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ABSTRACT
What price should be offered to a worker for a task in an
online labor market? How can one enable workers to ex-
press the amount they desire to receive for the task com-
pletion? Designing optimal pricing policies and determin-
ing the right monetary incentives is central to maximizing
requester’s utility and workers’ profits. Yet, current crowd-
sourcing platforms only offer a limited capability to the re-
quester in designing the pricing policies and often rules of
thumb are used to price tasks. This limitation could result in
inefficient use of the requester’s budget or workers becoming
disinterested in the task.

In this paper, we address these questions and present
mechanisms using the approach of regret minimization in
online learning. We exploit a link between procurement auc-
tions and multi-armed bandits to design mechanisms that
are budget feasible, achieve near-optimal utility for the re-
quester, are incentive compatible (truthful) for workers and
make minimal assumptions about the distribution of work-
ers’ true costs. Our main contribution is a novel, no-regret
posted price mechanism, BP-UCB, for budgeted procure-
ment in stochastic online settings. We prove strong the-
oretical guarantees about our mechanism, and extensively
evaluate it in simulations as well as on real data from the
Mechanical Turk platform. Compared to the state of the
art, our approach leads to a 180% increase in utility.
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1. INTRODUCTION
The growth of the Internet has created numerous oppor-

tunities for crowdsourcing tasks to online “workers”. Spe-
cialized marketplaces for crowdsourcing have emerged, in-
cluding Amazon’s Mechanical Turk (henceforth MTurk [1])
and Click Worker1, enabling “requesters” to post HITs (Hu-
man Intelligence Tasks), which can then be carried out by
pools of workers available online and suitable for the task.
Some of the tasks that are posted on these platforms in-
clude image annotation, rating the relevance of web pages
for a query in search engines, translation of text or tran-
scription of an audio recording. Similarly, in platforms like
social networks, users can be compensated for participation
in a viral marketing campaign. The requester generally has
a limited budget for the task and needs to come up with a
payment scheme for workers in order to maximize the util-
ity derived from the task. For workers, the main goal is to
maximize their individual profit by deciding which tasks to
perform and at what price.

Monetary incentives in crowdsourcing tasks. One
of the central components of these platforms is to design
the right incentive structure and pricing policies for workers
that maximize the benefits of both requester and the work-
ers. Overpricing the tasks would result in inefficient use
of the requester’s budget, whereas underpricing could lead
to task “starvation” because of unavailability of the workers
willing to participate. In this light, how can one design op-
timal pricing policies? How can workers communicate and
negotiate the price with requesters? How would the mar-
ket behave if workers act strategically by misreporting their
costs for their benefit? These are some of the questions that
naturally come to mind while studying incentive structures
for these online markets, yet they are not well understood.

Pricing models. Current crowdsourcing platforms offer
limited capability to the requester in designing the pricing
policies, mostly limiting them to a single fixed price (“fixed
price model”). One way to set prices under such models is
to estimate workers’ costs via a market analysis and then
compute an optimal fixed price which would maximize the
utility. However, there are many difficulties in inferring this
optimal fixed price, including the high cost of market sur-
veys, the dynamic and online nature of the labor markets,
inexperience of the requester and challenges in soliciting true
costs from workers because of their self-interest. An alter-
nate approach is to use tools of online procurement auctions
where workers can bid on the price they are willing to receive

1http://www.clickworker.com/
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and the requester’s mechanism can decide on the allocation
and prices to be paid to workers. In this “bidding model”,
mechanisms need to be truthful: it should be a dominant
strategy for rational workers to bid their true cost. How-
ever, communicating these true costs to the requester may
be challenging in real world settings. The worker may typi-
cally not trust the requester and understand the mechanism
to reveal their true cost or the cost may not even be known
to a worker and perhaps difficult to determine. Instead of
soliciting the workers’ costs, an often more natural setting
is the “posted price model” where workers are offered a take-
it-or-leave-it price offer. The mechanism interacts with each
worker once in a sequential manner and adjusts the offered
price from past responses of the workers.

1.1 Our Results
In this paper, we present a novel posted-price mechanism,

BP-UCB, for online budgeted procurement, which is guar-
anteed to be budget feasible, achieve near-optimal utility for
the requester, be incentive compatible (truthful) for work-
ers and make minimal assumptions about the distribution
of workers’ true costs.

On the theoretical side, we present a novel mathemati-
cal analysis which exploits a link between procurement auc-
tions and multi-armed bandits – a classical problem in online
learning and experimental design – to prove regret bounds
for the mechanism. BP-UCB builds on and extends existing
mechanisms using multi-armed bandits for online auctions
[25, 6] to procurement auctions under budget constraints.
However, the mechanisms of [25, 6] are not directly applica-
ble as they optimize a different objective, which leads to a
substantially different mathematical analysis. Our analysis
further yields insights into an explicit separation of the re-
gret in terms of wasted budget through overpayment and
rejected offers through underpayment. Additionally, our
BP-UCB approach substantially improves upon the existing
mechanisms for procurement auctions which are designed to
achieve constant multiplicative approximation ratios [32, 8],
which can lead to high additive regret.

We further carry out extensive experiments to compare
the performance of BP-UCB with optimal benchmarks, as
well as the state of the art mechanism of [8]. To the best
of our knowledge, this is the first empirical study of posted-
price mechanisms in procurement auctions. Apart from ex-
perimenting with simulated workers’ cost distributions, we
perform experiments using data gathered from an MTurk
study to demonstrate the effectiveness of our approach on
real world inputs. The results confirm the effectiveness and
the practical applicability of using BP-UCB as posted price
mechanism on crowdsourcing platforms.

2. RELATED WORK
Understanding incentives in crowdsourcing tasks.

There has been growing interest in understanding the right
incentives for workers in online labor markets. [21] present a
model of workers and introduce methods to estimate work-
ers’ appropriate wages. The “hagglebot” of [22] negotiates
payment rates for an image-labeling task with workers on
MTurk. [28, 29] study other, non-monetary incentives that
could improve the quality of workers’ performance. [17] ap-
plies no-regret learning to better understand prediction mar-
kets and improve the results of information aggregation from
crowds.

Multi-armed bandits (MAB) & regret minimiza-
tion. The MAB problem is a natural formalism for studying
settings where an agent repeatedly chooses among actions
with uncertain rewards, and must trade exploration (gath-
ering information about rewards) and exploitation (maxi-
mizing rewards obtained). A primary objective is to design
no-regret algorithms which guarantee that the average re-
gret approaches zero asymptotically over time when com-
pared to the single best action in hindsight. MAB and re-
gret minimization algorithms have been studied extensively
and [13] gives a good overview. [3] introduces the UCB1
algorithm, which maintains an index (known as Upper Con-
fidence Bound) on the actions and avoids explicit separation
of exploration and exploitation by picking the action with
the highest index. [24, 4, 10, 33] extend this approach to
handle complex (possibly infinite) action spaces. Recently,
budgeted variants of the MAB problem, where actions have
different known costs, have been considered in [34, 36, 35].
[37] solves the crowdsourcing task whereby the goal is to
learn workers’ effectiveness as part of exploration. In our
setting, in contrast, the costs are unknown and budget is uti-
lized only in rounds when the offer is accepted by the worker
– none of the standard approaches apply to this setting.

Learning in online auctions. Competitive online auc-
tions were introduced in [26, 9]. These results were fur-
ther extended and improved by using insights from regret
minimization algorithms in [12, 11, 25]. [16] further ex-
tend the online posted price mechanisms for multi-parameter
domains. [20, 18] study the auction problem with limited
supply in the bidding model under stochastic arrival of the
agents. [6] extends these results to the posted price model,
by using insights from MAB problems. Our mathematical
analysis builds on the results of [6]. However, in contrast,
we consider dynamic pricing for procurement (reverse) auc-
tions under a budget constraint. The results from [25, 6]
are not applicable to this setting. In fact, straightforward
application of the mechanisms of [25, 6] in our setting would
simply offer the highest price, as that maximizes the utility
of the action (acceptance of the price by the worker), though
quickly exhaust the budget (and incur large regret).

Online procurement auctions. Mechanisms for pro-
curement auctions have been extensively studied. Earlier
work [2, 23, 14] concerns the frugality of mechanisms with
the goal of procuring a feasible solution to a complex prob-
lem while minimizing the budget spent. In contrast, we are
interested in studying truthful budget feasible mechanisms
initiated recently in [30, 31]. Recent research addresses var-
ious models of budget constraints including the online knap-
sack secretary problem [7] and the weighted secretary prob-
lem [5]. However these are not directly applicable to truthful
procurement mechanisms. [32] and [8] study a problem that
is perhaps most similar to ours: they develop mechanisms
for budgeted procurement in the stochastic setting for the
bidding and posted price model respectively, and prove con-
stant multiplicative bounds. In contrast, our mechanisms
use the regret minimization framework, and we prove ad-
ditive bounds on the regret. We note that mechanisms of
constant multiplicative bounds could have arbitrarily poor
performance in terms of additive regret. [32, 8] are also used
as benchmarks for our experiments and our mechanism BP-
UCB shows a substantial improvement over the state of the
art mechanism of [8].



3. PROBLEM STATEMENT
We now formalize the problem addressed in this paper.
The requester and workers. There is a principal agent,

the “requester”, who posts the crowdsourcing task. A task is
composed of atomic assignments, which can be performed by
individual “workers”. The requester has a budget B > 0 and
a utility function over completed assignments. In this work,
we assume that each assignment performed by a worker
has unit value, thus the requester wishes to maximize the
number of completed assignments subject to the budget
constraint. There is a finite pool of workers, denoted by
W . Each worker wi ∈ W is associated with a private cost
ci ∈ R≥0 for performing an assignment and bi ∈ R≥0 is their
bid or reported cost. We are interested in truthful mecha-
nisms where it is a dominant strategy for worker wi to report
bi = ci. We assume that costs have known bounded support,
i.e., ci ∈ [cmin, cmax] where cmin and cmax are the parameters
of the problem, scaled such that cmin > 0 and cmax ≤ 1. We
note that the assumption of bounded costs naturally holds
in online crowdsourcing platforms like MTurk, which gener-
ally enforce a publicly known minimal and maximal allowed
payment for the assignments. We will keep the range of
the costs fixed, and consider varying the budget. Also, the
number of assignments per worker is normally set to one in
MTurk. Furthermore, we assume that there are at least N
workers where N ≥ B

cmin
. We note that limiting the pool

size to a much smaller number would lead to further con-
straints in our mechanism design in addition to the budget
constraint and is beyond the scope of this work. However,
having a very large, essentially infinite pool of workers would
make the problem trivial as the mechanism can offer lowest
possible prices without any overall loss of utility. We further
discuss this issue in Section 6.

Online arrival of workers. We are interested in on-
line settings where workers arrive one at a time. We fo-
cus on stochastic arrival of workers, where their costs are
i.i.d. sampled from a distribution f (i.i.d model). We let
F : [cmin, cmax] → [0, 1] denote the cumulative distribution
function (CDF) of costs associated with the workers. Note
that the stochastic arrival assumption may be violated in
real online markets. This could be because of various fac-
tors, for example, if the workers’ value of service increases
over time and hence so does their cost. This non-stochastic
setting is often called the oblivious adversary model. In our
experiments, we empirically evaluate the robustness of our
mechanisms in presence of such adversarial noise.

Optimal benchmarks. Consider an (unrealistic) offline
mechanism with complete access to the pool of workers’ true
costs. The maximal utility in this setting can be achieved
by sorting the workers by their increasing costs and offering
each worker their true cost until the budget is exhausted.
We denote this benchmark by OPT-Var, i.e., the optimal
variable price benchmark. An alternate benchmark of inter-
est is a mechanism that is limited to offer a single fixed price
to all workers, though this price is computed optimally as-
suming full knowledge of workers’ costs. We denote this by
OPT-Fix. Note that these benchmarks are offline, untruth-
ful and assume full knowledge of the workers’ costs. It seems
natural to compare our online truthful mechanisms to the
optimal truthful mechanism in offline settings. The utility of
any single priced offline truthful mechanism is bounded by
OPT-Fix and [19] shows that the performance of OPT-Fix
is close to that of OPT-Var. Further, recent results in pro-

curement auctions from [30, 8] show that OPT-Fix is only a
factor of 2 away from OPT-Var for modular as well as sym-
metric submodular functions and this is the best approxima-
tion that any truthful mechanism can achieve. Therefore we
will compare our mechanisms against this benchmark. This
optimal offline fixed price denoted by p∗, as illustrated in
Figure 1, is given by:

p∗ = arg max
p

min
{
F (p),

B

N ·p

}
s.t. p ∈ [cmin . . . cmax].

Utility and Regret. For a fixed budget B, let U(M,B)
denote the expected utility of mechanism M and U(p,B)
denote the expected utility of fixed price p. In the regret
minimization framework, we are interested in comparing the
regret w.r.t. to the best single price p∗ offered in hindsight.
The expected regret of mechanism M is given by

RM (B) = U(p∗, B)− U(M,B),

where U(p∗, B) = B
p∗ . We write R instead of RM where the

mechanism M is clear from context. Using this notation, our
goal is to design mechanisms M where the average regret of
the mechanism approaches zero asymptotically, i.e.,

lim
B→∞

R(B)

B
= 0.

4. MECHANISMS
We begin by describing the high level ideas behind our

mechanisms. Then, we design BP-DGreedy for the bid-
ding model and subsequently extend it to arrive at our main
mechanism, BP-UCB, for posted prices. In Section 4.4, we
analyze the mechanisms and prove the regret bounds.

4.1 Methodology
Background on classical MAB. In the classical MAB

setting [13, 3], there are K independent choices (“arms”)
associated with unknown reward distributions. A MAB al-
gorithm operates in discrete timesteps (rounds) and pulls an
arm in each round to get a stochastic reward associated with
that arm. The algorithm needs to “explore” by experiment-
ing with potentially suboptimal arms so as to learn about
the optimal arm. Meanwhile, to maximize the reward, it
has to “exploit” its learning by pulling the arm that appears
best. The goal of the algorithm is to minimize the regret by
quickly converging to the optimal arm.

Learning the cost curve and connection to MAB.
The main challenge in deciding the payments in our prob-
lem is the unknown distribution of the workers’ cost (“cost
curve”). The mechanism interacts with workers sequentially
in discrete timesteps denoted by t, offering a price pt at each
timestep to worker wt and adjusting the estimates of the
cost curve based on observed feedback. In order to cast our
problem in the MAB framework, we discretize the prices by
creating a set of K price “arms” using a multiplicative fac-
tor of (1 + α), where α is a parameter of the mechanism,
similar to [12, 6], as illustrated in Figure 1. For these K
arms, we maintain F ti as an estimate of the CDF of workers’
costs for price pi at time t. The mechanism stops execution
when the budget or the pool of workers is exhausted. At
each timestep, our mechanisms will pick the arm it based on
some optimization criterion. Unfortunately, the presence of
the budget constraint breaks the standard MAB algorithms:
The optimal arm in terms of utility is the one corresponding
to the maximal price, though it would quickly exhaust the
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imum utility that can be achieved given an infinite pool of
workers. N ·F (p) represents the utility with unlimited bud-
get. The optimal price p∗ lies at the intersection of these two
curves. Discretized K prices are used by our mechanism, p′

corresponds to the optimal price among these K prices.

available budget, leading to diminished utility. Further, we
can exploit the fact that the price arms are correlated in our
case: Acceptance at an offered price means acceptance for
all more “expensive” arms and rejection at an offered price
means rejection for all “cheaper” arms.

Additional notation. We need to introduce some more
notation in order to describe our mechanisms. Let i′ ∈
{1, . . . ,K} denote the index of the optimal price among the
K discretized prices, p′ denote the corresponding price and
F ′ the value of function Fi′ = F (p′). As illustrated in Fig-
ure 1, i′ is given by:

i′ = arg max
i

min
{
Fi,

B

N ·pi

}
∀i ∈ [1 . . .K].

We let Bt be the budget remaining at time t, N t
i be the

number of times pi price has been offered, Sti be the indica-
tor random variable indicating bt ≤ pi and T be the total
number of rounds of execution of the mechanism (until the
budget is exhausted or all the workers have been seen by the

mechanism). Let us define Vi = min
{
Fi,

B
N·pi

}
, V ti be the

estimate of Vi at round t. We further use ∆i = Vi′ − Vi.

4.2 BP-DGREEDY for bidding model
We begin by designing a mechanism, BP-DGreedy (de-

terministic greedy for budgeted procurement), for the bid-
ding model (see Mechanism 1) in order to gain insights into
the problem and develop mathematical foundations for the
posted price model. The mechanism solicits the workers’ bid
bt about service cost and then offers them a price pt, based
on past observations of workers’ bids, which the worker can
accept or reject. A natural approach towards ensuring truth-
ful bids is to make the offered price independent of the bid
of the current worker. Because of this truthfulness, we have
bt = ct, which makes this mechanism resemble online learn-
ing with full information (refer [13, 27, 15]). This intuitively
means that the mechanism gets to compute response feed-
back it would have received for any possible action.

We now discuss how to pick the arm it to make a price offer
pt independent of bt. The intuition is simple: BP-DGreedy
just tracks the expected utility V ti of the arms based on the
estimated F ti and offers the price corresponding to the best
arm at time t. Based on the observed bid, it updates the
estimates of F ti for all the arms by simply maintaining the
average response of acceptance at arm i.

Mechanism 1: BP-DGreedy

1 Parameters: B; N ; α = (0, 1]; cmin; cmax;
2 Initialize:

• Prices. p0 = cmin; pi = (1 + α)·pi−1; pK = cmax;

• Variables. time: t = 0; budget Bt = B; utility : U = 0;

• Value estimates. F ti = 0;

begin
3 while Bt > cmin & t < N do
4 it = arg maxi V

t
i s.t. pi ≤ Bt;

/* ties broken by picking lowest i */ ;

5 Offer price pt = pit to worker wt;

6 Observe bid bt;

7 ∀i, Update F ti = F ti +
(St

i−F
t
i )

(t+1)
;

8 Set U = U + Stit ; B
t+1 = Bt − pt·Stit ; t = t+ 1;

end

end
9 Output: U

4.3 BP-UCB for posted price model
Next, we present our main mechanism, BP-UCB (UCB

for budgeted procurement, see Mechanism 2) for the posted
price model, where we get to see acceptance or rejection
feedback only for the price offered. This limited feedback
leads to a natural exploration-exploitation tradeoff as in
MAB problems. We tackle this problem by modifying BP-
DGreedy, whereby we maintain upper confidence bounds

on F ti , denoted by F̃ ti , which are then used to optimisti-

cally estimate the values Ṽ ti . The mechanism then picks the

best arm based on Ṽ ti and offers a take-it-or-leave it price
pt. Based on the feedback from the worker, it updates the
parameters only for the arm it. This approach is inspired
from the classical UCB1 algorithm [3]. However, the budget
constraints make the analysis of regret bounds non-trivial.

We further exploit the correlation between the arms, as a
rejection response actually means rejection for all “cheaper”
arms. Similar to [11], we use this correlation to further
improve the execution performance of the mechanism by
keeping an estimate of the lower bound of the cost curve’s
support and keeping all the arms (except one) below this
estimate as inactive. This modification does not hurt the
theoretical guarantees described in Section 4.4.

4.4 Performance Analysis
We now prove regret bounds for our mechanisms BP-

DGreedy and BP-UCB. We begin with the analysis of
BP-DGreedy and develop the mathematical tools that will
be useful for the analysis of BP-UCB. A crucial challenge
in dealing with the budget constraint lies in the fact that
while higher prices are more “effective” since more workers
would accept the offer, they would quickly exhaust the bud-
get leading to reduced overall utility.

Components contributing to the regret. There are
essentially three components contributing to the regret. The
first is the discretization of the prices: Since the mechanism
does not have access to the optimal price p∗, p′ is the best
price available. After accounting for the regret of“discretiza-
tion”, we can consider an alternative mechanism M ′ which
has access to an additional arm corresponding to p∗. Consid-
ering M ′, the second component of the regret is attributed
to pulling arms with prices pi < p∗ as cheaper arms are
less effective and result in more rejected offers. The third



Mechanism 2: BP-UCB

1 Parameters: B; N ; α = (0, 1]; cmin; cmax;
2 Initialize:

• Prices. p0 = cmin; pi = (1 + α)·pi−1; pK = cmax;

• Variables. time: t = 0; budget Bt = B; utility : U = 0;

• Value estimates. N t
i = 0; F ti = 0;

begin
3 while Bt > cmin & t < N do

4 F̃ ti = F ti +
√

2· ln(t)

Nt
i

;

5 Ṽ ti = min
{
F̃ ti ,

B
N·pi

}
;

6 it = arg maxi Ṽ ti s.t. pi ≤ Bt;
/* ties broken by picking lowest i */ ;

7 Offer price pt = pit to worker wt;

8 Observe acceptance decision yt;

9 Update F tit = F tit +
(yt−F t

it
)

(Nt
it

+1)
; N t

it = N t
it + 1;

10 Update U = U + yt; Bt+1 = Bt− pt·yt; t = t+ 1;

end

end
11 Output: U

component of the regret is attributed to pulling arms with
prices pi > p∗. Though these “expensive” arms are more ef-
fective than the price p∗, they overpay and quickly exhaust
the budget. We formalize the above discussion in Lemma 1.

Lemma 1. The expected regret RM (B) of any mechanism M
can be expressed in terms of three components as follows:

RM (B) <
(B
p∗
− B

p′

)
︸ ︷︷ ︸
Discretization

+
∑

i:pi<p∗

E
[
NT
i

]
·
(
F ∗ − Fi

)
︸ ︷︷ ︸

Rejected offers

+
∑

i:pi>p∗

E
[
NT
i

]
·
(
pi·Fi − p∗·F ∗

)
p∗

+
cmin

p∗︸ ︷︷ ︸
Wasted budget through overpayment

The proof is given in Appendix A.

Regret bounds for BP-DGREEDY. To obtain the
desired regret bounds for mechanism BP-DGreedy from
Lemma 1, we need to bound NT

i , as well as the regret of
discretization. We bound the NT

i for an execution of BP-
DGreedy using the Chernoff-Hoeffding concentration in-
equalities as in [3]. By exploiting the ordering of arms, we
are able to separately provide bounds for NT

i for arms with
prices pi < p′ and pi > p′. For our analysis, we consider four
separate cases based on whether F ti′ is less or greater than
B
N·p′ and based on relative ordering of p′ compared to p∗.
This insight crucially simplifies the analysis, enabling us to
use the tools from the original UCB1 analysis in bounding
each one of these four cases separately. Theorem 1 provides
the desired regret bounds for BP-DGreedy.

Theorem 1. The expected regret of mechanism BP-DGreedy
is upper-bounded as follows:

RBP-DGreedy(B) <
α·B
p∗

+
∑

i:pi<p∗

4·
(
F ∗ − Fi

)
∆2
i

+
∑

i:pi>p∗

(
pi·Fi − p∗·F ∗

)
2·∆2

i ·p∗
+
cmin

p∗

The proof is given in Appendix A.2. Next, we prove the
no-regret property of mechanism BP-DGreedy by using
an appropriate choice of the discretization factor α, similar
to the choice made for the problem of online auctions with
limited supply in [6].

Corollary 1. The expected average regret of mechanism
BP-DGreedy w.r.t. the budget size B goes to zero asymp-
totically for appropriate choice of α.

Proof. By setting α to O
( ln(B/cmin)

B

)
, the expected average

regret of BP-DGreedy w.r.t. B in the limit limB→∞ is
given as:

lim
B→∞

E
[
RBP-DGreedy(B))

B

]
= lim
B→∞

O
(

ln(B/cmin)
)

B
= 0.

Regret bounds for BP-UCB. We now extend the anal-
ysis of BP-DGreedy to BP-UCB. Theorem 2 provides the
desired regret bounds for BP-UCB.

Theorem 2. The expected regret of mechanism BP-UCB
is upper-bounded as follows:

RBP-UCB(B) <
α·B
p∗

+
∑

i:pi<p∗

(
8· ln(B/cmin)

∆2
i

+
π2

3
+ 1

)
·
(
F ∗ − Fi

)
+

∑
i:pi>p∗

π2·
(
pi·Fi − p∗·F ∗

)
6·p∗ +

cmin

p∗

The proof is given in Appendix A.3. Corollary 2 proves
the no-regret property of the mechanism.

Corollary 2. The expected average of regret of mechanism
BP-UCB w.r.t. budget size B goes to zero asymptotically for
appropriate choice of α.

Proof. The proof follows by using exactly the same argu-
ments as in Corollary 1.

5. EXPERIMENTAL EVALUATION
In this section, we carry out extensive experiments to un-

derstand the practical performance of our mechanisms on
simulated cost distributions, as well as on costs derived from
an actual MTurk study. We begin by describing our bench-
marks, metrics and experimental setup.

Benchmarks. We compare our mechanisms against the
following benchmarks and state-of-art mechanisms:

• OPT-Var and OPT-Fix: These are offline, untruthful
mechanisms with full information of the workers’ true
costs as discussed in Section 3.

• Mean: Another offline mechanism that operates under
the bidding model. It offers a fixed price computed as
the mean value of the workers’ bids. This mechanism
serves as a rule of thumb to determine fixed prices for
tasks, as possibly used by inexperienced requesters.

• BS’11: We implemented the mechanism for the bidding
model based on sampling bids from [32]. This mechanism
assumes that workers’ arrival order is stochastic i.i.d.

• PP’12: This is the online posted price mechanism from
[8] designed for the stochastic setting. We found that
the recommended parameters used for proving theoret-
ical guarantees did not work in practice. We therefore
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Figure 2: (a) Distribution of workers’ bids, Correlation with (b) usage time and with (c) number of friends online

manually tuned parameters to optimize the performance
of this benchmark. Specifically, we ignored the parameter
z in determining the price of the highest arm as B

z
and

instead used cmax as a bound. Also, we used a = 5 in-
stead of 4000, which would need an extremely large pool
of workers for execution.

Metrics and experiments. The primary metric we
track is the utility of the mechanism as we vary the bud-
get B, setting N = B

cmin
. We also compute the average

regret of the mechanism w.r.t. increasing budget to verify
its no-regret property. To study the effect of the worker
pool size, we also look into varying N for a fixed budget. To
gain insight into execution of the mechanisms, we measure
their rate of convergence by determining the unique price to
which the mechanism converges in the end and measuring
the number of times this price has been offered so far with
increasing timesteps. Lastly, we evaluate the utility over
time to understand the dynamics of how quickly the budget
is exhausted.

Parameter choices. We used cmin = 0.01 and cmax = 1
based on the payment bounds typically seen on MTurk. The
price discretization factor α is set to 0.2. We note that

setting α to O
( ln(B/cmin)

B

)
guarantees asymptotic bounds of

O
(

ln(B/cmin)
)
, however smaller values of α would increase

the number of arms, leading to slower convergence.
Cost distributions. We considered cost distributions

based on simulations as well as gathered from an actual
MTurk study. We considered various simulated distribu-
tions for analyzing our algorithms, including uniform, nor-
mal, exponential and more complex ones including mixture
of two uniform or two Gaussian distributions. Also, we con-
sidered various settings to simulate the arrival of workers,
including ordering by ascending bids to simulate adversarial
arrival. To simulate a more realistic non-stochastic setting,
we considered groups of two distributions arriving one after
another, ordered by their increasing means.

5.1 Mechanical Turk Study
The primary objective of this study was to get cost dis-

tributions from a realistic crowdsourcing task, as well as
to understand the non-stochastic nature of real inputs that
could arise because of the task’s temporal nature.

Data Collection. We posted a HIT (Human Intelligent
Task) on MTurk in form of a survey, where workers were told
about an option to participate in a hypothetical advertise-
ment system for a social networking site. In this hypotheti-
cal system, they can opt to use the top of their homepage for
banner ads and obtain some monthly payment from the pub-
lishers. Workers were asked to bid on the monthly payment
they would like to receive, in addition to providing informa-

Feature July10 July11 July12 all

# Active workers 641 833 867 867

# Friends (mean) 165 230 318 242
# Friends (median) 100 160 250 157

Usage mins (mean) 64 73 83 74
Usage mins (median) 30 50 60 50

Bids $ (mean) 55 66 90 71
Bids $ (median) 20 25 30 25

Table 1: Statistics of the data reported for different years

tion like years of being active on social networks and time
spent there, approximate geographical location, number of
friends and optional comments. They were asked to provide
this information for different times including July 2012, July
2011 and July 2010. The goal of this survey was twofold.
Firstly, we wanted to get the workers’ cost distribution for
a realistic scenario which fits our procurement auction task.
Secondly, we wanted to understand whether the assump-
tion of stochastic costs holds true in real world inputs. A
total of 1200 workers participated in our HIT, which was
online for one week, restricted to workers with more than
90% approval rate. Workers were paid a fixed amount for
participation in the HIT. We did not restrict the workers
to any geographical region. Additionally, we made a bonus
payment to selected 20 individuals based on their insightful
comments about factors affecting their payment choice.

Statistics. The workers represented more than 20 differ-
ent countries with 44.5% from USA and 44.0% from India.
In total 72.25% of the workers agreed to participate in the
hypothetical online advertisement system, and we analyze
the statistics from these workers below. Workers from USA
have lower acceptance rate of participation (59.3%) com-
pared to workers from India (86.1%), which shows interest-
ing dependence on geographical factors in determining the
pricing model of the workers. Table 1 shows the mean and
median values of various features. The data shows an in-
crease in social activity (in terms of friend count and service
usage) as well as the bids reported by workers for their ser-
vice. Figure 2 shows the distribution of bids collected as well
as the correlation with usage time and number of friends.
The data is skewed towards lower bids and is discretized be-
cause of the tendency of workers to bid at rounded numbers.
In total 75.8% of the workers provided subjective feedback
in the comments section about the pricing factors. Common
themes reported by the workers for the pricing factors were
the usage time, friend count and nature of the ads. The
statistics related to friend size matches closely with those
of publicly available numbers supporting the quality of the
data obtained from the workers.
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Figure 3: 1st column
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(c) MTurk, Arrival by year of joining
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(d) MTurk, Arrival by ascending bids

Figure 4: 2nd column
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(d) Utility with time

Figure 5: 3rd column
Figure 3 (1st column): Utility for uniform distribution in [0.1, 0.9], varying budget. In (a), BP-UCB outperforms PP’12
by over 150% increase in utility for the stochastic settings. (c) uses two uniform distributions in [0.1, 0.5) and [0.5, 0.9].
Figure 4 (2nd column): Utility for MTurk distribution for bids in [10, 100], varying budget. In (a), BP-UCB outperforms
PP’12 by over 180% increase in utility. Also, BP-UCB and BP-DGreedy are robust against all the online settings above.
Figure 5 (3rd column): Uniform distribution in [0.1, 0.9], stochastic settings. In (b), no-regret properties of BP-UCB can
be seen as the average regret diminishes with increase in budget. (c) shows better convergence rate of BP-UCB compared
to PP’12. (d) shows that BP-UCB makes low offers in beginning, in contrast to PP’12 which quickly exhausts the budget.

5.2 Results
We now present and discuss the findings from our exper-

iments. In the figures, we denote BP-DGreedy as bp-gd.
Utility for simulated distributions. Figure 3 shows

results for costs uniformly distributed in the range [0.1, 0.9],
though the results are qualitatively similar for other distri-

butions and ranges. We consider the online setting with
stochastic arrival of workers and also assess the robustness
of the mechanisms when these assumptions are violated. In
Figure 3(a), we can see that the mechanism BP-DGreedy
performs very close to OPT-Fix and slightly outperforms
the state of the art mechanism BS’11 for the bidding model.



Somewhat surprisingly, as we can see in Figure 3(b), our
mechanism BP-UCB for the posted price model performs as
good as BP-DGreedy even though it operates under lim-
ited feedback. It clearly outperforms PP’12 by an over 150%
increase in utility for all the budgets considered. Mean is
much lower compared to both of our mechanisms, suggesting
that rules of thumb prices may not be optimal.

We also simulate arrival of the workers in order of as-
cending bids, violating the stochastic i.i.d. assumptions. In
Figure 3(d), we see that all the mechanisms perform quite
poorly in this somewhat unrealistic case. Figure 3(c) shows
results for a perhaps more meaningful non-stochastic set-
ting where two groups with bids uniformly distributed in
[0.0, 0.5) and [0.5, 0.9] respectively arrive after another. There-
fore, a natural question is how robust the algorithms are
w.r.t. more realistic cost distributions, as we analyze next.

Utility for MTurk distributions. Figure 4 shows re-
sults for cost distributions from the MTurk study. We con-
sidered bids ranging in [10$, 100$], scaled down by 100, al-
though the results are qualitatively similar for other ranges.
Note that scaling down the costs is equivalent to scaling up
the budget. We sampled with replacement from the bids to
generate the entire pool of workers. We considered various
online settings to simulate the arrival order of workers: the
actual order in which workers arrived on MTurk for complet-
ing the task; ordered by their usage time; ordered by number
of friends and by the year of joining the social network. Here,
we discuss the results for the arguably most natural order-
ings. For the bidding model, we can see in Figure 4(a) that
both OPT-Fix and BS’11 coincide exactly with OPT-Var,
in the case of workers arriving according to the actual MTurk
ordering. We attribute this to the highly skewed nature of
bids at low prices, as the optimal strategy for all these three
mechanisms is to offer a single fixed price corresponding to
the lowest bid. For the posted price model in Figure 4(b),
BP-UCB clearly outperforms PP’12, increasing the utility
by over 180% for all the budgets considered.

Figure 4(c) shows results where workers are ordered by
the year in which they joined and Figure 4(d) shows the
results where workers are ordered by their increasing bids
on MTurk. Interestingly, BP-UCB and BP-DGreedy con-
tinue to perform well in both the settings, whereas BS’11
degrades in Figure 4(d) and PP’12 performs poorly in both.

Effect of varying N . Apart from varying the budget, it
is interesting to compare the impact of workers’ pool size on
the mechanisms for a fixed budget. Note that the availabil-
ity of more workers (larger N) shifts the optimal solution
towards lower prices. Figure 5(a) shows the impact of vary-
ing N . As one would expect, our mechanisms BP-DGreedy
and BP-UCB as well as BS’11 show an increase in utility
exhibiting diminishing returns. Interestingly, PP’12 shows
a decrease in utility as the number of workers increases.

Average regret. Figure 5(b) shows the average regret
of the mechanisms with increasing budget. Note that the
average regret of BP-UCB decreases at a much faster rate
compared to that of PP’12.

Rate of convergence. Here, we look at the rate of
convergence of the mechanisms in Figure 5(c), by comput-
ing the proportion of times the unique price, to which the
mechanism converges in end, has been offered so far with in-
creasing timesteps. BS’11 rapidly converges to the unique
price, favorably compared to BP-DGreedy. We can see an
initial phase of “exploration” for BP-UCB followed by “ex-

ploitation” as the mechanism converges. However, PP’12
stabilizes at 50% convergence as the Markov model used by
the mechanism flips back and forth between the equilibrium
prices.

Utility with timesteps. Lastly, we study how the mech-
anisms accrue utility over time (Figure 5(d)). BP-UCB
offers very low prices in the initial phase of “exploration”,
followed by convergence to a unique price, after which the
utility increases almost linearly. In contrast, PP’12 quickly
exhausts the budget in the beginning by offering high prices,
leading to overall reduced utility.

6. CONCLUSIONS AND FUTURE WORK
We designed mechanisms for online budgeted procurement

using a regret minimization approach. We started with
mechanism BP-DGreedy for the bidding model and then
extended it to our main mechanism BP-UCB for the posted
price model. These are the first provable no-regret mecha-
nisms for online budgeted procurement. Apart from theoret-
ical guarantees, we prove that they are empirically efficient
compared to optimal benchmarks, and dramatically outper-
form the state of the art posted price mechanism. Our exper-
iments on MTurk further supports the practical applicability
of our mechanisms on crowdsourcing platforms. We believe
that our results provide an important step towards develop-
ing practical, yet theoretically well-founded techniques for
increasing the efficiency of crowdsourcing.

There are some natural extensions for future work. Here,
we considered a simple additive utility function for the re-
quester. It would be useful to extend our approach to more
complex utility functions. Additionally, we assumed a homo-
geneous pool of workers, although it would be more practical
to design mechanisms which can take into account skills and
different utility values of the workers.

Our experiments on MTurk suggest that real world in-
puts may violate stochastic assumptions. While our mech-
anisms are robust against our study’s cost distribution, one
can force all the currently available mechanisms to perform
poorly by carefully designing (unrealistic) cost distributions.
It would be of interest to develop mechanisms that are more
robust, and extend to the oblivious adversary model.

We used the knowledge of known bounded support and
furthermore discretized the price space. Results from con-
tinuous arm bandits in [24, 4, 10, 33] can be applied here
by making more realistic assumptions about cost distribu-
tions. This would enable learning the support as part of the
mechanism itself and remove the regret from discretization.

In this work, we assumed a finite yet large pool of avail-
able workers. A perhaps more natural approach is to use
time discounted rewards where a mechanism’s goal would
be timely completion of the task. Existing crowdsourcing
platforms support only fixed price mechanisms and limited
capabilities to design pricing policies. Our experiments show
that simple mechanisms like Mean perform quite poorly,
although inexperienced requesters may be tempted to use
them as rule of thumb. It would be interesting to build ap-
plications and conduct studies where we can actually run
our mechanisms in real time on crowdsourcing platforms.
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APPENDIX
A. PROOFS
A.1 Components contributing to the regret

We begin by expressing the expected utility of a mecha-
nism in terms of NT

i in Lemma 2. We use Iti as indicator
variable indicating that price pi was offered at time t.

Lemma 2. The expected utility of the mechanism M is
given by U(M,B) =

∑K
i=1 E

[
NT
i

]
·Fi

Proof. From definition of Stit , we have

U(M,B) = ET
[
E
[ T∑
t=1

Stit | T
]]

=

T∑
t=1

K∑
i=1

ET
[
E
[
Iti ·Sti | T

]]
=

T∑
t=1

K∑
i=1

ET
[
E
[
Iti | T

]]
·ET
[
E
[
Sti
]]

(1)

=

K∑
i=1

ET
[
E
[ T∑
t=1

Iti | T
]]
·Fi=

K∑
i=1

ET
[
E
[
NT
i | T

]]
·Fi (2)

=
K∑
i=1

E
[
NT
i

]
·Fi

Unlike UCB1, T is a random variable here. Step 1 uses
the fact that Sti only depends on the order of bids and is
therefore independent of the mechanism (i.e., of Iti and T ).
Step 2 follows from definitions of NT

i and Fi.

Next, in Lemma 3, we provide a lower bound on the ex-
pected timesteps T in the execution of a mechanism, un-
like in standard UCB1 where T is fixed. This ensures that
the mechanism’s regret coming from the component“Wasted
budget through overpayment” in Lemma 1 is bounded.

Lemma 3. The expected number of timesteps T in the ex-
ecution of the mechanism has lower bound as follows:

E[T ] >
B

p∗·F ∗ −
cmin

p∗.F ∗
−

∑
i:pi>p∗

E
[
NT
i

]
.
(
pi.Fi − p∗.F ∗

)
p∗·F ∗

Proof. The algorithm terminates when either i) t > N or
ii) Bt < cmin. In i), T = N and hence bounds in the
equation hold trivially since N ≥ B

cmin
> B

p∗ >
B

p∗·F∗ . We

will prove the bounds for ii) below by bounding the sum of

the prices offered and accepted by workers
∑T
t=1 S

t
it ·p

t.

B − cmin < ET
[
E
[ T∑
t=1

Stit ·p
t | T

]]
=

K∑
i=1

E
[
NT
i

]
·Fi·pi (1)

=

K∑
i=1

E
[
NT
i

]
·
(
Fi·pi − F ∗·p∗

)
+

K∑
i=1

E
[
NT
i

]
·F ∗·p∗

E[T ]·F ∗·p∗ > B − cmin −
∑

i:pi<p∗

E
[
NT
i

]
·
(
Fi·pi − F ∗·p∗

)
−

∑
i:pi>p∗

E
[
NT
i

]
·
(
Fi·pi − F ∗·p∗

)
(2)

Step 1 follows by using the same arguments as in Lemma 2.
Step 2 replaces

∑K
i N

T
i by T and we get the desired bounds

by using the fact that
(
Fi·pi − F ∗·p∗

)
< 0 for pi < p∗.

We now prove Lemma 1 by using the above results.

Proof of Lemma 1. Consider an alternate mechanism M ′

which has access to an additional arm corresponding to price
p∗. We first analyze the regret of M ′ below.

RM′(B) = U(p∗, B)− U(M ′, B) =
B

p∗
−

K∑
i=1

E
[
NT
i

]
·Fi

=
B

p∗
+

K∑
i=1

E
[
NT
i

]
·
(
F ∗ − Fi

)
−

K∑
i=1

E
[
NT
i

]
·F ∗

=
B

p∗
− E[T ]·F ∗ +

∑
i:pi<p∗

E
[
NT
i

]
·
(
F ∗ − Fi

)
+

∑
i:pi>p∗

E
[
NT
i

]
·
(
F ∗ − Fi

)
(1)

≤ B

p∗
− E[T ]·F ∗ +

∑
i:pi<p∗

E
[
NT
i

]
·
(
F ∗ − Fi

)
(2)

<
cmin

p∗
+

∑
i:pi<p∗

E
[
NT
i

]
·
(
F ∗ − Fi

)
+

∑
i:pi>p∗

E
[
NT
i

]
·
(
pi·Fi − p∗·F ∗

)
p∗

(3)

Step 1 replaces
∑K
i N

T
i by T and step 2 uses the fact that(

F ∗ − Fi
)
< 0 for pi > p∗. And, step 3 follows from the

results of Lemma 3.
The regret of mechanismM is given byRM (B) = RM′(B)+

Rp′(B) where Rp′(B) =
(
B
p∗ −

B
p′

)
. Using the value of RM′

from above completes the proof.

A.2 Regret bounds for BP-DGREEDY

In Lemma 4, we show that discretization to a power of
(1+α) results in loss of utility by at most a factor of (1+α),
similar to the online auctions as shown in [12, 6].

Lemma 4. The regret component “discretization” in Lemma 1
is upper-bounded by Rp′(B) ≤ α·B

p∗ .

Proof. Consider price ph given by:

ph = inf
pi
{∀i ∈ [1 . . .K] s.t. pi ≥ p∗}

By the design of discretization, ph < (1 + α)·p∗. Now, con-
sider that price ph is offered to every worker instead of p′.

Rp′(B) = U(p∗, B)− U(p′, B) ≤ B

p∗
− B

ph
≤ α·B

p∗

We use the fact that for ph ≥ p∗, U(ph;B) = B
ph

.

Lemma 5. ∀i s.t. pi < p′, expected number of times a sub-
optimal arm i is played is upper-bounded by E

[
NT
i

]
≤ 4

∆2
i

.

Proof. A suboptimal arm i is picked at time t when V ti ≤
V ti′ where V tj = min

{
F ti ,

B
N·pj

}
. We consider the following

cases:
Case a) p′ ≤ p∗ and F ti′ ≤ B

N·p′ :

F ti ≥ F ti′(
F ti − Fi −

Fi′ − Fi
2

)
+
(
F ′ − F ti′ −

Fi′ − Fi
2

)
≥ 0((

F ti − Fi
)
− ∆i

2

)
+
((
F ′ − F ti′

)
− ∆i

2

)
≥ 0 (1)

Case b) p′ ≤ p∗ and F ti′ >
B
N·p′ :

F ti ≥
B

N ·p′ ≥ F
′ =⇒ F ti − Fi ≥ ∆i (2)



Case c) p′ > p∗ and F ti′ ≤ B
N·p′ :

F ti ≥ F ti′(
F ti − Fi −

B
N·p′ − Fi

2

)
+
( B

N ·p′ − F
t
i′ −

B
N·p′ − Fi

2

)
≥ 0((

F ti − Fi
)
− ∆i

2

)
+
((
F ′ − F ti′

)
− ∆i

2

)
≥ 0 (3)

Case d) p′ > p∗ and F ti′ >
B
N·p′ :

F ti ≥
B

N ·p′ =
B

N ·p′ + Fi − Fi =⇒ F ti − Fi ≥ ∆i (4)

Using Chernoff-Hoeffding inequality and the fact that P(A+
B ≥ 0) ≤ P(A ≥ 0) + P(B ≥ 0), we bound step 1 and 3 as:

P
((

F ti − Fi −
∆i

2

)
+
(
F ′ − F ti′ −

∆i

2

)
≥ 0

)
≤ 2·e−

∆2
i

2
·t

For step 2 and 4, we have the following bounds:

P
(
F ti − Fi ≥ ∆i

)
≤ e−2·∆2

i ·t ≤ 2·e−
∆2

i
2
·t

Combining the bounds for above cases, we have:

E
[
NT
i

]
≤

T∑
t=1

2·e−
∆2

i
2
·t ≤

∞∑
t=1

2·e−
∆2

i
2
·t =

4

∆2
i

Lemma 6. ∀i s.t. pi > p′, expected number of times a sub-
optimal arm i is played is upper-bounded by E

[
NT
i

]
≤ 1

2·∆2
i

.

Proof. A suboptimal arm i is picked at time t when V ti >
V ti′ . We consider the following cases and the conditions that
need to hold for picking arm i.

Case a) p′ ≤ p∗:

F ti′ <
B

N ·pi
= F ′ −∆i =⇒ F ′ − F ti′ > ∆i (1)

Case b) p′ > p∗:

F ti′ <
B

N ·pi
=

B

N ·p′ −∆i =⇒ F ′ − F ti′ > ∆i (2)

Using Chernoff-Hoeffding inequality, step 1 and step 2 are

bounded by e−2·∆2
i ·t. Combining the bounds for above cases,

we have:

E
[
NT
i

]
≤

T∑
t=1

e−2·∆2
i ·t ≤

∞∑
t=1

e−2·∆2
i ·t =

1

2·∆2
i

Proof of Theorem 1. The proof directly follows from the
bounds of Ni from Lemmas 5 and 6. By putting in these
bounds in Lemma 1 along with the regret of discretization
from Lemma 4, we get the desired results.

A.3 Regret bounds for BP-UCB
Lemma 7. ∀i s.t. pi < p′, expected number of times a sub-
optimal arm i is played is upper-bounded by

E
[
NT
i

]
≤

8· ln(B/cmin)

∆2
i

+
π2

3
+ 1.

Proof. A suboptimal arm i is picked at time t when Ṽ ti ≤
Ṽ ti′ where Ṽ tj = min

{
F ti +

√
2· ln(t)

Nt
i
, B
N·pj

}
. We consider the

following cases:

Case a) p′ ≤ p∗ and F ti′ +

√
2· ln(t)

Nt
i′
≤ B

N·p′ :

F ti +

√
2· ln(t)

N t
i

≥ F ti′ +

√
2· ln(t)

N t
i′((

F ti − Fi
)
−

√
2· ln(t)

N t
i

)
+
((
F ′ − F ti′

)
−

√
2· ln(t)

N t
i′

)
+
(

2 ·

√
2· ln(t)

N t
i

−∆i

)
≥ 0 (1)

Case b) p′ ≤ p∗ and F ti′ +

√
2· ln(t)

Nt
i′

> B
N·p′ :

F ti +

√
2· ln(t)

N t
i

≥ B

N ·p′ ≥ F
′

((
F ti − Fi

)
−

√
2· ln(t)

N t
i

)
+
(

2 ·

√
2· ln(t)

N t
i

−∆i

)
≥ 0 (2)

Case c) p′ > p∗ and F ti′ +

√
2· ln(t)

Nt
i′
≤ B

N·p′ :

This case is analogous to (1) in Case (a) with some al-
gebraic manipulations.

Case d) p′ > p∗ and F ti′ +

√
2· ln(t)

Nt
i′

> B
N·p′ :

This case is analogous to (2) in Case (b) with some al-
gebraic manipulations.

Using the Chernoff-Hoeffding inequality, step 1 and step 2
are bounded by 2·t−4 and t−4 respectively. Once suboptimal
arm i has been played sufficient number of times, given by

N t
i ≥

⌈
8· ln(B/cmin)

∆2
i

⌉
, we have:

P
(

2 ·

√
2· ln(t)

N t
i

−∆i > 0

)
= 0

Combining these together, we have the following:

E
[
NT
i

]
≤
⌈

8· ln(B/cmin)

∆2
i

⌉
+

T∑
t=1

2·t−4

≤
⌈

8· ln(B/cmin)

∆2
i

⌉
+

∞∑
t=1

2·t−4 <
8· ln(B/cmin)

∆2
i

+
π2

3
+ 1

Lemma 8. ∀i s.t. pi > p′, expected number of times a sub-

optimal arm i is played is upper-bounded by E
[
NT
i

]
≤ π2

6
.

Proof. A suboptimal arm i is picked at time t when Ṽ ti >

Ṽ ti′ . Irrespective of the relation between p′ and p∗, the fol-
lowing must hold true:

F ti′ +

√
2· ln(t)

N t
i′

<
B

N ·pi
< F ′ =⇒ F ′ − F ti′ >

√
2· ln(t)

N t
i′

Using Chernoff-Hoeffding inequality, above case is bounded
by t−4. We have:

E
[
NT
i

]
≤

T∑
t=1

t−4 ≤
∞∑
t=1

t−4 <
π2

6

Proof of Theorem 2. The proof follows by using exactly
the same arguments as in Theorem 1.
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