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ABSTRACT
In this paper, we present a methodology for recognizing
seated postures using data from pressure sensors installed
on a chair. Information about seated postures could be used
to help avoid adverse effects of sitting for long periods of
time or to predict seated activities for a human-computer in-
terface. Our system design displays accurate near-real-time
classification performance on data from subjects on which
the posture recognition system was trained by using a set of
carefully designed, subject-invariant signal features. By us-
ing a near-optimal sensor placement strategy, we keep the
number of required sensors low thereby reducing cost and
computational complexity. We evaluated the performance of
our technology using a series of empirical methods includ-
ing (1) cross-validation (classification accuracy of 87% for
ten postures using data from 31 sensors), and (2) a physical
deployment of our system (78% classification accuracy using
data from 19 sensors).
ACM Classification H.5.2 User Interfaces: Haptic I/O, User-
centered design. J.7 Computers in other systems: Consumer
products.
General Terms Algorithms, Design, Human Factors
Keywords: Haptic interfaces, sensor technologies, machine
learning, personal technologies, ubiquitous computing.
INTRODUCTION
Many people spend a large part of their day sitting in an of-
fice chair, lounge chair or car seat. The ubiquity of seated
activities in the workplace, home, and while commuting
makes seating an interesting context for human-computer in-
terfaces, specifically in ubiquitous computing applications
and multi-modal user interfaces. While seating related is-
sues, in particular discomfort and pressure sores, have re-
ceived particular attention in military [9], workplace [21],
assisted living [3, 28, 37] and mobility contexts [1, 23, 38],
only a few have suggested seating as a part of a user interface
[24, 29, 40, 41, 44].
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Figure 1: On the left is the commercially-available Tekscan
ConforMat system (2048 sensors) installed on a Herman
Miller Aeron Chair. On the right is our deployed system (19
sensors) installed on the same model of chair.

In this paper, we consider the problem of recognizing posture
which has been shown to be a primary measure of sitting
comfort (and discomfort) [12] and a predictor for attention
[24, 29], fatigue [18], and physical wellness [33]. We assess
posture using a set of pressure sensors deployed in the seat
and back of a chair. We have identified five domains where
seated posture recognition could play a vital role.
Home In the home, a robotic chair could identify a pattern
of postures and adjust itself to support the user’s postural
needs. For instance, if the user is falling asleep in a chair,
the chair could identify the change in the user’s posture over
a window of time, infer that the user wants to sleep, and ad-
just the headrest appropriately [13].
Office Identifying posture patterns could help avoid prob-
lems caused by sitting in unhealthy postures for extended
periods. Users could be made aware of these patterns and
provided with recommendations.
Classroom Through identifying a pattern in a student’s pos-
ture, an intelligent tutor could infer whether the student is
interested or attending.
Automotive Posture information over a window of time
could be used to infer the driver’s level of drowsiness and at-
tention. Such an application might improve the robustness of
existing vision-based technologies that are sensitive to light-
ing conditions and changes in the driver’s appearance.



Assistive Technology Posture information could be used by
an intelligent wheelchair to help avoid seating ulcers. The
chair could make minor adjustments on its surface or advise
the user to change postures.
In this paper, we present an approach to seated posture recog-
nition that provides a robust, inexpensive system with near-
real-time prediction performance. Our methodology involves
iterative design, where we (1) improve the design of our sys-
tem through a series of experiments (using data produced by
previous work [40, 41, 44]), and (2) prototype and evalu-
ate our system design (with data collected from naive human
subjects). Our final design displays accurate near-real-time
classification performance on unfamiliar subjects by using a
set of carefully designed, subject-invariant signal features.
More specifically, we provide the following contributions:
• Robust generalizability: A methodology for classification

of postures, which achieves robust recognition on unfamil-
iar subjects.

• Low cost: A near-optimal sensor placement approach,
which achieves classification rates similar to those reported
in the literature [40, 41, 44] using less than 1% of the sen-
sors (3% of the cost of a commercially available system).

• Near-real-time performance: A deployment of our classi-
fier, which works in near-real-time (10Hz) on a standard
desktop computer.

We evaluate the performance of our system using a set of em-
pirical experiments including cross-validation using a large
data set provided by the authors of [40], a physical imple-
mentation of our system to evaluate deployed performance,
and cross-validation using data collected from 20 naive users
on our deployed system.
The next section provides a summary of related work. The
following section provides detail on the techniques we em-
ployed to develop our classification technology. We then de-
scribe the empirical evaluations we conducted to assess the
performance of our technology. In the last two sections, we
highlight some of the open questions related to our work and
summarize our contributions.

RELATED WORK
Posture recognition has been used to detect irregular behav-
ior, infer emotional state, and for input to and control of
HCI applications. In this section, we first describe the re-
lated work by application domain: Home, Office, Classroom,
Automotive, and Assistive Technology, and then discuss the
most closely related work in more detail.

Home Sato created a Robotic Room that obtained posture
information through pressure sensors embedded in a bed to
detect and support the activities of a room’s inhabitants [35].
Panini and Cucchiara developed a vision-based posture de-
tection system for home automation applications [31].

Office Pellegrini and Iocchi developed a posture classifica-
tion algorithm for activities in an office context [32].

Classroom Kapoor and colleagues developed a learning
companion that detected a student’s emotional state using
seated posture information in combination with other mea-
sures to facilitate learning [24, 29]. D’Mello and colleagues
integrated a seated posture-based affect recognition system
into their intelligent tutoring system AutoTutor [14].

Figure 2: Our method for developing a robust, fast, low-cost
learning system for recognizing classes in high-dimensional
data.

Automotive Several papers report vision-based systems us-
ing seated posture information to detect driver fatigue [18]
and to deploy smart airbag systems [8, 42].
Assistive Technology A system developed by Prado and
colleagues used posture information to detect falls and fol-
low physical activity patterns of elder users [33]. Aoki and
colleagues used body position and posture to detect irregu-
larities in human behavior [2]. Harada and colleagues used
pressure sensors embedded in a bed to detect postures of bed-
ridden users [22].
We detect seated postures using pressure sensors. Hence, we
focus the rest of this section on similar technologies. The
main body of work on detecting seated postures using a non-
vision-based approach is by Tan and colleagues [40, 41, 44].
Their work classified a predetermined set of postures using a
high-fidelity pressure sensor placed on an office chair. This
research demonstrated significant potential for using posture
recognition as an input modality with familiar subjects (sub-
jects on which the posture recognition system was trained).
However, the classification accuracy on unfamiliar subjects
was either lower.
Sensor placement is crucial for high recognition rates and
low hardware cost. The traditional approach to sensor place-
ment assumes that sensors have a fixed sensing range. The
best placement is then found by solving an art gallery prob-
lem1 [19]. This purely geometric approach, however, does
not take into account uncertainty and the specific correlation
structure present in the posture recognition context. An al-
ternative, statistical approach has been to learn a Gaussian
process model which represents uncertainty about the area of
sensing. This model is then used in order to optimize the po-
sitions of sensors [11]. Caselton and Zidek proposed mutual
information to find sensor placements that are most informa-
tive about areas that are not directly observed by the placed
sensors [6]. Recently, Krause and his colleagues introduced
an approximation algorithm that finds a set of near-optimal
sensor placements that are most informative about locations
with no sensor information through maximizing an informa-
tion gain criterion [26]. Our methodology adopts the approx-
imation algorithm presented in this work.

METHODOLOGY
In this paper, we present a novel method to recognize dis-
crete, static seated postures (Figure 2). The novelty in our
approach is twofold. First, we use domain knowledge to en-
gineer features that are highly predictive of the data. These
domain-specific features outperform the use of generic di-

1In the art-gallery problem, a minimum number of security cameras with
fixed ranges has to be chosen in order to fully cover the gallery ground [7].



mensionality reduction techniques such as Principal Compo-
nent Analysis (PCA) in achieving linear separation. Second,
our method performs a near-optimal sensor placement, which
allows us to greatly reduce hardware cost and computational
complexity. Using this technique, our system achieves su-
perior performance to existing work using less than 1% of
the sensors. Near-optimal placement also outperforms ran-
dom and uniform placements in robustness and classification
performance.
Our goal is to recognize (classify) seating postures. As in-
put, we use sensor data acquired from a collection of pressure
sensors placed on the seat and back of a chair, as displayed
in Figure 1. At a given time, sensor data is acquired, pro-
cessed, and a label for the posture (such as sitting straight,
leaning left, and slouching) is predicted, which can then be
used as input to an adaptive system such as those described in
the scenarios in the Introduction. Our system discriminates
among a set of ten postures (Figure 3), which were suggested
in previous work [40, 41, 44]. This set of postures does not
directly relate to our proposed application domains. Instead,
it provides a benchmark to compare the performance of our
algorithm to the performances of previous work.
Learning in our problem context requires (1) a set of features
that explain the posture data, and (2) an algorithm for learn-
ing and prediction of postural information. While there is a
large literature on how a classifier can be learned from train-
ing data, both the training algorithm and the set of features
should be selected with a deep understanding of the recogni-
tion problem. Therefore, as a first step in choosing an algo-
rithm and creating meaningful features for our classification,
we did extensive analyses of postural data.

Understanding Our Data
In the posture classification problem, at every time step t our
system is given the sensor values x1, . . . , xm (in vector form
x ∈ Rm), where m is the number of sensors. Our goal is
to output a class label y ∈ {1, . . . , C}, indicating the sit-
ter’s posture. The sensor values x are referred to as pres-
sure maps – Figure 3 presents examples of pressure maps
for different postures, obtained with the Tekscan high res-
olution pressure sensor used in earlier work [40, 41, 44] .
In classification, we are given a training data set Dtrain =
{(x1, y1), . . . , (xn, yn)}, and we want to use it to learn a

Figure 3: Sample data of pressure applied to the seat and
back of an office chair. Samples display postures: (1) Left leg
crossed, (2) Right leg crossed, leaning left, (3) Leaning back,
(4) Leaning forward, (5) Leaning left, (6) Leaning right, (7)
Left leg crossed, leaning right, (8) Seated upright, (9) Right
leg crossed, (10) Slouching.

Figure 4: A diagrammatic illustration of our classifier.

function g such that y ≈ g(x), i.e., g(x) is approximately
the true class label, not just on the training set, but also on
unseen input data. This requirement is known as generaliza-
tion. In posture recognition, we specifically want the clas-
sifier to generalize between different subjects, i.e., to work
well on unfamiliar subjects.
When we use the high-resolution Tekscan sensor, the num-
ber m of sensor values is very large, and we incur what is
known as the curse of dimensionality [4] – generalization in
a high dimensional data set is very difficult. Consequently,
the two prior approaches in posture recognition [40, 44] deal
with this problem by explicitly reducing the dimensionality
of the input data using Principal Component Analysis (PCA)
and Sliced Inverse Regression (SIR) respectively. These di-
mension reduction techniques find a low dimensional sub-
space which most effectively represents the training data, in
the sense of minimizing the mean square reconstruction er-
ror.2

In addition to these prior approaches, we experimented with
automatic feature extraction techniques such as maximizing
information gain with respect to the class (posture) label. We
also examined how effectively sophisticated classification al-
gorithms could model the data without using prior feature
selection. Poor generalization produced by these techniques
led us to examine our data in more detail. We found that the
variance across classes (i.e., postures) was much smaller than
the variance across subjects, which produces high classifica-
tion accuracies with familiar subjects but poor generalizabil-
ity with unfamiliar subjects. To overcome this challenge, we
explored how domain knowledge could be used to engineer
a small set of features f , and learn a classifier g mapping the
feature values to the class label, i.e., y ≈ g(f). Our experi-
mental results show that this approach improves generaliza-
tion to unfamiliar subjects compared to existing work. Fur-
thermore, we demonstrate that, contrary to all work to date,
our approach does not depend on the Tekscan high-resolution
sensor – we show how we can reconstruct the chosen features
from a small set of near-optimally placed sensors, thereby
achieving similar classification accuracy at a fraction of the
material and computational cost. Figure 4 provides a dia-
grammatic illustration of our approach.

Features
In [44], a normalization step for preprocessing is proposed,
in which the pressure maps are cropped to contain only ar-
eas where the sensor reading is non-zero. We argue that this
cropping step discards valuable information about user’s pos-
ture. Furthermore, our experiments have shown that where
pressure is applied is more informative about user’s posture

2While PCA is independent of the classification labels, SIR (as a general-
ization of Linear Discriminant Analysis) aims at selecting features (dimen-
sions) that capture most of the class specific variance. Both, however, do not
explicitly select features to maximize classification performance.



Figure 5: Our set of features derived from geometric and
physical variability in seated postures as well as pressure in-
formation. (1) to (4) describe geometric features. (5) shows
pressure applied to the bottom seating area divided into 16
equal aggregated pressure areas, which among all other di-
visions that we tested (pressure area divided into equal 1, 4,
9, and 25 regions) provided us with the highest classification
accuracy.

than the amount of pressure applied. However, prediction
is improved by knowing how much pressure is applied, but
maximized when sensor readings are aggregated into equal
subdivisions of the pressure areas.
Our features represent two kinds of information; (1) where
the pressure was applied at the bottom of the seat and at the
back of the seat, and how these two areas are interrelated (il-
lustrated with items (1) to (4) in Figure 5), and (2) how much
pressure was applied in these areas (item (5) in Figure 5).
Following this framework, we designed a set of 51 features
and used a feature selection algorithm to find the most in-
formative features based on classification accuracy [20] to
identify a subset of 30 features that are the most informative
of the class to be predicted.

Description of Features There are five kinds of features ob-
tained from each set of pressure readings:

1. The position and size of the bounding box of the pres-
sure area on each surface (seat and back). In finding the
bounding boxes, we first apply Hysteresis thresholding [5]
to eliminate noisy edges for better detection of the pres-
sure areas. The pressure areas are computed using a sim-
ple connected components algorithm [34] and finding the
bounding boxes of the clustered areas.

2. The distance of the bounding boxes of the pressure areas
at the bottom and the back to the edges of the seat.

3. The distance and angle between the centers of the pressure
areas at the back and the bottom surfaces.

4. The centers, radii, and orientations of two ellipses fit to
the pressure areas created by the sitter’s buttocks. These
ellipses are calculated using a Least-Squares ellipse fitting
algorithm described in [15].

5. Pressure applied to the bottom area divided into 16 aggre-
gated sub-regions. We decided on dividing the pressure
area into 16 aggregated sub-areas empirically. This divi-
sion outperformed other candidate divisions (into 1, 4, 9,
16, or 25 regions) in a cross-validation experiment using a
Logistic Regression classifier.

We tested the performance of our features against features
used by existing work. For instance, the method described

in [40] uses Principal Component Analysis (PCA) to reduce
the dimensionality of the data and extract the features (Prin-
cipal Components) that are most informative of the data. A
cross-validation experiment using our features outperformed
the accuracy provided in [40]. We also tested linear separa-
tion performance achieved by our features F against that of
PCA. Figure 6 displays the results of this experiment where
our features achieved a much lower number of misclassified
instances.

Learning Algorithm
After we extract the feature values from the training data,
we train a classifier based on Logistic Regression (LR), a
classification technique which finds a linear decision bound-
ary to separate the classes. For instance, to separate two
postures, the classifier finds a vector of coefficients w =
(w1, . . . , wm) such that wT f =

∑m
l=1 wlfl is positive for

feature values f = (f1, . . . , fm) from one posture, and nega-
tive for the other. For k postures, LR models the conditional
likelihood of posture j, P (y = j | F = f) given features
F = f as

P (y = j | F = f) =
exp(−wT

j f)∑k
l=1 exp(−wT

l f)
.

Hereby, wj are posture specific vectors found by the training
algorithm. In order to classify an unseen example f , the al-
gorithm would select the most probable posture, i.e., select j
such that P (y = j | F = f) is maximized.
One way to find the coefficients wj is maximum conditional
likelihood estimation, i.e., to find the coefficients which max-
imize the likelihood of observing all labels y(i) for all fea-
tures f (i), where i is the index of the training example. An-
other approach, which often is more robust, is to assume a
sparse representation of wj . In this sparse representation,
each weight vector wj (for the j-th posture) depends only
on a small set of features, i.e., has only few non-zero en-
tries. Note that these non-zero entries can be different for
each posture, i.e., every posture can be characterized by a
different subset of features. This sparse approach favors sim-
pler models, which leads to improved generalization to un-
seen data. The SimpleLogistic algorithm [27] finds such a
sparse representation by using the LogitBoost algorithm [17]
to optimize an additive logistic regression model; each ad-
ditive component is a simple linear function h depending on

Figure 6: Best linear separation achieved using PCA (top)
and our features (F at the bottom), for distinguishing postures
(2) Right leg crossed, leaning left and (9) Right leg crossed.
Big circles mark misclassified examples. For both PCA and
F, we train a Logistic Regression classifier, and project the ex-
amples (i.e., compute wT f ) along the normal vector w of the
respective decision boundary. F achieves better separation.



a single feature h(f) = wlfl for some scalar weight wl and
index l. The additive components are optimized on an ap-
propriately weighted training set. The weights for each new
component are chosen in order to minimize the residual clas-
sification error, i.e., a new weight is added to a new feature,
such that the number of examples (misclassified using the ex-
isting weights) is minimized. This iterative procedure stops
when the classification accuracy cannot substantially be im-
proved by adding more features. Details of this approach can
be found in [17, 27]. We selected this approach after empiri-
cal comparison with several other classification techniques.
In addition to robust, high classification accuracy, the advan-
tage of using Logistic Regression is that instead of simply
outputting a class label, it outputs a probability distribution
over class labels, which contains an estimate of the predictive
uncertainty. This notion of confidence may be important for
the application using the posture information.

Near-Optimal Sensor Placement

Although the approach described in the previous section
achieves high classification accuracy, it requires input data
from a high resolution pressure sensor, in order to accurately
compute the features discussed above. The cost of this sen-
sor provides a significant burden for its large scale deploy-
ment, e.g., in automobiles, wheelchairs, or office chairs. In
addition, the features need to be computed from the high di-
mensional data in near-real-time, demanding high computa-
tional performance. In order to avoid these problems, our
methodology seeks to replace this high resolution sensor with
a small set of pressure sensors, strategically placed in order
to provide similar classification accuracy. If V is the set of all
possible sensor locations (e.g., the grid cells of the Tekscan
sensor), we want to find a subset A ⊆ V of these sensors,
such that, given the pressure xA at only these locations, our
system can classify the posture as accurately as possible.
The high performance of our features motivated the fol-
lowing approach towards selecting near-optimal sensor loca-
tions: Our algorithm selects sensor locations, which allow us
to reconstruct the features f (e.g., the bounding box of pres-
sure, angle between mass centroids, etc.) as accurately as
possible. After reconstruction, we use the classifier trained
on the features f to classify the posture. In order to achieve
the reconstruction, our classifier learns a probabilistic model
that describes the correlation between the measured sensor
values and the predicted feature values. This probabilistic
model allows us to select sensor locations that minimize the
uncertainty in the prediction of the feature variables.
More formally, we model a set of random variables XV ,
where each Xs ∈ XV for s ∈ V represents the sensor value
obtained from the Tekscan sensor at location s. Furthermore,
we define random variables F that model the values of the
features (that depend on the sensor values). If we assume
that we have a statistical model for the joint distribution,
P (XV ,F) (we will describe how to fit such a model later),
and if we know the values of all the sensors, XV = xV , we
can compute the feature values F = f exactly, without any
uncertainty. If we can only observe a subset A ⊆ V of the
sensor values, i.e., XA = xA, then the conditional probabil-
ity P (F = f | XA = xA) can be computed, and feature
values f that maximize this conditional probability can be

predicted. Even more importantly, this conditional proba-
bility distribution describes the uncertainty in the prediction,
which we can quantify using the (conditional) Shannon en-
tropy (c.f., [10]):

H(F | XA=xA) = −
∫

P (f | xA) log2 P (f | xA)df . (1)

We want to select a subset of sensor locations, A, such that
this uncertainty is minimized, in expectation over all possible
observations xA:

A∗ = arg minA

∫
P (xA)H(F | xA)dxA. (2)

This objective is equivalent to finding the subset of variables
A which has the highest information gain

IG(A;F) = H(F)−H(F | XA)
with respect to the feature variables (c.f., [10, 16]). In our op-
timization, we constrain the set A to have a fixed number k
of elements. Finding the optimal k-element subset maximiz-
ing the information gain is an NP-hard problem, but there is
strong theoretical evidence [26] that in many practical appli-
cations the following greedy algorithm achieves near-optimal
results. The algorithm starts with the empty set A = ∅, and
iteratively adds the sensor location s∗ which increases the
information gain the most, i.e., adds

s∗ = arg maxsIG(A ∪ {s};F)
to the set A. The procedure stops after k sensors have been
added. It follows that the greedy algorithm, given a set of
sensors A already selected, should pick the sensor s which
maximizes H(Xs | XA) − H(Xs | F ,XA). This rule is
quite intuitive – the algorithm prefers to add sensors which
are as different as possible from the sensors already selected
(H(Xs | XA) is large), but which are also relevant for pre-
dictingF (i.e., H(Xs | F ,XA) is small, e.g., ifXs is strongly
correlated with F).
Krause and Guestrin [26] proved that, under certain assump-
tions consistent with a wide range of real-world applica-
tions, this greedy procedure finds a set which is guaranteed
to achieve at least a constant fraction 1 − 1/e (i.e., approxi-
mately 63%) of the optimal information gain. This guarantee
is a worst-case bound; in practice, the solutions obtained are
very close to optimal.
In order to use this algorithm for sensor placement, we need
to specify a joint distribution P (F ,XV). In our approach,
we use the multivariate normal distribution; this distribution
is fully parameterized by a mean vector µ and a covariance
matrix Σ, i.e.,

P (z) =
1√

(2π)N |Σ|
exp

(
−1

2
(z− µ)T Σ−1(z− µ)

)
,

where z = (f ,xV), and N = |V| + |F| is the total number
of variables. These parameters can be estimated from the
training data using maximum likelihood estimation. For a
subset A ⊆ V , the conditional distribution of interest P (F |
XA = xA) is found again to be multivariate normal, with
mean µF|XA and covariance ΣF|XA as given by

µF|A = µF + ΣFAΣ−1
AA(xA − µA), (3)

ΣF|A = ΣFF − ΣFAΣ−1
AAΣAF , (4)



Figure 7: A posture instance in multiple resolutions. The
leftmost image is the raw pressure readings. In the center is
data points aggregated into 2× 2 regions. The image in the
right shows data points combined into 4× 4 regions.

where for sets of variables B and C, the notation µB refers
to the entries of µ corresponding to the variables in B. Sim-
ilarly, ΣBC is the submatrix of Σ which we get by selecting
the rows corresponding to the variables in B and the columns
corresponding to the variables in C.
Using this model, we can compute the conditional entropies

H(F) =
1
2

log2(2πe)N |ΣF |, (5)

H(F | XA) =
1
2

log2(2πe)N |ΣF|A|. (6)

Equations (1) and (2) can be efficiently computed in closed
form.

Multi-resolution Sensor Placement
An alternative approach to selecting all pressure sensors from
the same granularity is employing different types of sensors.
We might, for instance, want small point sensors for detect-
ing the boundary of the sitting region, but wider, flat sen-
sors reporting the average pressure in a certain region. In
order to allow this extension, we augment the set of variables
XV . Now, V is the union of two (or more) parts, V1, . . . ,Vr,
where each subset corresponds to sensors of a different reso-
lution. Given the sensor values at the finest resolution (using,
e.g., the Tekscan sensor), we can downsample the training
data (i.e. Figure 7) to get coarser resolutions, i.e., by com-
bining regions of 2 × 2, 4 × 4, etc. sensors, and averaging
their values. Using this procedure, we can augment the train-
ing data set to simulate the values of coarser sensors. Our
algorithm then learns a joint distribution P (F ,XV) on this
new augmented set of variables, and the sensor placement
algorithm as described in the previous section will automati-
cally determine which resolution to use.
Furthermore, we can also allow for different costs ci for the
different sensor types Vi. Using a slightly more complicated
algorithm, which combines the greedy algorithm (which now
optimizes the benefit cost ratio) and a partial enumeration
scheme, we can select near-optimal placements A which
maximize the information gain IG(F ;XA) subject to a bud-
get, a constraint on the total cost of the placement A. Details
on this procedure can be found in [39, 25].

EXPERIMENTS
We conducted two sets of experiments, one with data col-
lected with the Tekscan sensor and one with data collected
using our prototype sensor system.

Figure 8: Ten-fold cross-validation results for change in classi-
fication accuracy as more features are added. The sequence
of adding these features followed a ranking created by an
SVM-based feature selection algorithm [20]. Vertical line in-
dicates the cut-off point we chose.

Evaluation Using Tekscan Sensor Data
We performed our first set of experiments on the data set
made available to us by the authors of [44] and [40], thereby
making our results comparable to these existing approaches.
The data set contains pressure data for ten postures, collected
from 26 male and 26 female participants. The postures in-
cluded are (1) Left leg crossed, (2) Right leg crossed, lean-
ing left, (3) Leaning back, (4) Leaning forward, (5) Leaning
left, (6) Leaning right, (7) Left leg crossed, leaning right, (8)
Seated upright, (9) Right leg crossed, (10) Slouching. From
each participant and posture, five examples were selected.
Data was collected using two sheets of the Tekscan sensor,
each providing 42 × 48 sensing elements, at a 10mm dis-
tance. The elements provide a 8-bit resolution for sensing
pressure.
We used ten-fold cross-validation in our experiments that
repeatedly selected a gender-balanced random subset of 23
male and 23 female participants for training, and evaluated
our classifier on the remaining six participants (three male,
three female). The reported results are average scores with
respect to ten such random splits. This split enables us to
assess the generalization capabilities between participants,
which we refer to as the multi-user setting, using the termi-
nology from [40]. The best performance reported by previ-
ous work in this setting was 79% [40].

We implemented the algorithms for computing the feature
values in MATLAB, and used the SimpleLogistic classifier
implementation from the Weka library [43]. We also imple-
mented the greedy algorithm for sensor placement in MAT-
LAB. To use this algorithm, we trained a multivariate normal
model on the sensor values and the computed features on the
training data using maximum likelihood estimation.
Feature Selection Our first experiment aimed at prioritiz-
ing the features on our feature set using rankings created by
an SVM-based feature selection algorithm [20] and identi-
fying a subset of these features that maximizes classifica-
tion performance. To identify this subset, we conducted a
ten-fold cross-validation experiment, which provided us with
information on how the classification accuracy changed as
features were incrementally included in the learning model,
without overfitting to a particular test set. Figure 8 presents
results on this feature selection experiment. We can see that
the classification accuracy quickly increases. As the number
of features reaches ten, the classification performance levels



Figure 9: Ten-fold cross-validation results for the change in
accuracy as the number of sensors increase. Best results
were obtained with 31 sensors (87% accuracy), while we de-
ployed 19 sensors, which produce the same accuracy (82%)
as 4032 sensors do.

off and a maximum is reached at 30 features. Based on this
analysis, we decided to use the first 30 features to train our
classifier. Using this number, our classifier achieved an av-
erage (cross-validated) classification accuracy of 86%, com-
pared to the trivial baseline of 10% if we guess the posture at
random.
The top ten selected features, achieving an accuracy of 82%,
included pressure readings from five aggregated pressure ar-
eas from the bottom of the seat, three of the variables that
define the location of the pressure area at the back of the
seat, and the angle and distance between the centers of the
top and bottom pressure areas.
Sensor Placement After feature selection, we conducted
experiments on selecting a sufficient number of sensors and
the near-optimal placement of these sensors to achieve the
targeted classification performance. We conducted a second
ten-fold cross-validation experiment that looked at how clas-
sification accuracy changed as data from each sensor in our
dataset were incrementally included in the learner. Our algo-
rithm selected sensors at multiple resolutions of discretiza-
tion, as described in the previous section. Figure 9 presents
how the (ten-fold cross-validated) classification accuracy in-
creases as more and more sensors are selected. However,
the performance levels off quickly – even when placing 19
sensors, our classifier achieves an accuracy of 82% (equal to
the accuracy obtained using all 4032 sensors). The best clas-
sification accuracy we obtained was 87% using 31 sensors,
which to our knowledge is higher than existing work using
the same dataset, while using less than 1% of the sensors
used in these work.

Figure 10: Final near-optimal placement of the sensors over-
laid on an illustration of the downsampled data. The printed
numbers on the sensor locations indicate ordering of sensors
from the best predictor to the least. On the right shows our
deployment of this near-optimal placement.

Figure 11: Cross-validation results that compare uniform, ran-
dom, and near-optimal (with respect to class and features)
placements of sensors on the chair surface. Images on the
top row illustrate actual placements computed by these meth-
ods. The last placement selects sensors directly (without
using the features) to maximize information gain.

We limited our final system to use 19 sensors, to be near-
optimally placed on the bottom and back of the chair. Inter-
estingly, all of the 19 sensors were chosen at the same level
of discretization (4x4), aggregating pressure values from 16
sensors. Based on this result, we limited our hardware de-
sign to only sensors of this granularity. Figure 10 shows the
near-optimal placement of these 19 sensors overlaid on sam-
ple aggregated data as well as on our final deployed system.
We also compared the effectiveness of our near-optimal place-
ment with other possible placements. Therefore, another
ten-fold cross-validation experiment compared classification
performance of a near-optimally placed subset of sensors
against random and uniform placements of the same num-
ber of sensors. Additionally, we compared the performance
of our algorithm with a potentially more direct sensor place-
ment approach which directly optimizes the information gain
with respect to the class variable (instead of the feature val-
ues, as our approach does). Figure 11 displays the results
of this experiment. Our near-optimal placement outperforms
the uniform and random placements in classification accu-
racy3. As seen in Figure 11, it also performs better than the
alternative, more direct placement strategy that does not use
our features, again underlining the expressiveness of our cho-
sen features.
Posture-Specific Performance Most misclassified labels we-
re (3), Leaning back, with true positive and negative rates
of 75% and 72% respectively, and (8), Seated upright, with
rates 76% and 75%. This result is not surprising, since these
postures are similar to several other postures in the data set,
and there is high variance across subjects. Figure 12 shows
the confusion matrix of the postures. We can see that pos-
tures (3), Leaning back, and (10), Slouching, were the ones
which were most frequently confused, which is also intuitive
due to the similarity of these postures.

3As the reader might have noticed, the cross-validation accuracies reported
in different experiments are slightly different. This is due to different ran-
dom splits done for cross-validation in different experiments.



Figure 12: Confusion matrix. Rows indicate true classes,
columns refer to assigned labels. Class labels represent (1)
Left leg crossed, (2) Right leg crossed, leaning left, (3) Lean-
ing back, (4) Leaning forward, (5) Leaning left, (6) Leaning
right, (7) Left leg crossed, leaning right, (8) Seated upright,
(9) Right leg crossed, (10) Slouching.

We also looked at which features were selected (i.e., given
non-zero coefficients in the posture specific weight vectors
wl) for the individual postures by the SimpleLogistic clas-
sifier. These weight vectors are very sparse – on average,
every posture depends only on approximately three out of
the 30 features. Inspection of these weights also gives valu-
able insight: For example, the two postures, (2) and (5), that
included Leaning left are positively correlated with the hor-
izontal bounding box location at the back, whereas the pos-
tures (6) and (7) that involved Leaning right are negatively
correlated with this feature.
Reconstruction of XV We can also use the joint distribution
P (F ,XV) to reconstruct the unobserved sensor locations by
estimating P (XV\A | XA = xA). Hereby, XV\A are the val-
ues of all the locations V \ A where no sensors were placed,
and xA are the measurements made by our sensors at loca-
tions A.
Figure 13 presents examples of these reconstructed pressure
maps. Images in the top row display the original, high resolu-
tion pressure maps acquired from the Tekscan sensor, while
the ones in the bottom row show the reconstructed data using
only the measurements of 19 near-optimally chosen sensors.
We can tell through visual inspection that the reconstructed
pressure maps are reasonably accurate, which indicates that
the selected sensor locations capture the most important char-
acteristics of the different postures.
We also performed an experiment, where we reconstructed
the pressure maps as described above, then deterministically

Figure 13: Reconstructed posture data examples on six pos-
tures. Top of each pair: original sensor values (4032 sen-
sors); right image: reconstruction using only selected 19
sensors.

computed the features on the full resolution maps, and used
the computed features for classification. Unfortunately, this
approach leads to far worse classification accuracy of 54%,
as opposed to 84% when probabilistically reconstructing the
features directly.

Learning Algorithm Comparison A final evaluation of our
method aimed at comparing different learning algorithms.
Therefore, we trained SimpleLogistic, Naive Bayes, Artifi-
cial Neural Network (Multi-Layer Perceptron), and Support
Vector Machine classifiers using our final feature set calcu-
lated by data from our near-optimally placed 19 sensors. Fig-
ure 14 presents the results of this experiment. SimpleLogistic
produced higher classification accuracies than all other algo-
rithms in this experiment.

Evaluation of Our Prototype Sensor System
Based on the results described in the previous section, we
deployed a proof-of-concept prototype sensor system, as il-
lustrated in Figure 1, and installed it on an office chair. We
chose the same chair (the Aeron chair produced by Herman
Miller) as used in the original data collection by the authors
of [44] and [40]. The final system included 19 one-and-a-
half-inch-square sensors near-optimally placed on the seat
and back of the chair. We used FSR (Force Sensing Resis-
tors) sensors produced by Interlink Electronics. Sensors were
connected to a data acquisition board that read sensor values
with the desired frequency and sent to a desktop computer
via a USB connection. We implemented a Java application
for near-real-time data acquisition, processing, and classifi-
cation.
We used our deployed sensor system to evaluate the perfor-
mance of our classifier in a real-world evaluation setting. We
hired 20 naive subjects (ten male, ten female, college stu-
dents aged between 19 and 34) to sit in the ten postures we
used for training our classifier in ten trials (100 postures per
participant). The order that the postures appeared in each
trial was randomized to avoid learning or discomfort effects.

Classification Accuracy We analyzed the data collected from
this deployment in several ways. In order to use the classi-
fier trained on the high resolution data set, we need to cal-
ibrate the deployed sensors. We calibrated the sensors by
performing linear regression, finding slope and bias for each
deployed sensor to minimize the error in predicting the cor-

Figure 14: Ten-fold cross-validation results for classifica-
tion accuracy with 4 classifiers (SimpleLogistic, Naive Bayes,
Support Vector Machine, and Multi-Layer Perceptron) as well
as Information Gain with respect to the target class variable.



Figure 15: Regression analysis, comparing the of mean pres-
sure values for each posture between the deployed sensors
and the corresponding values of the Tekscan sensor.

responding values from the high resolution sensor. Because
we did not have data from the same subjects on both the de-
ployed sensors and the Tekscan sensor, we performed this
regression analysis on the posture specific means, as pre-
sented in Figure 15. Due to the low-fidelity nature of the
deployed sensors, their different signal response compared
to the Tekscan sensor, and the variance in the subjects’ pos-
tures, this calibration was very difficult. In fact, when we
used the calibrated data from the sensors, and classified it
using the classifier trained on the high resolution data, our
accuracy was only 63%.
Not satisfied with this result, we re-trained the classifier on
the data from the deployed sensor only. We conducted a ten-
fold, gender-balanced, cross-validation experiment. In each
cross-validation split, we trained a SimpleLogistic classifier
on randomly selected nine male and nine female participants
and tested on the remaining two participants. We used the 19
measured values directly as features. Our classifier achieved
a (ten-fold cross-validated) classification accuracy of 78%.
Considering the fact that the chosen sensors have quite differ-
ent and lower-fidelity responses than the high-cost Tekscan
sensor, as well as the fact that we trained the classifier on
only 18 (instead of 46) subjects, this classification accuracy
is very promising, and shows that the proposed sensor place-
ment technique can lead to high quality sensor placements at
a small fraction of the cost of existing approaches.
Real-time Performance The second experiment was an ex-
ploration of the real-time performance of our deployed sys-
tem. Real-time performance is particularly important in ap-
plications where posture information is required repeatedly
to identify a temporal pattern in user’s behavior (e.g. in de-
tecting that someone is falling asleep, in measuring user’s at-
tention level). Our deployed posture recognition system can
predict postures at 10 Hz on a fairly standard desktop com-
puter, which we believe is a promising performance consid-
ering that no near-real-time systems on posture recognition
is reported in the literature. We are also convinced, that if the
classifier is implemented on a dedicated embedded device,
far lower response times can be achieved.
Cost Analysis Through deploying our sensor system, we
were also able to get an estimate of the cost of the sys-
tem. The cost of only the sensors in our system is 100 USD
compared to the Tekscan sensors commercially available for
3,000 USD. We argue that our low-cost sensor system will
allow us to deploy the technology in different settings. Col-
lecting data from a larger number of people and in a variety
of seating contexts will provide us with a deeper and more

precise understanding of posture data and seated activities.
In the next section, we discuss possible applications.

DISCUSSION
Our results demonstrate that even subtle posture differences
can be reliably and robustly detected with low cost hardware.
However, they are only a step towards the larger goal of ex-
tracting useful high level information, such as the users activ-
ity or comfort level. In this work, we limited our analysis to
postures previously considered in the literature [40, 41, 44]
for sake of comparison. As a next step, we plan to observe
people in natural settings to identify the kinds of postures that
people sit in during particular activities and quantify them
in order identify and prioritize most important postures that
need to be distinguished.
Our work to date focused only on classifying static postures.
In order to extract activity or comfort information, we expect
the temporal aspect of the problem to become very important.
For example, even though people change postures rather fre-
quently, such changes do not necessarily indicate a change
in their activity. By looking at temporal sequences of pos-
ture changes, we might gain more information. On the other
hand, a sitter’s posture might change only slightly while the
sitter shifts from reading a book to watching TV. Hence, in
this case, additional input modalities would be needed to ac-
curately identify the person’s activity. Understanding the po-
tential and limitations of when postural and temporal infor-
mation are indicative of a user’s activity is an important open
question.
Another open question is to what extent training data ob-
tained using a particular chair could be used for another chair.
We believe that training of the system could be transferred
across chairs within the same application domain (e.g. car
seating) using a simple mapping, while new training would
be required for applications where the properties of the seat
changed significantly. However, further exploration is re-
quired to understand the limitations of such transformations.

CONCLUSIONS
In this paper, we presented a highly practical approach to-
wards sensing and recognizing seated postures. Using a near-
optimal sensor placement strategy, our approach achieves a
classification accuracy of 87% in classifying ten postures on
untrained subjects, a higher performance than that of previ-
ous work. Our system uses less than 1% of the deployed sen-
sors compared to previous work, therefore drastically reduc-
ing hardware and computational cost. We used our method-
ology to build a prototype near-real-time sensing and recog-
nition system using only 19 sensors. In a user study with 20
subjects, our low-cost prototype achieved 78% accuracy in
the same classification task.

ACKNOWLEDGMENTS
This work was supported by NSF grants IIS-0121426, DGE-
0333420, CNS-0509383, a gift from Intel Corporation and
a Ford Motor Company Graduate Student Research Grant.
Carlos Guestrin was supported by an IBM Faculty Fellow-
ship, and an Alfred P. Sloan Research Fellowship. We would
like to thank Professors Hong Tan of Purdue University and
Lynne Slivovsky of California Polytechnic State University
for providing their data set for comparison.



REFERENCES
1. Agency for Health Care Policy & Research (AHCPR). Pres-

sure ulcers in adults: Prediction and prevention, clinical prac-
tice guideline. AHCPR Publication no. 92-0047, 1992.

2. Aoki, S., Iwai, Y., Onishi, M., Kojima, A., and Fukunaga, K.
Learning and recognizing behavioral patterns using position
and posture of human body and its application to detection of
irregular states. Systems & Computers in Japan, 36, 13 (2005),
45–56.

3. Bardsley, G.I. The dundee seating programme. Physiothera-
phy, 70, 2 (1984), 59–63.

4. Bellman, R. Dynamic Programming. Princeton U. Press, 1957.
5. Canny, J.F. A computational approach to edge detection. IEEE

Trans. on Pattern Anal. & Machine Intel., 8, 6 (1986), 679–698.
6. Caselton, W.F. and Zidek, J.V. Optimal monitoring network

designs. Statistics & Probability Letters, 2, 4 (1984), 223–227.
7. Chvatal, V. A combinatorial theorem in plane geometry. J. of

Combinatorial Theory, Series B, 18 (1975), 39–41.
8. Cheng, S.Y. and Trivedi, M.M. Human posture estimation us-

ing voxel data for “smart” airbag systems: issues and frame-
work. IEEE Intelligent Vehicles Symposium, 2004, pp. 84–89.

9. Cohen, D. An objective measure of seat comfort. J. of Aviation,
Space, & Env. Medicine, 69, 4 (April 1998), 410–414.

10. Cover, T.M. and Thomas, J.A.. Elements of Information The-
ory. Wiley Interscience, 1991.

11. Cressie, N.A.C. Statistics for Spatial Data. Wiley, 1991.
12. De Looze, M.P., Kuijt-Evers, L.M.F, and Van Dieen, J. Sit-

ting comfort and discomfort and the relationships with objec-
tive measures. Ergonomics, 46, 10 (August 2003), 985–997.

13. DiSalvo, C., Forlizzi, J., Zimmerman, J., Mutlu, B., and Hurst,
A. The sensechair: The lounge chair as an intelligent assistive
device for elders. In Proc. of the AIGA Conf. on Designing for
User Experiences, 2005, 31.

14. D’Mello, S.K., Craig, S.D., Gholson, B., Franklin, S., Picard,
R., and Graesser, A.C. Integrating affect sensors in an intelli-
gent tutoring system. In Affective Interactions: The Computer
in the Affective Loop Workshop at 2005 Intl. Conf. on Intelligent
User Interfaces, 2005, pp. 7–13.

15. Fitzgibbon, A.W., Pilu, M., and Fisher, R.B. Direct least-
squares fitting of ellipses. IEEE Trans. on Pattern Anal. & Ma-
chine Intel., 21, 5 (May 1999), 476–480.

16. Fleuret, F. Fast Binary Feature Selection with Conditional Mu-
tual Information. J. on Machine Learning Research, 5 (2004),
1531–1555.

17. Friedman, J., Hastie, T., and Tibshirani, R. Additive logistic
regression: a statistical view of boosting, Stanford University,
Dept. of Statistics Tech. Report, 1998.

18. Furugori, S., Yoshizawa, N., Iname, C., and Miura, Y. Mea-
surement of driver’s fatigue based on driver’s postural change.
In Proc. of SICE 2003 An. Conf., 1, 2003, pp. 264–269.

19. Gonzalez-Banos, H.H., and Latombe, J. A randomized art-
gallery algorithm for sensor placement. In Proceedings of 17th
ACM Symposium on Computational Geometry, 2001, pp. 232–
240.

20. Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. Gene se-
lection for cancer classification using support vector machines.
Machine Learning, 46 (2002), 389–422.

21. Halender, M.G. and Zhang, L. Field studies of comfort and
discomfort in sitting. Ergonomics, 40, 9 (1997), 895–915.

22. Harada, T., Sato, T., and Mori, T. Estimation of bed-ridden
human’s gross and slight movement based on pressure sensors
distribution bed. In Proc. of IEEE Intl. Conf. on Robotics &
Automation, 2002, pp. 3795–3800.

23. Hossain, M., Morris, J.N., Brandeis, G.H., Ooi, W.L., and Lip-
sitz, L.A. A longitudinal study of risk factors associated with
the formation of pressure ulcers in nursing homes. J. of Ameri-
can Geriatric Society, 42, 4 (1994).

24. Kapoor, A., Mota, S., and Picard, R.W. Towards a learning
companion that recognizes affect. In Proc. of Emotional & In-
telligent II: The Tangled Knot of Social Cognition, Fall Sympo-
sium. AAAI, Nov. 2001.

25. Krause, A. and Guestrin, C. A note on the budgeted maximiza-
tion on submodular functions. Technical Report CMU-CALD-
05-103, 2005.

26. Krause, A. and Guestrin, C. Near-optimal nonmyopic value
of information in graphical models. In Proc. of Uncertainty in
A.I., 2005.

27. Landwehr, N., Hall, M., and Frank, E. Logistic model trees. In
Proc. of ECML/PKDD Conf., 2003, pp. 241–252.

28. Monette, M., Weiss-Lambrou, R., and Dansereau, J. In search
of a better understanding of wheelchair sitting comfort and dis-
comfort. In Proc. of the RESNA An. Conf., 1999, pp. 218–220.

29. Mota, S. and Picard, R.W. Automated Posture Analysis for
Detecting Learners Interest Level. In Proc. of Computer Vision
& Pattern Recognition Workshop, 2003, pp. 49.

30. Ozer, L.B. and Wolf, W. Real-time posture and activity recog-
nition. In Proc. of Workshop on Motion & Video Computing,
2002, pp. 133–138.

31. Panini, L. and Cucchiara, R. A machine learning approach for
human posture detection in domotics applications. In Proc. of
Image Analysis & Processing, 2003, pp. 103–108.

32. Pellegrini, S. and Iocchi, L. Human Posture Tracking and Clas-
sification through Stereo Vision. In Proc. of Intl. Conf. on Com-
puter Vision Theory & Applications, 2006.

33. Prado, M., Reina-Tosina, J., and Roa, L. Distributed intelligent
architecture for falling detection and physical activity analysis
in the elderly. In Proc. of EMBS/ BMES Conf., 2002, pp. 1910–
1911.

34. Rosenfeld, A. and Pfaltz, J.L. Sequential operations in digital
processing. J. of ACM, 13 (1966), 471–494.

35. Sato, T., Nishida, Y., and Mizoguchi, H. Robotic Room: Sym-
biosis with human through behavior media. In Robotics & Au-
tonomous Systems, Elsevier, 1996, pp. 185–194.

36. Scherer, M.J. User desires for wheelchairs. Rehab Manage-
ment, 9, 4 (June-July 1996), 121–123.

37. Shaw, G. Wheelchair seat comfort for the institutionalized el-
derly. Assistive Technology, 3, 1 (1992), 11–23.

38. Smith, D.M. Pressure ulcers in the nursing home. Annals of
Internal Medicine, 123, 6 (Sept. 15, 1995), 433–438.

39. Sviridenko, M. A note on maximizing a submodular set func-
tion subject to a knapsack constraint. O. R. Letters, 32, 1
(2004), 41–43.

40. Tan, H.Z., Slivovsky, L.A., and Pentland, A. A sensing chair
using pressure distribution sensors. IEEE/ASME Trans. on
Mechatronics, 6, 3 (2001), 261–268.

41. Tan, H. Z., Ifung L., and Pentland A. The chair as a novel
haptic user interface. In Proc. of Workshop on Perceptual User
Interfaces, Banff, Canada, 1997.

42. Trivedi, M.M., Shinko, Y.C., Childers, E.M.C., and Krotosky,
S.J. Occupant posture analysis with stereo and thermal infrared
video: algorithms and experimental evaluation. IEEE Trans. on
Vehicular Technology, 53, 6 (2004), 1698–1712.

43. Witten, I.H. and Frank, E. Data mining: practical machine
learning tools and techniques with Java implementations. Mor-
gan Kaufmann, 2005.

44. Zhu, M., Martinez, A.M., and Tan, H.Z. Template-based recog-
nition of static sitting postures. In Workshop on Computer Vi-
sion & Pattern Recognition for Human-Computer Interaction,
2003.


