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Abstract
Motivated by an application of eliciting users’
preferences, we investigate the problem of learn-
ing hemimetrics, i.e., pairwise distances among a
set of n items that satisfy triangle inequalities and
non-negativity constraints. In our application, the
(asymmetric) distances quantify private costs a
user incurs when substituting one item by another.
We aim to learn these distances (costs) by asking
the users whether they are willing to switch from
one item to another for a given incentive offer.
Without exploiting structural constraints of the
hemimetric polytope, learning the distances be-
tween each pair of items requires Θ(n2) queries.
We propose an active learning algorithm that
substantially reduces this sample complexity by
exploiting the structural constraints on the version
space of hemimetrics. Our proposed algorithm
achieves provably-optimal sample complexity for
various instances of the task. For example, when
the items are embedded into K tight clusters, the
sample complexity of our algorithm reduces to
O(nK). Extensive experiments on a restaurant
recommendation data set support the conclusions
of our theoretical analysis.

1 Introduction
Learning a distance function over a set of items or a data
manifold plays a crucial role in many real-world applica-
tions. In machine learning algorithms, the distances serve as
a notion of similarity (or dissimilarity) between data points
and are important for various tasks such as clustering (Xing
et al., 2002), object ranking (Lim & Lanckriet, 2014), image
retrieval / classification (He et al., 2004; Huang et al., 2015),
etc.1 In economics, the distance function can encode the

1We refer the interested reader to the survey by Bellet et al.
(2013) for a detailed discussion of various applications.
Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume 48.
Copyright 2016 by the author(s).

preferences of users (e.g., buyers or sellers in a marketplace)
for different items (e.g., from a catalogue of products) to
improve product recommendation and dynamic pricing
of goods (Desjardins et al., 2006; Horton & Johari, 2015;
Blum et al., 2015; Vázquez-Gallo et al., 2014).
Motivating applications. We are interested in learning the
preferences of users across different choices available in
a marketplace — these choices are given in the form of n
(types of) items. For instance, in a restaurant recommenda-
tion system such as Yelp, the item types could correspond to
restaurants abstracted by attributes such as cuisine, locality,
reviews and so on. Consider a user who seeks recommenda-
tions from the system and has chosen item i (e.g., “Mexican
restaurant in Manhattan with over 50 reviews”). However,
to incentivize exploration and maximize its overall utility,
the marketplace may consider offering a discount to the
user to instead choose item j (e.g., “Newly opened fastfood
restaurant in New Jersey with 0 reviews”), e.g., to gather
more reviews for item j. The price of the offer would clearly
depend on how similar or dissimilar the choices i and j are.
In general, a high dissimilarity would require the system to
offer higher incentives (larger discounts).
Distance function quantifying private costs. We capture
the above-mentioned notion of dissimilarity by a pairwise
distanceDi,j — the distanceDi,j corresponds to the private
cost of a user incurred by switching from her default choice
of item i to item j. We assume that the distance function D
is a hemimetric, i.e., a relaxed form of a metric, satisfying
only non-negativity constraints and triangle inequalities.
The asymmetry in the distances (i.e., Di,j 6= Dj,i) is
naturally required in our application setting — it may arise
from various factors such as the underlying quality of
the items (e.g., switching between a highly rated and an
unreviewed restaurant). Our goal is to efficiently learn the
distance functionD via interactions with the users, without
assuming any knowledge of the underlying attributes that
affect the users’ preferences.
User query and active learning. In our setting, the interac-
tions with the users take the form of a binary labeling query,
i.e., given two items i and j, and a proposed value c, the user
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provides a positive response iff value c is at least the un-
derlying distance Di,j , and a negative response otherwise.
This query is motivated by the posted-price model used in
marketplaces (Abernethy et al., 2015; Singla & Krause,
2013), where users are offered a take-it-or-leave-it price
by the system, and they can accept by providing a positive
response, or reject by providing a negative response.
However, we are not considering the economic aspects of
the query, and each query has unit cost for the algorithm.
Such a feedback setting is realistic and often employed by
online marketplaces where queries are posted to the users in
form of surveys to seek feedback or the users who accept are
awarded the actual monetary offer via a lottery. This paper
is concerned with the sample complexity, i.e., the number
of queries required to learnD.

1.1 Our Approach and Main Contributions
A naive approach to this problem is to learn each of the
n2 pairwise distances independently. However, the sample
complexity of this approach is Θ(n2). Our goal is to
reduce the sample complexity by exploiting the structural
constraints on the version space of hemimetrics. The main
contributions of this paper are as follows:
Novel metric learning framework. We propose a new
learning problem in the framework of metric learning, moti-
vated by the applications to eliciting users’ preferences. The
key distinctive features of our setting are: (i) the specific
modality of the user queries (with natural motivation from
economics), and (ii) the asymmetry of the distances learnt.
Exploiting structural constraints. We develop a novel
active learning algorithm LEARNHM that substantially
reduces the sample complexity by exploiting the structural
constraints of the hemimetric polytope. We provide tight
theoretical guarantees on the sample complexity of the
proposed algorithm for several natural problem instances.
Practical extensions. Our algorithm extends to various
important practical settings, including: (i) the online setting
where the n items are not known beforehand, and rather
appear over time, and (ii) the noisy setting that reflects the
stochastic nature of acceptance of offers by the users.

2 Problem Statement
We now formalize the problem addressed in this paper.
Items A. There are n items (or types of items), denoted
by the set A = {1, 2, . . . , n}. For instance, in a restaurant
recommendation system such as Yelp, A could consist of
types of restaurants distinguished by high-level attributes
such as cuisine, locality, reviews and so on.
HemimetricD∗. LetD be the set of bounded hemimetrics,
i.e., matricesD ∈ Rn×n that satisfy

Di,i = 0 ∀ i ∈ [n], (1)
Di,j ≥ 0 ∀ i, j ∈ [n], (2)
Di,j ≤ r ∀ i, j ∈ [n], and (3)
Di,j ≤ Di,k +Dk,j ∀ i, j, k ∈ [n], (4)

where [n] = {1, 2, . . . , n} and r is the upper bound on the
value. We assume that user preferences are represented by
an underlying unknown hemimetric D∗ ∈ D. The (asym-
metric) distanceD∗i,j quantifies the private costs of the user
for switching from item i to j. Our goal is to learnD∗ via in-
teractions with the users, without assuming any knowledge
of the underlying attributes that affect the user preferences.
User query. A query x ∈ X := {(i, j, c) | i, j ∈ [n], c ∈
[0, r]} to the user is characterized by the tuple (i, j, c),
where item i denotes the choice of the user, item j denotes
the alternative suggested by the algorithm, and c denotes
the monetary incentives offer. Note that the notion of user
as used in this paper is rather generic, and could correspond
to one single user or a crowd / cohort of users.
User response. The response to a query (also called label)
is denoted as y = Y (x), where Y : X 7→ {0, 1}. A label
y = 1 indicates acceptance, while y = 0 indicates rejection.
We denote a labeled datapoint by z = (x, y), where x ∈ X ,
and y = Y (x). In our setting the acceptance function
is stochastic. It is characterized by P(Y (x) = y) and is
required to satisfy the following two mild conditions related
to the decision boundary atD∗i,j and monotonicity:

P(Y ((i, j, c)) = 1) ≥ 0.5 iff c ≥ D∗i,j , and

P(Y ((i, j, c)) = 1) ≥ P(Y ((i, j, c′)) = 1) for c ≥ c′.
For ease of exposition of our main results, we focus on a de-
terministic noise-free setting in the main paper — treatment
of the (more realistic) stochastic acceptance function is
presented in the extended version of this paper (Singla et al.,
2016). In this noise-free setting, the acceptance function
reduces to the threshold function

Y ((i, j, c)) =

{
1 if c ≥ D∗i,j ,
0 otherwise.

(5)

Objective. This paper is concerned with the sample
complexity, i.e., the number of queries required for learning
the unknown hemimetric D∗. We consider a PAC-style
setting, i.e., we aim to design an algorithm that, given
positive constants (ε, δ), determines a hemimetric D̂ ∈ D,
such that with probability at least 1− δ it holds that

‖D̂ −D∗‖∞ ≤ ε, (6)

i.e., |D̂i,j −D∗i,j | ≤ ε ∀ i, j ∈ [n].

Our objective is to achieve the desired (ε, δ)-PAC guarantee
while minimizing the number of user queries.

3 Warmup: Overview of our Approach
We now present the high-level ideas behind our approach.

3.1 Independent Learning: INDGREEDY
One possible way to tackle our learning problem is to learn
each of the n2 pairwise distances independently. Let us fix a
particular pair of items (i, j) ∈ [n]2. Given the query modal-
ity considered in our framework, the goal of learning the dis-
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tanceD∗i,j up to precsion ε is equivalent to learning a thresh-
old function in the active-learning setting (Castro & Nowak,
2006; Settles, 2012). In terms of sample complexity, this is
most effectively achieved by perfoming a binary-search over
the range [0, r]. More formally, at iteration t = 0, we initial-
ize a lower bound of D∗i,j to Lti,j = 0 and an upper bound
to U ti,j = r. At any t > 0, we pick a value ct = 1

2 (Lt−1
i,j +

U t−1
i,j ) and issue the queryxt = (i, j, ct). Then, based on the

returned label yt, we update U ti,j = ct if yt = 1, otherwise
we update Lti,j = ct if yt = 0. We continue querying until
(U ti,j − Lti,j) ≤ ε, and then output any D̂i,j ∈ [Lti,j , U

t
i,j ]

as the estimated distance. The number of queries required in
the noise-free setting is given by dlog( rε )e. As there are n2

pairwise distance learning problems, the total sample com-
plexity of this approach is n2dlog( rε )e.
Such an algorithm, based on independently learning the
pairwise distances, also needs to pick a pair (it, jt) to query
at iteration t. One policy inspired by uncertainty sam-
pling (Settles, 2012) is to pick the pair (it, jt) with maxi-
mum uncertainty quantified by (U t−1

i,j −L
t−1
i,j ). This policy

can also be seen as to greedily minimize our objective stated
in Equation 6. We call this query policy QGREEDY. At any
iteration, it issues the query xt = (it, jt, ct) according to

(it, jt) = arg max
(i,j)∈[n]2

(U t−1
i,j − L

t−1
i,j ), and (7)

ct = 1
2 (Lt−1

it,jt + U t−1
it,jt). (8)

We refer to the independent learning algorithm employing
query policy QGREEDY as INDGREEDY.

3.2 Exploiting Structural Constraints: LEARNHM
We now present our algorithm LEARNHM in Algorithm 12.
Our algorithm depends on three functions LU-PROJ,
QCLIQUE and GETUSERRESPONSE. A high-level de-
scription of these functions is given as follows:
LU-PROJ shrinks the search space of hemimetrics by
updating the lower and upper bounds from L̃t, Ũ t toLt, U t.
Details are provided in Section 4.
QCLIQUE is the query policy that determines the next
query xt = (it, jt, ct) at iteration t given the current state
of the learning process as determined by Lt−1 and U t−1.
Details are provided in Section 5.
GETUSERRESPONSE returns the label yt for query xt. In
the deterministic noise-free setting, this label is determined
by Equation 5. We also develop a robust noise-tolerant
variant of GETUSERRESPONSE for the stochastic setting in
the extended version of this paper (Singla et al., 2016).

4 LU-PROJ: Updating Bounds
We now present the details of our function LU-PROJ. All
proofs are given in the extended version of this paper (Singla
et al., 2016).

2Algorithm 1 reduces to INDGREEDY if QCLIQUE is replaced
by QGREEDY and LU-PROJ(L̃t, Ũ t) simply returns L̃t, Ũ t.

Algorithm 1 Our Algorithm: LEARNHM

1: Input: setA of n items, range r, error parameters (ε, δ)
2: Output: hemimetric D̂
3: Initialize:

iteration t = 0; labeled dataZt = ∅
lower bounds: Lti,j = 0 ∀ i, j ∈ [n]
upper bounds: U ti,j = r ∀ i, j ∈ [n]

U ti,i = 0 ∀ i ∈ [n]
4: while ∃i, j : (U ti,j − Lti,j) > ε do
5: t = t+ 1
6: xt = (it, jt, ct)← QCLIQUE(Lt−1, U t−1)
7: zt = ((it, jt, ct), yt) ← GETUSERRESPONSE(xt)

// ct = ct in the noise-free setting
8: Ũ t = U t−1, L̃t = Lt−1

9: if yt = 1 then
10: update Ũ tit,jt = ct

11: else
12: update L̃tit,jt = ct

13: Lt, U t ← LU-PROJ(L̃t, Ũ t)
14: Zt = Zt−1 ∪ {zt}
15: D̂ ← U t

16: Return: hemimetric D̂

4.1 Valid Bounds
We begin by defining minimal conditions for the lower and
upper bounds returned by LU-PROJ to be valid in terms
of the version space. Let us start by formally defining the
version space for our setting. In Algorithm 1, the labeled
data at iteration t is given by Zt = {z1, . . . , zt} where
zl = (xl, yl) for l ∈ [t]. Then, the version space at iteration
t is defined as

Dt := {D ∈ D | ∀ l ∈ [t] : D(xl) = yl}, (9)

where D(xl) = 1(cl ≥ Dil,jl); here 1(·) denotes the indi-
cator function. That is,Dt ⊆ D is the set of hemimetrics at
iteration t that are consistent with the labeled dataZt.
Also, for given lower bounds L and upper bounds U , we
define the set of hemimetrics satisfying these bounds as

D(L,U) := {D ∈ D |L ≤ D ≤ U}, (10)
where the inequalities are understood component-wise, i.e.,
Li,j ≤ Di,j ≤ Ui,j ∀ i, j ∈ [n]. The bounds Lt, U t at
iteration t are valid, iff D(Lt, U t) ⊇ Dt. Validity of the
bounds ensures thatD∗ is always contained inD(Lt, U t).

4.2 Updating Bounds via Projection
We formalize the problem of obtaining the bounds Lt, U t

as the solution of the following optimization problem:
min
U,L

‖U − L‖1 (P1)

s.t. D(L,U) ⊇ Dt,
where the entry-wise `1-norm of a matrix is defined as
‖M‖1 =

∑
i,j |Mi,j |. The intuitive idea behind this

problem is to decrease the gap between upper and lower
bounds as much as possible while ensuring that the resulting
bounds are valid.
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Figure 1. Geometric interpretation of the effect of exploiting the
constraints in L-PROJ and U-PROJ— each row illustrates this for a
particular constraint from the definitions of the setsD (Equation 4)
and L (Equation 11). Column (1) shows the constraint, column
(2) shows the current lower and upper bounds (Lt−1, U t−1 in
Algorithm 1), column (3) shows an update from the new labeled
datapoint (L̃t, Ũ t in Algorithm 1), and column (4) shows the
effect of the corresponding constraint (Lt, U t in Algorithm 1). For
instance, in row 3, we consider the constraintLi,j ≥ Li,k − Uj,k;
after receiving a new label, Uj,k decreases; this in turn can lead to
an increase ofLi,j .

It turns out, cf. Theorem 1, that Problem P1 can be solved in
a two step process by solving the following two problems:

U∗t = arg min
U∈ D s.t. U≤Ũt

‖U − Ũ t‖1 (P2)

L∗t = arg min
L∈ L(U∗t) s.t. L≥L̃t

‖L− L̃t‖1, (P3)

where L̃t, Ũ t are obtained by Algorithm 1 in lines 8–12.
Here, the set L parameterized by the upper bound matrix
U ∈ D is defined as
L(U) :={L | ∀ i, j, k ∈ [n] : Li,i = 0, 0 ≤ Li,j ≤ Ui,j

Li,j ≥ max (Li,k − Uj,k, Lk,j − Uk,i)}. (11)
Additional details and a formal development of these sets
are given in the extended version of this paper (Singla et al.,
2016). While the set of upper bound matrices corresponds to
the set D of bounded hemimetrics, the set L(U) represents
more complex dependencies. It turns out that the set L
cannot be constrained to contain only hemimetrics. In fact,
we provide a counter-example in the extended version of
this paper (Singla et al., 2016). We can now state one of our
main theoretical results:
Theorem 1. The optimal solution of Problem P1 is unique
and is given byL∗t, U∗t (defined in Problems P3 and P2).

4.3 Function LU-PROJ: Tightening Bounds
We now present an efficient solver for the optimization
Problem P1 given by the function LU-PROJ in Algo-

Algorithm 2 Updating Lower & Upper Bounds: LU-PROJ

1: Input: L̃t, Ũ t; Output: Lt, U t
2: U t ← U-PROJ(Ũ t)

3: Lt ← L-PROJ(L̃t, U t)
4: Return: Lt, U t

Algorithm 3 Updating Upper Bounds: U-PROJ

1: Input: Ũ t; Output: U t
2: Initialize: U t = Ũ t

3: for k = 1 to n do
4: for i = 1 to n do
5: for j = 1 to n do
6: U ti,j = min

(
U ti,j , U

t
i,k + U tk,j

)
7: Return: U t

Algorithm 4 Updating Lower Bounds: L-PROJ

1: Input: L̃t, U t; Output: Lt
2: Initialize: Lt = L̃t

3: for k = 1 to n do
4: for i = 1 to n do
5: for j = 1 to n do
6: Lti,j = max

(
Lti,j , L

t
i,k − U tj,k, Ltk,j − U tk,i

)
7: Return: Lt

rithm 2. The algorithm is invoked with inputs L̃t, Ũ t — its
optimality is ensured by the following theorem.

Theorem 2. The lower and upper bounds Lt, U t returned
by LU-PROJ is the unique optimal solution of Problem P1.

We now briefly describe the function LU-PROJ. It first
invokes the function U-PROJ shown in Algorithm 3 to
compute U t — which in fact equals the optimal solution
of Problem P2 (refer to the proof of the theorem). Then,
it invokes the function L-PROJ shown in Algorithm 4 to
compute Lt — which in fact equals the optimal solution
of Problem P3 (again, refer to the proof of the theorem).
Both U-PROJ and L-PROJ can be seen as iterating over
the constraints of the sets D and L, updating variables
that violate constraints. U-PROJ is in fact equivalent
to the Floyd-Warshall algorithm for solving the all-pair
shortest paths problem in a graph (Floyd, 1962). Similar
equivalence has been shown by Brickell et al. (2008) while
studying the problem of projecting a non-metric matrix to a
metric via decrease-only projections. The function L-PROJ
operates in similar fashion as U-PROJ. However, additional
challenges in the interpretation and analysis of the solution
of L-PROJ arise from the fact that the class L is not a set of
hemimetrics and has more complex dependencies.
Figure 1 provides a geometric interpretation of the
constraints imposed by the sets D (Equation 4) and L
(Equation 11) exploited by U-PROJ and L-PROJ in line 6.
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4.4 Geometric Interpretation ofL∗t andU∗t
In this section we provide a geometric interpretation of the
optimal solution to Problem P1. Consider the space Rn2

.
Let us define π0 to be the set of inequalities

{Di,i = 0, 0 ≤ Di,j ≤ r,
Di,j ≤ Di,k +Dk,j ∀ i, j, k ∈ [n]}.

Thus, the subset of Rn2

described by π0 corresponds to the
set of bounded hemimetrics. At iteration t, we get a new
labeled datapoint zt = ((it, jt, ct), yt) and update the set of
inequalities as follows:

πt =

{
πt−1 ∪ {ct ≥ Dit,jt} if yt = 1,

πt−1 ∪ {ct < Dit,jt} if yt = 0.

Now, consider the polytope Λt defined by πt in Rn2

.
Furthermore, consider the hypercube in Rn2

described
by any lower and upper bounds L,U — the extent of the
hypercube in dimension (i, j) is given by [Li,j , Ui,j ]. Then,
the optimal solution to Problem P1 describes the unique
tightest hypercube containing the polytope Λt.

5 QCLIQUE: Proposing Queries
We first show the limitations of a greedy myopic policy
QGREEDY for proposing queries, and then design our query
policy QCLIQUE that overcomes these limitations.

5.1 Myopic Policy QGREEDY
The policy QGREEDY is inspired by the idea of shrinking
the gap (U t−1

i,j − Lt−1
i,j ) of pair (it, jt) with maximum

uncertainty. As already mentioned, this policy can be seen
as myopic (greedy) in terms of minimizing the objective
‖D̂ − D∗‖∞. However, this policy may turn out to be
suboptimal in terms of exploiting the structural constraints
of hemimetrics.
In particular, consider a simple instance with n items be-
longing to a single tight cluster, i.e., ∀i, j ∈ [n] : D∗i,j = 0.
Clearly, given the 2n distances D∗1,j , D

∗
j,1 for j ∈ [n], one

can infer all other distances because of the tightness of the
triangle inequalities. For this example, INDGREEDY will,
in every iteration t, half the largest upper bound maxi,j U

t
i,j .

Thus, in iteration t, all upper bounds U ti,j are in the range
[α/2, α] where α = r · 2−bt/(n2 − n)c and all lower bounds
Lti,j = 0. Here, invoking LU-PROJ cannot exploit the
structural constraints, i.e., it would simply return (L̃t, Ũ t).

5.2 Non-myopic Policy QCLIQUE
We now present an alternative policy QCLIQUE that
proposes pairs (it, jt) in a non-myopic way in Algorithm 5.
Instead of greedily minimizing ‖D̂ − D∗‖∞, we aim
to learn distances in a systematic way such that we can
exploit the structural constraints of the hemimetrics more
effectively. Note that in this section, we assume a fixed
ordering of the items indexed by 1, . . . , n.
The high level idea behind QCLIQUE is to maintain a clique
of items for which all pairwise distances are already learnt.
It proposes queries in a systematic way to grow the clique

Algorithm 5 Query Policy: QCLIQUE

1: Input: Lt−1, U t−1; Output: query (it, jt, ct)
2: C = {i|∀j < i : U t−1

i,j −L
t−1
i,j ≤ ε ∧ U

t−1
j,i −L

t−1
j,i ≤ ε}

3: a = max C + 1
4: b = minimal i ∈ C s.t. (U t−1

a,i − L
t−1
a,i > ε ∨ U t−1

i,a −
Lt−1
i,a > ε)

5: ifU t−1
a,b − L

t−1
a,b > ε then

6: Return: (a, b, 1
2 (La,b + Ua,b))

7: else
8: Return: (b, a, 1

2 (Lb,a + Ub,a))

item by item according to the assumed ordering. In more
detail, the policy works as follows:

1. At iteration t, the policy maintains a clique
C = {1, . . . , |C|} ⊆ A of items — see line 2 of
Algorithm 5. For any pair of items (i, j) ∈ C it holds
thatU t−1

i,j − L
t−1
i,j ≤ ε.

2. It then identifies the next item to be added to the clique,
denoted as a in line 3.

3. Now, it picks an item b ∈ C for which the distance to a
is not learnt up to precision ε in line 4, and returns the
next query.

Online model. In many practical scenarios, the n items are
not known beforehand, and rather appear over time. Let us
denote by Am = {1, . . . ,m} ⊆ A the set of items present
at timem. When a new item arrives at timem+ 1 we could
learn a hemimetric solution from scratch. However, it would
be desirable to make use of the hemimetric solution forAm
and extend it. In fact, LEARNHM together with QCLIQUE
can be readily applied to this scenario. We can identify the
clique C with the itemsetAm, wherem = |C|, for which the
hemimetric solution is known. The idea of adding a to C in
Algorithm 5, is then equivalent to extending the hemimetric
solution forAm toAm+1. By this equivalence, the sample
complexity of growing the hemimetric solution item by item
up to size n is the same as that of computing the hemimetric
solution for all n items at once.

6 Performance Analysis
In this section we analyze the sample complexity and
runtime of our proposed algorithm LEARNHM. All proofs
are provided in the extended version of this paper (Singla
et al., 2016).

6.1 Sample Complexity
Motivated by our preference elicitation application (see
Section 7), we analyze sample complexity under a clustered-
ness assumption. In particular, we say the hypothesis D∗

is (rin,K)-clustered, if the following condition holds: The
items are partitioned into K clusters, such that for any pair
of items (i, j) their distance is D∗i,j ∈ [0, rin] if i and j
are from the same cluster and D∗i,j ∈ [rin, r] otherwise.
Note that K and rin are unknown to the algorithm. For this



Actively Learning Hemimetrics

setting, the sample complexity of LEARNHM is bounded
by the following theorem.

Theorem 3. If D∗ is (rin,K)-clustered, the sample
complexity of LEARNHM is upper bounded by

2nK
⌈

log
(r
ε

)⌉
+ n2

⌈
log
(2rin + 3ε

ε

)⌉
.

In real-world applications, the distances D∗i,j might corre-
spond to monetary incentives and are, therefore, naturally
quantized to some precision ∆ (monetary incentives are
multiples of the smallest currency unit, e.g., one cent). In
this setting, the learning algorithms can learn D∗ exactly,
i.e., D̂ = D∗, with a bounded number of queries. The idea
is that both, INDGREEDY and LEARNHM, can collapse the
gap U ti,j − Lti,j to zero whenever U ti,j − Lti,j < ∆. Hence,
by invoking these algorithms with any ε < ∆, we learn
D∗ exactly. We then obtain the following corollary for this
interesting special case.

Corollary 1. If D∗ is (0,K)-clustered, and assuming all
distancesD∗i,j are quantized to precision ∆ > 0, the sample
complexity of LEARNHM to exactly learn D∗ is upper
bounded by 2nK

⌈
log
(
r
∆

)⌉
. This matches the lower bound

of Ω(nK).

Note that our algorithm LEARNHM does not perform
more queries than INDGREEDY for any instance. In fact,
the hardest instance for our algorithm is given by D∗

where all distances D∗i,j = r/2. In this case, LU-PROJ
cannot exploit any structural constraints — the number of
queries performed by LEARNHM exactly equals that of
INDGREEDY (equal to n2dlog( rε )e).

Stochastic responses. We can also bound the sample
complexity for the more realistic case in which query re-
sponses are stochastic. Here, we briefly introduce our noise
model — a more detailed description is given in the ex-
tended version of this paper (Singla et al., 2016). Our
noise model is parametrized by the variance matrix σ ∈
Rn,n+ unknown to the algorithm. The acceptance function
P(Y ((i, j, c)) = 1) is given by the CDF of a normal distri-
butionN (D∗i,j , σi,j) truncated to [D∗i,j − βi,j , D∗i,j + βi,j ]
where βi,j = min{D∗i,j , r −D∗i,j}. Note that in our model
the noise is unbounded, i.e., at c = D∗i,j the acceptance func-
tion P(Y ((i, j, c)) = 1) = 0.5. In order to deal with this,
we develop a robust noise-tolerant variant of GETUSERRE-
SPONSE which ensures that the maximum noise experienced
by the algorithm is bounded by

ηmax =
1

2
−
∫ ε/3

0
e
− w2

2maxi,j σ
2
i,j dw∫ r/2

−r/2 e
− w2

2maxi,j σ
2
i,j dw

.

The sample complexity bounds are characterized by the
quantity γ =

( 3 ln(3n2/δ)
(0.5−ηmax)2

)
— the theoretical results cor-

responding to the settings in Theorem 3 and Corollary 1 are
given as follows.

Theorem 4. With probability 1 − δ, LEARNHM learns
D∗ with precision ε and the sample complexity is upper
bounded by3

Õ
(
γ
(

2nK
⌈

log
(3r

ε

)⌉
+ n2

⌈
log
(6rin + 9ε

ε

)⌉))
.

Corollary 2. Consider the case D∗ is (0,K)-clustered,
and assume all distances D∗i,j are quantized to precision
∆ > 0. With probability 1 − δ, LEARNHM learns D∗

exactly and the sample complexity is upper bounded by

Õ
(
γ2nK

⌈
log
(3r

∆

)⌉)
.

6.2 Runtime Analysis and Speeding Up LEARNHM
We now begin by analyzing the runtime of LEARNHM. The
algorithm LEARNHM invokes LU-PROJ after every query
— there are Θ(n2 log( rε )) calls to LU-PROJ in the worst
case. The runtime of LU-PROJ is Θ(n3), resulting in a total
runtime Θ(n5 log( rε )) — this is prohibitively expensive for
most realistic problem instances.
The key idea for speeding up LEARNHM is that we can
choose the constraints that should be exploited instead of
exploiting all the constraints after every query (line 6 in
U-PROJ & L-PROJ). If the constraints to be exploited are
selected carefully, we can still get reasonable benefits from
tightening lower and upper bounds. For LEARNHM, this
can be achieved as follows:

• First, we do not need to invoke LU-PROJ after every
query (this is equivalent to not exploiting any violated
constraint). At any iteration t, LEARNHM invokes
LU-PROJ only if Ũ tit,jt − L̃tit,jt ≤ ε. Otherwise, it

simply sets (Lt, U t)← (L̃t, Ũ t).
• Second, when LEARNHM invokes LU-PROJ at iteration
twe only consider the 2n constraints which involve it, jt

in lines 4 and 5 of Algorithms 3 and 4.

Details of this idea are presented in the extended version of
this paper (Singla et al., 2016). LEARNHM implementing
this idea invokes LU-PROJ at most n2 times each with a
runtime of 4n. Hence, the total runtime of the speeded
up LEARNHM is Θ(n3). Most importantly, the sample
complexity bounds from the previous section still apply.

7 Experimental Evaluation
7.1 Benchmarks
We compare the performance of the speeded up LEARNHM
against the baseline INDGREEDY. We also compare against
a second baseline INDGREEDY-SIT (INDGREEDY with
side information of triplet comparisons). This baseline
utilizes a low-dimensional embedding of the items as a
preprocessing step. Following the work of Jamieson &
Nowak (2011), using n2 log n triplet queries, i.e., for a
triplet (i, j, k) such a query returns 1(D∗i,j ≤ D∗i,k), one can

3The Õ(·) notation is used to omit factors logarithmic in the
factors present explicitly.
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compute a low-dimensional embedding of the items. Using
this embedding, one can infer the response to all possiblen3

triplet queries — this is the side information that we supply
to INDGREEDY-SIT.
This side information can be exploited by INDGREEDY-SIT
as follows. For a given triplet, 1(D∗i,j ≤ D∗i,k) = 1 implies
two constraints on the lower and the upper bounds —Ui,j ≤
Ui,k and Li,k ≥ Li,j . After every query, INDGREEDY-SIT
first updates an upper or lower bound according to the
response. Then it exploits these two constraints for n3

triplets to tighten the bounds on every pair of items. We will
report the sample complexity of INDGREEDY-SIT as the
total number of queries for computing the low-dimensional
embedding and for learning all distances up to precision ε.

7.2 Experimental Setup
Yelp dataset. We use the recently proposed Yelp Dataset
Challenge (round 7) data for our experiments.4 This data
contains information about 77K businesses located across
10 cities around the world. We looked into businesses be-
longing to the category Restaurants and being located in the
city of Pittsburgh, PA. In particular, we extracted informa-
tion for all 290 restaurants offering food from the cuisines
Mexican (50), Thai (26), Chinese (53), Mediterranean (75),
Italian (86). For each of these restaurants we also collected
the review count and coordinates (longitude and latitude).
We discretized the review count into High (popular, 166
restaurants) when there were more than 25 reviews and into
Low (unpopular, 124 restaurants) otherwise. The collected
data is visualized in Figure 3.
User preference models. We simulate user preference
models from this data by creating the underlying hemimet-
ricD∗ as follows. For notational ease, we use the shorthands
cuisinei, reviewi, lati, longi to refer to the above mentioned
attributes for item i. We quantify the distance between item
i and j by
Wi,j = w1W

cuisine
i,j + w2W

review
i,j + w3W

geo
i,j + w4W

random
i,j ,

where
W cuisine
i,j = r1(cuisinei 6= cuisinej),

W review
i,j = r1(reviewi > reviewj),

W geo
i,j is the great-circle distance based on the latitude

and longitude coordinates normalized to lie in [0, r], and
W random
i,j is drawn uniformly at random from [0, r]. Re-

call, r is the upper bound on the distance. The weights
w1, . . . , w4 ∈ R+ sum up to 1. We compute D∗ as the
closest metric toW according to Brickell et al. (2008).
For different weights w1, . . . , w4, we can instantiate differ-
ent user preference modelsD∗. In particular, we instantiate
the following two models. In the first model (YelpM1), we
use w1 = 0.9, w4 = 0.1 and w2 = w3 = 0 — this cor-
responds to the setting we considered in Theorem 3 with
K = 5 and intra cluster distance rin ≤ w4 · r. The sec-

4https://www.yelp.com/dataset challenge/

ond model (YelpM2) is more generic, with weights given by
w1 = 0.5, w2 = w3 = 0.2, w4 = 0.1.

Mediterranean (75)

Italian (86)

Chinese (53)

Thai (26)

Mexican (50) High #reviews (166)

Low #reviews (124)

Figure 3. Visualization of the 290 restaurants from the Yelp data
in Pittsburgh. The restaurants are distinguished by cuisine (color),
popularity (star) and location (coordinates).
7.3 Results
We now present our results. We focus on the noise-free
setting here, results for the stochastic setting are provided
in the extended version of this paper (Singla et al., 2016).
As the metric for comparing LEARNHM, INDGREEDY
and INDGREEDY-SIT, we use the sample complexity of
learning the unknown hemimetric D∗ up to precision ε. In
the experiments we used r = 1, and varied ε and n. When
varying n (by sub-sampling), we used ε = 0.01. Results are
shown in Figures 2 (a-c).
In Figure 2a, for the first model YelpM1, we can observe
that the sample complexity of LEARNHM, cf. Theorem 3,
is almost an order of magnitude smaller than that of
INDGREEDY. Note that INDGREEDY-SIT also has lower
sample complexity than INDGREEDY. However, because of
the large cost for computing an embedding, INDGREEDY-
SIT performs worse than LEARNHM.
The results for the more generic model YelpM2 without
specific clusters are shown in Figure 2b. We observe that
LEARNHM and INDGREEDY-SIT have higher sample
complexity compared to the first model YelpM1. The
sample complexity of LEARNHM is still better by a factor
of ∼2 than that of the baseline algorithms — although the
assumptions in Theorem 3 do not hold.
Finally, Figure 2c shows results for varying ε for n = 100
items. As expected, with increasing ε the sample com-
plexity of all algorithms increases. For larger values of
ε, INDGREEDY-SIT performs worse than INDGREEDY
as the sample complexity for computing the embedding
dominates the learning. Most importantly, LEARNHM has
the lowest sample complexity of all three algorithms.

8 Related Work
8.1 Metric Learning & Low-dimensional Embeddings
Learning distances to capture notions of similarity or
dissimilarity plays a central role in many machine learning
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Figure 2. Sample complexity results for two different user preference models defined via the Yelp dataset. For the first model corresponding
to the K = 5 cluster setting, cf. Theorem 3, the sample complexity of LEARNHM is about an order of magnitude smaller than that of
INDGREEDY. Even for the generic model, LEARNHM substantially outperforms the two baselines.

applications. We refer the reader to the detailed surveys by
Yang & Jin (2006); van der Maaten et al. (2009); Bellet et al.
(2013). Some of the key distinctions of our formulation
from the existing research are described in the following.
Supervised metric learning. In their seminal work, Xing
et al. (2002) introduced the supervised metric learning
framework for learning Mahalanobis distance functions
via a convex formulation. In contrast to our setting, they
assume that the algorithm has access to the feature space of
the input data. Furthermore, this framework and its variants
are restricted to recover symmetric distance functions.
Another line of research considers learning asymmetric dis-
tances, for instance by learning local invariant Mahalanobis
distances (Fetaya & Ullman, 2015) or by learning general
bilinear similarity matrices (Liu et al., 2015). However, this
line of work is not directly applicable to our setting because
it also requires access to the feature space of the input data.
Learning embeddings. Another line of research is that
of learning low-dimensional embeddings for a set of items
respecting the observed geometric relations between these
items (Amid & Ukkonen, 2015; Tamuz et al., 2011; Cox &
Cox, 2000; Jamieson & Nowak, 2011). For applications in-
volving human subjects, a triplet-based queries framework
— for a triplet (i, j, k) it queries1(Di,j ≤ Di,k) — has been
employed. However the distances recovered from these
approaches are merely optimized to respect the observed
relations seen in the data from query responses — they are
symmetric and importantly do not have an actual quantita-
tive (economic) interpretation as we seek in our formulation.

8.2 Exploiting Structural Constraints
Our approach of exploiting the structural constraints of
the hemimetrics polytope is in part inspired by Elkan
(2003), who acceleratesK-means by exploiting the triangle
inequality. By maintaining bounds on the distances, he
efficiently reduces the number of distance computations.
Brickell et al. (2008) study the problem of projecting a
non-metric matrix to a metric matrix, and consider a specific
class of decrease-only projections. Our approach towards
updating upper bounds via decrease-only projections is sim-
ilar in spirit. However, the main technical difficulties arise
in maintaining and updating the lower bounds, for which
we develop novel techniques. The active-learning approach

proposed by Jamieson & Nowak (2011) exploits the geome-
try of the embedding space to minimize the sample complex-
ity using triplet-based queries. While similar in spirit, their
approach is based on triplet-based queries, and differs from
our methodology of exploiting the structural constraints.

8.3 Learning User Preferences
Another relevant line of research is concerned with eliciting
user preferences. Specifically, we seek to learn private costs
of a user for switching from her default choice of item i to in-
stead choose item j. This type of preferences can be used in
marketing applications, e.g., for persuading users to change
their decisions (Kamenica & Gentzkow, 2009). Singla et al.
(2015) considered similar preferences in the context of bal-
ancing a bike-sharing system by incentivizing users to go to
alternate stations for pickup or dropoff of bikes. Abernethy
et al. (2015) considered the application of purchasing data
from users, and quantified the prices that should be offered
to them. One key difference of our approach is that we are
interested in jointly learning the preferences between n
items, i.e., tackling n2 learning problems jointly.

8.4 Active Learning
Our problem formulation shares the goal of reducing sample
complexity with other instances of active learning (Settles,
2012). Our goal to specifically exploit the structural
constraints of the hemimetric polytope is along the lines of
research in structured active learning where the hypotheses
or the output label space have some inherent structure that
can be utilized, e.g., the structure of part-of-speech tagging
of the sentence (Roth & Small, 2006).

9 Conclusions
We investigated the novel problem of actively learning
hemimetrics. The two key techniques used in the con-
struction of our algorithm LEARNHM are novel projection
techniques for tightening the lower and upper bounds on the
solution space and a non-myopic (non-greedy) query policy.
Our algorithm can be readily applied to the online setting
allowing one to extend the hemimetric solution over time.
We provided a thorough analysis of the sample complexity
and runtime of our algorithm. Our experiments on Yelp data
showed substantial improvements over baseline algorithms
in line with our theoretical findings.
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