈X

σ(x) = Ω(k).

Proof. Consider a data set of size n partitioned into k sets of
n/k data points such that all points in a single set are located
at the same location, but points in different sets are well sep-
arated. Now fix one of the sets and consider the clustering
solution where one cluster center is situated

√
ε > 0 from the

location of this set, and k − 1 cluster centers are located at
the points of the other sets. The average cost of this solution
is ε/k. Hence, for all points of this set the influence σ(x) is
lower bounded by k. Since the choice of the set was arbitrary
and ε is a constant, it follows that k is a uniform lower bound
for the influence σ(x).

2Under natural assumptions on the data, a bicriteria approxima-
tion can even be computed in sublinear time [Bachem et al., 2016].



a) Data set with outliers (green) b) Rough approximation (red) c) Influence of each point

Figure 2: (a) Synthetic data set consisting of three clusters (black) and uniformly placed outliers (green). (b) Rough approxi-
mation (red). (c) The size of the points is proportional to the influence. Note that the influence increases when we move further
away from the approximate solution or to regions with lower point density. One clearly recognizes the outlying points.

Natural interpretation. In the context of outlier detection,
influence defined by Equation 2 has a rather natural interpre-
tation. In fact, the terms (A)-(C) correspond to:
(A) Local outlierness: Outlierness increases with the dis-

tance from the cluster mean.
(B) Cluster spread: Outlierness of points belonging to clus-

ters with larger variance increases.
(C) Inverse cluster density: Outlierness decreases if the

cluster is more dense.
Hence, the notion of influence generalizes several outlier de-
tection methods. By considering only the terms (A) and (C),
we recognize a variant of the reference-based outlier detec-
tion method by Pei et al. (2006) where both density and dis-
tances are considered. Considering only the term (C) reduces
to detecting low density clusters. Considering only the term
(A) yields the clustering-based approach.

Generality and robustness. In practice, the most used di-
vergence measure is the squared Euclidean distance. If the
underlying distribution is a multivariate Gaussian, this choice
is justified. Lucic et al. (2016) show that the bound defined in
Equation 2 is a valid upper bound for a general class of Breg-
man divergences (such as squared Euclidean, Mahalanobis
and KL-divergence). Due to the close relationship between
Bregman divergences and the exponential family mixtures,
INFLUENCE is robust with respect to the choice of the diver-
gence measure and, by extension, to the underlying distribu-
tion. From this perspective, outlierness of a point corresponds
to its impact on the likelihood of the data, under the given reg-
ular exponential family mixture.

The model selection problem – choosing the right value of
k – is unavoidable. To this end we propose a robust variance
reduction technique: compute the influence s(x) for differ-
ent values of k and then average the resulting functions to
produce a final measure of outlierness. INFLUENCE can be
efficiently computed for various values of k as the approxi-
mate clustering solutions can be computed for all values of k
in a single pass.

4 Efficient Computation of Influence
Building on the approach of Lucic et al. (2016), we com-
pute a bound on the sensitivity of each point. The resulting

Algorithm 1 INFLUENCE

Require: X , k
Uniformly sample x ∈ X and set B = {x}.
for i← 2, 3, . . . , k do

Sample x ∈ X with probability d(x,B)2∑
x′∈X d(x′,B)2 .

B ← B ∪ {x}.
α← 16(log2 k + 2)
for each bi in B do
Pi ← Set of points from X closest to bi.

cφ ← 1
|X |
∑
x′∈X d(x′, B)2

for each bi ∈ B and x ∈ Pi do
s(x)← α d(x,B)2

cφ
+

2α
∑
x′∈Pi

d(x′,B)2

|Pi|cφ + 4|X |
|Pi|

return s

algorithm is detailed in Algorithm 1 and the computational
complexity is characterized by the following proposition.
Proposition 1. Let X ⊂ Rd and k be a positive integer. Al-
gorithm 1 calculates the influence s(x) for x ∈ X as defined
in Equation 2 in time O(nkd) and O(nd) space.
Distributed computation. To scale beyond a single machine
we provide a communication efficient algorithm that com-
putes the influence based on a divide-and-conquer technique.
We focus on the setting in which we have access to m worker
machines and one master machine that is used to synchro-
nize the workers (equivalently, one might have access to a
large machine with multiple cores). To obtain an approximate
clustering, we use the k-means‖ algorithm Bahmani et al.
(2012) which distributes the computation of k-means++,
while retaining the same theoretical guarantees. The remain-
ing challenge is to compute the influence which depends not
only on the local information (distance to B), but also on on
the cluster densities and spread. These quantities can be com-
puted efficiently with minimal overhead as detailed in Algo-
rithm 2. The following proposition bounds the computational
and communication complexity.
Proposition 2. Let X ⊂ Rd, m and k be positive integers.
Algorithm 2 computes the influence s(x) for x ∈ X as defined
in Equation 2 in timeO(nkd(log n)/m) with additional com-
munication cost of O(n+ k).



EXHAUSTIVE LINEAR

KNN KNN KD LOF LOF TREE CLUSTER ITERATIVE ONETIME INFLUENCE

IONOSPHERE 0.927 0.927 0.842 0.842 0.877 ± 0.025 0.552 ± 0.033 0.846 ± 0.049 0.952 ± 0.008
MFEAT 0.679 0.679 0.498 0.498 0.503 ± 0.111 0.286 ± 0.053 0.573 ± 0.103 0.666 ± 0.038
ARRHYTHMIA 0.709 0.709 0.656 0.656 0.674 ± 0.012 0.601 ± 0.021 0.692 ± 0.011 0.722 ± 0.009
WDBC 0.612 0.612 0.425 0.425 0.554 ± 0.034 0.489 ± 0.022 0.597 ± 0.059 0.649 ± 0.011
SEGMENTATION 0.475 0.475 0.448 0.448 0.423 ± 0.194 0.138 ± 0.042 0.367 ± 0.099 0.514 ± 0.046
PIMA 0.514 0.514 0.403 0.403 0.464 ± 0.009 0.411 ± 0.014 0.485 ± 0.033 0.541 ± 0.006
GAUSS-1K 1.000 1.000 1.000 1.000 0.814 ± 0.054 0.018 ± 0.000 0.956 ± 0.131 1.000 ± 0.000
OPTDIGITS 0.189 0.189 0.158 0.158 0.192 ± 0.040 0.072 ± 0.012 0.149 ± 0.022 0.188 ± 0.013
MNIST-2D 0.127 0.127 0.060 0.060 0.117 ± 0.036 0.022 ± 0.020 0.087 ± 0.019 0.159 ± 0.015
SPAMBASE 0.418 0.418 0.428 0.428 0.404 ± 0.013 0.391 ± 0.005 0.411 ± 0.015 0.424 ± 0.004
KDDCUP-100K - 0.426 - 0.579 0.732 ± 0.050 0.404 ± 0.002 0.695 ± 0.057 0.712 ± 0.007
GAUSS-1M - 1.000 - 0.500 1.000 ± 0.000 0.000 ± 0.000 0.942 ± 0.231 1.000 ± 0.000
KDDCUP-FULL - - - - 0.355 ± 0.037 0.204 ± 0.021 0.291 ± 0.163 0.642 ± 0.016

AVERAGE 0.565 0.590 0.492 0.500 0.547 0.276 0.546 0.628
AVG. RANK 3.900 2.583 6.800 5.333 4.077 7.077 4.769 1.615
RMSD 0.023 0.091 0.116 0.184 0.118 0.465 0.120 0.007

Table 1: Performance measured by AUPRC on both real-world and synthetic data sets. The influence-based algorithm out-
performs the competing linear-time as well as quadratic-time algorithms. We note that the average score and RMSD for the
exhaustive methods presented in the table are optimistic as we ignore the instances for which the method failed to run.

Algorithm 2 DISTRIBUTED INFLUENCE

Require: X , m, k, α
Partition X ← {X1, . . . ,Xm} to m workers.
Run k-means|| and communicate solutionB to all workers.
for all j ← 1, . . . ,m in parallel do

for each bi in B do
Pij ← Points from Xj closest to bi.
nij ← |Pij |, eij ←

∑
p∈Pij d(p, bi)

Communicate {(nij , eij)}ki=1 to master.
for all i← 1, . . . , k do
n?i ←

∑m
j=1 nij , e

?
i ←

∑m
j=1 eij

Communicate {(n?i , e?i )}ki=1 and |X | to all workers.
for all j ← 1, . . . ,m in parallel do

for all i← 1, . . . , k and x ∈ Pij do
s(x)← α|X | d(x,B)2∑k

i=1 e
?
i

+
2α|X |e?i

n?i
∑k
i=1 e

?
i

+ 4|X |
n?i

return s

5 Experiments
In this section we demonstrate that influence is an effective
measure of outlierness. We evaluate the proposed algorithm
on both real-world and synthetic data sets.
Evaluation measure. Precision-recall curves illustrate
the performance of a binary classifier as its discrimination
threshold is varied. They are closely-related to receiver
operating characteristic (ROC), but are more suited for
imbalanced data sets [Goadrich et al., 2006]. We use the area
under the precision-recall curve (AUPRC) as a single number
summary. Given an outlierness function q and a threshold δ
we construct the binary classifier defined in Section 2.
Data sets. The experimental evaluation is applied on a va-
riety of real-world data sets available on UCI [Asuncion and
Newman, 2007] as well as on synthetic data sets. As most

of the data sets were intended as classification tasks we opted
for the following setup commonly used in the literature:

1. All instances in the smallest class are outliers [Sugiyama
and Borgwardt, 2013].

2. A subset of classes is deemed as inliers and three ele-
ments of the remaining classes are selected as outliers
[Kriegel and Zimek, 2008; Hodge and Austin, 2004].

The relevant information is summarized in Table 2. The value
“S” in the IN column implies the first strategy. Otherwise, it
represents the inlier classes which were selected following
Kriegel and Zimek (2008). For the synthetic data sets, we
follow the approach from Sugiyama and Borgwardt (2013)
and generate inliers from a Gaussian mixture model with 5
equally weighted components and 30 outliers from a uniform
distribution in the range from the minimum to the maximum
values of inliers. We standardize the features to zero mean
and unit variance.

DATA SET N D IN

IONOSPHERE 351 34 S
MFEAT 424 651 3, 9
ARRHYTHMIA 452 279 S
WDBC 569 30 S
SEGMENTATION 675 16 1, 2
PIMA 768 8 S
GAUSS-1K 1030 1000 −
OPTDIGITS 1155 64 3, 9
MNIST-2D 2852 2 3, 9
SPAMBASE 4601 57 S
KDDCUP-100K 100000 3 S
GAUSS-1M 1000030 20 −
KDDCUP-FULL 4898431 3 S

Table 2: Data set size, dimension, and inlier classes.



a) KNN b) LOF c) Iterative

d) Clustering e) Influence f) Example outliers

Figure 3: The MNIST data set embedded in 2D using t-SNE. The color clouds correspond to digits (e.g. red cloud corresponds
to digit one) and the black points are the 64 points with the highest outlierness scores according to (a) KNN (b) LOF, (c)
ITERATIVE SAMPLING, (d) CLUSTERING, (e) INFLUENCE. (f) Examples of outliers found by the proposed algorithm.

Parameters. We follow the parameter settings commonly
used or suggested by the authors. For KNN and LOF we set
k = 10 and k = 5, respectively [Bay and Schwabacher, 2003;
Bhaduri et al., 2011; Orair et al., 2010]. For both ONE-TIME
SAMPLING and ITERATIVE SAMPLING we set s = 20 and ad-
ditionally k = 5 for ITERATIVE SAMPLING [Sugiyama and
Borgwardt, 2013]. As our proposal, we apply Algorithm 1
with model averaging and k ∈ ∪15i=1{500/i}. For each al-
gorithm with a random selection process we average 30 runs
and we present the mean and variance of the AUPRC score.3

Discussion. Figure 3 provides some insight on outlier de-
tection algorithms applied to the MNIST data set of hand-
written digits. We embedded the data set in two dimen-
sions using t-Distributed Stochastic Neighbor Embedding
[Van Der Maaten, 2014] and assigned a color to each digit
(e.g. the rightmost red region represents all instances of digit
one). Due to the embedding, most outlying points lie be-
tween the point clusters. Clearly, KNN and INFLUENCE per-
form well and detect the between-cluster outliers. ITERA-
TIVE SAMPLING tends to select points that are on the cluster
boundary which implies that the chosen subsample is close

3The algorithms are implemented in Python 2.7 using NumPy
and SciPy libraries and Cython for performance critical operations.
The experiments were ran on Intel Xeon 3.3GHz machine with 36
cores and 1.5TB of RAM.

to the mean of the data. The CLUSTERING approach is ex-
tremely sensitive to the initialization as well as the shape of
the clusters. The LOF algorithm selects several outliers, but
tends to overestimate the density which results in low perfor-
mance on this data set.

The performance in terms of AUPRC is shown in Table 1.
The proposed algorithm enjoys the lowest average root mean
squared deviation (RMSD) from the best AUPRC among all
methods. The AUPRC is statistically higher than that of any
competing method (Mann-Whitney-Wilcoxon, α = 0.001).
Furthermore, it outperforms the baseline exhaustive methods
(KNN and LOF) on 12 out of 13 data sets.

Running the exhaustive methods on larger data sets is not
feasible due to the excessive computational and space re-
quirements. To this end, we also compare against KNN with
KD-TREES and LOF with BALL-TREES. On the GAUSS-1M
data set we obtain a 27-fold speedup over the approximate
KNN and 40-fold speedup over the approximate LOF. On
KDDCUP-FULL the influence was computed in less than 10
minutes, while the computation time exceeds 24 hours for the
exhaustive methods.
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[Hautamäki et al., 2005] Ville Hautamäki, Svetlana Chered-
nichenko, Ismo Kärkkäinen, Tomi Kinnunen, and Pasi
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