
Learning to Interact with Learning Agents

Adish Singla
MPI-SWS

Saarbrücken, Germany
adishs@mpi-sws.org

Hamed Hassani
University of Pennsylvania

Philadelphia, USA
hassani@seas.upenn.edu

Andreas Krause
ETH Zurich

Zurich, Switzerland
krausea@ethz.ch

Abstract

AI and machine learning methods are increasingly interact-
ing with and seeking information from people, robots, and
other learning agents. Consequently, the learning dynamics
of these agents creates fundamentally new challenges for ex-
isting methods. Motivated by the application of learning to
offer personalized deals to users, we highlight these challenges
by studying a variant of the framework of “online learning
using expert advice with bandit feedback". In our setting, we
consider each expert as a learning agent, seeking to more ac-
curately reflect real-world applications. The bandit feedback
leads to additional challenges in this setting: at time t, only
the expert it that has been selected by the central algorithm
(forecaster) receives feedback from the environment and gets
to learn at this time. A natural question to ask is whether it
is possible to be competitive with the best expert j∗ had it
seen all the feedback, i.e., competitive with the policy of al-
ways selecting expert j∗. We prove the following hardness
result—without any coordination between the forecaster and
the experts, it is impossible to design a forecaster achieving
no-regret guarantees. We then consider a practical assumption
allowing the forecaster to guide the learning process of the
experts by blocking some of the feedback observed by them
from the environment, i.e., restricting the selected expert it to
learn at time t for some time steps. With this additional coor-
dination power, we design our forecaster LIL that achieves
no-regret guarantees, and we provide regret bounds dependent
on the learning dynamics of the best expert j∗.

Introduction
Many real-world applications involve repeatedly making
decisions under uncertainty—for instance, choosing one
of the several products to recommend to a user in an on-
line recommendation service, or dynamically allocating re-
sources among available stock options in a financial market.
AI methods and machine learning techniques driving these
applications are typically designed—or operate under the
assumption—to be interacting with static components, e.g.,
users’ preferences are fixed, or domain experts / trading tools
providing stock recommendations are static. This assumption
is often violated in modern applications as these methods are
increasingly interacting with and seeking information from
people, robots, and other learning agents. In this paper, we
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highlight the fundamental challenges in designing algorithms
that have to interact with learning agents, especially when
algorithm’s decisions directly affect the learning dynamics
of these agents.

Motivated by the application of learning to offer personal-
ized deals to users, we focus on a well-studied framework of
“online learning using expert advice with bandit feedback"
(Littlestone and Warmuth 1994; Cesa-Bianchi et al. 1997;
Freund and Schapire 1995; Auer et al. 2002; Cesa-Bianchi
and Lugosi 2006; Bubeck and Cesa-Bianchi 2012). This is
a generic framework for sequential decision making under
uncertainty and addresses the fundamental question of how a
learning algorithm should trade-off exploration (the cost of
acquiring new information) versus exploitation (acting greed-
ily based on current information to minimize instantaneous
losses). In this paper, we investigate this framework with an
important practical consideration: How do we use the advice
of experts when they themselves are learning agents?

Motivating Applications
Modeling experts as learning agents realistically captures
many practical scenarios of how one would define/encounter
these experts in real-world applications, such as seeking
advice from fellow players or friends, aggregating predic-
tion recommendations from trading agents or different mar-
ketplaces, product testing with human participants who
might adapt over time, and information acquisition from
crowdsourcing participants who might learn over time. A
specific instance of this problem setting is that of meta-
learning whereby different learning algorithms (e.g., with
different hyperparameters or loss functions) are treated as
experts (Baram, El-Yaniv, and Luz 2004; Hsu and Lin 2015;
Maillard and Munos 2011; Agarwal et al. 2017).

As a concrete running example, we consider the problem
of learning to offer personalized deals / discount coupons
to users enabling new businesses to incentivize and at-
tract more customers (Edelman, Jaffe, and Kominers 2011;
Singla, Tschiatschek, and Krause 2016; Hirnschall et al.
2018). An emerging trend is deal-aggregator sites like Yipit1

providing personalized coupon recommendation services to
their users by aggregating and selecting coupons from daily-

1http://yipit.com/; http://www.groupon.com/;
https://livingsocial.com/



deal marketplaces like Groupon and LivingSocial1. One of
the primary goals of these recommendation systems like Yipit
(corresponding to the central algorithm / forecaster in our
setting) is to design better selection strategies for choosing
coupons from different marketplaces (corresponding to the
experts in our setting). However, these marketplaces them-
selves would be learning to optimize the coupons to offer, for
instance, the discount price or the coupon type based on his-
toric interactions with users (Edelman, Jaffe, and Kominers
2011).

Overview of Our Approach and Main Results
Our goal is to design a central online algorithm (hence-
forth, called as forecaster) to seek the advice of the available
experts—more specifically, at time t, the forecaster selects
an expert it, performs an action atit recommended by the
expert it, and observes/incurs a loss lt(atit) set by the adver-
sary. Furthermore, given the bandit setting, only the selected
expert it receives feedback from the environment and gets to
learn at time t; all other experts that have not been selected
at time t experience no change in their learning state at this
time. A natural benchmark in our problem setting is to be
competitive with the best expert j∗ had it seen all the feed-
back, i.e., competitive with the cumulative loss one would
incur by following the policy of always selecting expert j∗.

Generic setting and the hardness result. The fundamen-
tal challenge in our setting arises from the fact that the fore-
caster’s selection of experts affects which expert gets to learn
at a particular time. In this paper, we establish the follow-
ing hardness result—without any coordination between the
forecaster and the experts, it is impossible to design a fore-
caster achieving no-regret guarantees when competing with
the policy which always selects the expert j∗.

Additional coordination via blocking the feedback. In
light of this hardness result, we next explore practically ap-
plicable approaches where it is possible to achieve no-regret
for the forecaster. In order to make our results applicable to
a wide range of real-world applications mentioned above,
the focus of this paper is on a generic black-box approach
in which the forecaster does not know the internal learning
dynamics of the experts. The specific coordination protocol
that we consider (alternatively, we can think of this as the
additional power at the hands of the forecaster) is as follows:
At a time t, the forecaster could decide to block the feedback
from being observed by the selected expert it, thereby re-
stricting the selected expert from learning at time t for some
time steps. For instance, in the motivating application of of-
fering personalized deals to users, the deal-aggregator site
(forecaster) primarily interacts with users on behalf of the
individual daily-deal marketplaces (experts) and hence could
control the flow of feedback (e.g. users’ bids or clicks denot-
ing their purchase decisions) to these marketplaces. With this
additional coordination, we design our forecaster LIL that
achieves no-regret guarantees with regret bounds dependent
on the learning dynamics of the best expert j∗.

Connections to existing results. To conclude the
overview of our results, we would like to point out a
few relevant papers. First, Maillard and Munos (2011) in-
troduced the EXP4/EXP3 algorithm, i.e., EXP4 meta-

algorithm with experts executing EXP3 algorithms prov-
ing a regret bound of O(T

2
3 ). Second, in a recent work

contemporary to ours, Agarwal et al. (2017) provide im-
proved regret bound of O(T

1
2 ) (in comparison to the above-

mentioned regret bound ofO(T
2
3 )) for the problem of design-

ing meta-algorithm combining multiple bandit algorithms.
Agarwal et al. (2017) also prove a hardness result similar
in spirit to that of ours. However, all these existing meta-
algorithms are based on the idea of feeding unbiased estimate
of losses to the experts and are not directly applicable to
our motivating applications where experts could be imple-
menting learning algorithms with more complex feedback
structure (e.g., dynamic-pricing algorithm based on the par-
tial monitoring framework (Cesa-Bianchi and Lugosi 2006;
Bartók et al. 2014)), or experts being human agents who are
learning over time. Below, we highlight two technical points
of how our approach and main results different from these
existing results:

• Our coordination approach of blocking the feedback ob-
served by experts (i.e., making a binary decision, instead
of modifying losses as done in existing approaches) is
more suitable for real-world application scenarios, espe-
cially in situations where experts’ learning algorithms are
not directly controlled by the forecaster and have complex
feedback structure. Alternatively, when viewing this coor-
dination in terms of communication between the forecaster
and the selected expert it, our coordination can be achieved
with a 1-bit of communication at time t, whereas the coor-
dination in existing approaches requires communicating
the probability of selecting expert it at time t.

• Our results apply to a rich class of no-regret online learn-
ing algorithms that experts might be implementing—the
key ingredient of our results relies on proving a property,
we termed as smooth no-regret learning dynamics. This
property quantifies the robustness of an online learning
algorithm w.r.t. the sparsity in the observed feedback and
is of independent interest.

Generic Setting: The Model
In this section, we formally introduce the generic problem set-
ting and discuss our objective. We have the following entities
in our setting: (i) a central algorithm ALGO as the forecaster;
(ii) an adversary ADV acting on behalf of the environment;
and (iii) N experts EXPj ∀j ∈ {1, . . . N} (henceforth de-
noted as [N ]). Protocol 1 provides a high-level specification
of the interaction between these entities. In subsequent sec-
tions, we will introduce an additional coordination allowing
the forecaster to block the feedback observed by the selected
expert for some time steps (i.e., modifying the specification
in line 7 of the Protocol 1).

Specification of the Interaction
The sequential decision making process proceeds in rounds
t = 1, 2, . . . , T (henceforth denoted as [T ]); for simplicity we
assume that T is known in advance to the forecaster and the
results in this paper can be extended to an unknown horizon
via the usual doubling trick (Cesa-Bianchi and Lugosi 2006).



Protocol 1: The interaction between adversary ADV, forecaster ALGO, and experts
foreach t = 1, 2, . . . , T do

/* Adversary generates the following */
1 a private loss vector lt for the forecaster, i.e., lt(a) ∀ a ∈ A
2 a private feedback vector f t for the experts, i.e., f t(a) ∀ a ∈ A

/* Selecting an expert and performing an action */
3 ALGO selects an expert it ∈ [N ] denoted as EXPit

4 ALGO performs the action atit recommended by EXPit
/* Feedback and updates */

5 ALGO incurs (and observes) loss lt(atit) and updates its selection strategy
6 ∀j ∈ [N ] : j 6= it, EXPj does not observe any feedback and makes no update
7 EXPit observes the feedback f t(atit) from the environment and updates its learning state

However, we do not assume that T is known to the experts.
Each expert EXPj where j ∈ [N ] is associated with a set
of actions Aj and the action set of the forecaster ALGO is
given by A = ∪j∈[N ]Aj .2 For the clarity of presentation in
defining the loss and feedback vectors, we will consider that
the action sets of experts are disjoint.3 The actions here could
represent simple discrete actions (e.g., offering a discount
coupon of a particular type) or could also represent functional
policies defined over a time-dependent context (e.g., mapping
user features to the value of a discount coupon).

At any time t, the adversary ADV generates a private loss
vector lt (i.e., lt(a) ∀ a ∈ A) for the forecaster and a private
feedback vector f t (i.e., f t(a) ∀ a ∈ A) for the experts—see
examples below for the specific notion of feedback. Addi-
tionally, the adversary ADV generates a publicly available
context that is accessible to all the experts at time t—this
context essentially encodes any side information from the
environment at time t (e.g., user’s features at time t).4

Simultaneously, the forecaster ALGO (possibly with some
randomization) selects expert EXPit to seek advice. The se-
lected expert EXPit recommends an action ait ∈ Ait ⊆ A
(possibly with its internal randomization) which is then per-
formed by the forecaster. The forecaster ALGO observes and
incurs the loss lt(atit), and updates its strategy on how to
select experts in the future. All the experts apart from the
one selected, EXPj ∀ j 6= it, observe no feedback and make
no update—these experts do not experience any change in
their learning state at this time. The selected expert EXPit
observes a feedback from the environment denoted as f t(atit)
and performs one learning step.

We assume that losses are bounded in the range [0, lmax]
for some known lmax ∈ R+; w.l.o.g. we will use lmax = 1
(Auer et al. 2002). We consider an oblivious (non-adaptive
adversary) as is usual in the literature (Freund and Schapire
1995; Auer et al. 2002), i.e., the loss vector lt and the feed-

2The special case of standard multi-armed bandits is captured
by the setting when Aj is a singleton ∀j ∈ [N ].

3Note that assuming the disjoint action sets across experts is
w.l.o.g., as we can still simulate the shared actions by enforcing that
losses/feedbacks for the shared actions are same at any given time.

4We have omitted a formal definition of the context as it doesn’t
directly play a role in the design of our forecaster.

back vector f t at any time t do not depend on the actions
taken by the forecaster, and hence can be considered to be
fixed in advance. Apart from that, no other restrictions are
put on the adversary, and it has complete knowledge about
the forecaster and the learning dynamics of the experts.

The notion of the feedback and concrete examples. So
far, we have considered a generic notion of the feedback
received by the selected expert—this feedback essentially
depends on the application setting and is supposed to be
“compatible" with the learning algorithm used by an expert.
For instance, consider an expert EXPj implementing the
EXP3 algorithm and recommending an action atj at time
t, then the feedback f t(atj) received by this expert (if se-
lected at time t) is the loss lt(atj); for the case of expert EXPj
implementing the HEDGE algorithm, the feedback f t(atj)
received by this expert (if selected at time t) is the set of
losses {lt(a) | ∀ a ∈ Aj}. The feedback could be more
general, for instance, receiving a binary signal of accep-
tance/rejection of the offered deal when an expert is im-
plementing a dynamic-pricing algorithm based on the par-
tial monitoring framework (Cesa-Bianchi and Lugosi 2006;
Bartók et al. 2014).

Specification of the Experts
Next, we provide a formal specification of the experts. The
focus of this paper is on a black-box approach in which the
forecaster ALGO does not know the internal dynamics of
the experts. At time t, let us denote an instance of feedback
received by EXPit by a tuple h = (atit , f

t(atit)). For any
expert EXPj where j ∈ [N ], let Htj = (h1, h2, . . .) denote
the feedback history for EXPj , i.e., an ordered sequence of
feedback instances observed by EXPj in the time period
[1, t). The length |Htj | denotes the number of learning steps
for EXPj up to time t. At time t, the action atj recommended
by EXPj to the forecaster, if this expert is selected, is given by
atj = πj(Htj) where πj is a (possibly randomized) function
of EXPj , taking as input a history of feedback sequence, and
outputs an action a ∈ Aj . Importantly, this history Htj is
dependent on the execution of the forecaster ALGO—for
clarify of presentation, we denote it asHtj,ALGO.

No-regret learning dynamics. To be able to say anything
meaningful in this setting, we introduce the constraint of no-



regret learning dynamics on the experts. Let us consider any
sequence of a loss vector l and a feedback vector f given by
D = (lτ , fτ )τ={1,2,...} generated arbitrarily by the adversary
ADV and let |D| denotes its length. Consider a setting in
which the forecaster executes a simple policy which always
select a specific expert EXPj for a fixed j ∈ [N ]. Hence, this
expert EXPj gets to see all the feedback and has the complete
feedback history at every time step—we denote this complete
history at any time τ ∈ [|D|] asHτj,FULL. Then, the no-regret
learning dynamics of EXPj parameterized by βj ∈ [0, 1]
guarantees that the cumulative loss of the forecaster executing
this policy satisfies the following:

E
[ |D|∑
τ=1

lτ
(
πj(Hτj,FULL)

)]
− min
a∈Aj

|D|∑
τ=1

lτ (a) ≤ O(|D|βj )

(1)

where the expectation is w.r.t. the randomization of πj .

Our Objective: No-Regret Guarantees
As a first attempt in designing the forecaster, one might con-
sider using one of the standard algorithms from the EXP
family (e.g., the EXP3 algorithm (Auer et al. 2002) or the
NEXP algorithm (McMahan and Streeter 2009)) as the fore-
caster. This would guarantee that the forecaster has no-regret
guarantees using the classical notion of external regret (cf.
Equation 2). However, we argue that external regret is not
a desirable objective for our problem setting. We then for-
mally state the guarantees we seek for the forecaster (cf.
Equation 3).

External regret and its limitations. We begin by for-
mally defining the classical notion of external regret used
in the literature (Auer et al. 2002; Cesa-Bianchi and Lugosi
2006; Bubeck and Cesa-Bianchi 2012). Let us consider a
complete execution of the forecaster ALGO in the retrospect:
(i) let

(
{atj : j ∈ [N ]}

)
t∈[T ]

denote actions recommended by
the experts during this execution and (ii) let (lt)t∈[T ] denote
loss vectors generated by the adversary. In order to define the
external regret of the forecaster in this execution, we need to
fix these actions and loss vectors. Then, the external regret of
the forecaster is given by

REGEXT(T,ALGO) :=

T∑
t=1

lt(atit)− min
j∈[N ]

T∑
t=1

lt(atj) (2)

If we would have used, let’s say, the EXP3 algorithm
(Auer et al. 2002) as the forecaster, we would obtain a
bound of O(T

1
2 ) on the external regret defined in Equa-

tion 2. However, this regret bound is only w.r.t. the post
hoc sequence of actions performed and losses observed dur-
ing the execution of the forecaster—it is not informative
of the actual performance of the forecaster when compar-
ing against a policy which always selects the best expert
j∗(cf. Equation 3 for a formal definition). The reason why
this classical notion of regret is not informative in our set-
ting can also be attributed to the fact that losses at any
time t are indirectly dependent on which experts were se-
lected by the forecaster in the past as that defines the current

learning state of the experts (McMahan and Streeter 2009;
Maillard and Munos 2011; Agarwal et al. 2017). This chal-
lenge of history-dependent losses also arises when playing
against a non-oblivious/adaptive adversary and requires dif-
ferent notions of regret beyond the external regret (Arora,
Dekel, and Tewari 2012).

Competing with the best expert. Intuitively, we want to
be competitive with the best expert EXPj∗ (for any j∗ ∈ [N ])
had it seen all the feedback, i.e., competitive with the policy
of always selecting this expert EXPj∗ . In fact, executing such
a policy ensures that the expert EXPj∗ gets full feedback to
improve its learning state and perform well w.r.t. the single
best action from the set Aj∗ . We can formally state this
alternate notion of regret for the forecaster ALGO as follows:

REG(T,ALGO) :=

T∑
t=1

E
[
lt
(
πit(Htit,ALGO)

)]
− min
j∈[N ]

min
a∈Aj

T∑
t=1

lt(a) (3)

where the expectation is w.r.t. the randomization of the fore-
caster as well as any internal randomization of the experts.

If we already knew who the best expert EXPj∗ is at
t = 0, we could always select this expert—the no-regret
learning dynamics from Equation 1 dictates that the regret
REG(T,ALGO) grows as O(T βj∗ ). The main research ques-
tion that we study in this paper is how to design an algorithm
for the forecaster when we don’t have this prior knowledge
of j∗. It turns out that competing with this policy of always
selecting EXPj∗ is a challenging problem in the bandit feed-
back setting (cf. next section for the hardness result). For
instance, what might go wrong is that the best expert could
have a slow rate of learning/convergence thus incurring high
loss in the beginning, misleading the forecaster to essentially
“downweigh" this expert. This is turn further exacerbates the
problem for the best expert in the bandit feedback setting
as this expert will be selected even less and thus have fewer
learning steps to improve its state. This adds new challenges
to the classic trade-off between exploration and exploitation,
suggesting the need to explore at a higher rate.

Generic Setting: Hardness Result
In this section, we highlight the fundamental challenges in de-
signing algorithms that have to interact with learning agents
by establishing the following hardness result: in the absence
of any coordination between the forecaster and the experts, it
is impossible to design a forecaster that achieves no-regret
guarantees (cf. Equation 3) in the worst-case . Infact, we
prove this hardness result when playing against an oblivious
(non-adaptive) adversary and when restricting the experts to
be implementing well-behaved learning algorithms (e.g., the
HEDGE algorithm (Freund and Schapire 1995)). We formally
state this hardness result in Theorem 1 below.
Theorem 1. There is a setting in which each of the experts
has no-regret learning dynamics with parameter β ≤ 1

2 ;
however, any forecaster ALGO will suffer a linear regret, i.e.,
REG(T,ALGO) = Ω(T ).

The proof is given in the extended version of this paper
(Singla, Hassani, and Krause 2018); we briefly outline the
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Figure 1: We have two experts: EXP1 plays HEDGE and has two actionsA1 = {a1, a2}, and EXP2 has only one actionA2 = {b}.
Figures 1(a), 1(b), and 1(c) shows the cumulative loss sequences L1, L2, and L3 for three different scenarios—the adversary at
t = 0 uniformly at random picks one of these scenarios and uses that loss sequence. These plots show the cumulative losses of the
three actionsA = {a1, a2, b} for three different sequences. The losses are illustrated with the following color scheme—a1:green,
a2:red, and b:blue.

main ideas below. Our setting for proving this theorem con-
sists of two experts EXP1 and EXP2. The first expert EXP1
has two actions given by A1 = {a1, a2}, and the second
expert EXP2 has only one action given by A2 = {b}. The ac-
tion set of the forecaster ALGO is given by A = {a1, a2, b}.
The expert EXP1 plays the HEDGE algorithm (Freund and
Schapire 1995), i.e., the regret rate parameter is β1 = 0.5; the
expert EXP2 has only one action to play, hence β2 = 0. Fig-
ures 1(a), 1(b), and 1(c) show the cumulative loss sequences
L1, L2, and L3 for three different scenarios—the adversary
at t = 0 uniformly at random picks one of these scenarios
and uses that loss sequence.

Our main argument is that for any forecaster, one of the
scenarios leads to linear regret.5 In the proof, we consider the
case where a forecaster is facing the sequence L1. We then
divide the time horizon T into different slots, and discuss
the execution behavior of the forecaster and experts over
these time slots. Specifically, our claim is that in the time
slot t ∈ (T4 ,

T
2 ], the expert EXP1 would not be selected for

T
12−o(T ) time steps. As a result, in the time slot t ∈ ( 11T

12 , T ],
the expert EXP1 would end up recommending action a2,
and a1 would only be recommended o(T ) number of times,
leading to Ω(T ) regret for the forecaster. Informally speaking,
our negative example shows that the forecaster’s selection
strategy could add “blind spots" in the feedback history of the
experts and that they might not be able to “recover" from this.
The fundamental challenge leading to this hardness result is
that the forecaster’s selection strategy affects the feedback
observed by the experts, which in turn alters the learning
processes of these experts.

5In fact, this hardness result holds even when considering a pow-
erful forecaster which knows exactly the learning algorithms used
by the experts, and is able to see the losses {lt(a1), l

t(a2), l
t(b)}

at every time t ∈ [T ].

Our Approach
In this section, we explore practically applicable approaches
where it is possible to achieve no-regret guarantees for the
forecaster. Our setting is similar to the problem of designing
meta-algorithm for combining different bandit algorithms
(Maillard and Munos 2011; Bubeck and Cesa-Bianchi 2012;
Agarwal et al. 2017). However, existing meta-algorithms—
for instance, the EXP4/EXP3 algorithm (Maillard and
Munos 2011) or the CORRAL algorithm (Agarwal et al.
2017)—are based on the idea that the forecaster has the
power to modify losses as seen by the experts, thereby, feed-
ing unbiased estimate of losses to the experts. However,
these existing meta-algorithms are not directly applicable
to our motivating applications where experts could be imple-
menting learning algorithms with more complex feedback
structure (e.g., dynamic-pricing algorithm based on the par-
tial monitoring framework (Cesa-Bianchi and Lugosi 2006;
Bartók et al. 2014)), or experts being human learning agents.

Additional Coordination and Forecaster LIL
Motivated by the application setting of deal-aggregator sites,
we consider a new coordination approach in which the fore-
caster has the power to guide the experts’ learning process
by carefully blocking the feedback observed by them. For in-
stance, in the motivating application of offering personalized
deals to users, the deal-aggregator site (forecaster) primarily
interacts with users on behalf of the individual daily-deal
marketplaces (experts) and hence could control the flow of
feedback (e.g. users’ bids or clicks denoting their purchase
decisions) to these marketplaces. Formally, at a time t, the
forecaster could decide to block the feedback from being
observed by the selected expert it, thereby restricting the
selected expert from learning at time t for some time steps
(i.e., modifying the specification in line 7 of the Protocol 1).
Compared to the existing meta-algorithms which require
modifying losses, our coordination approach is more appli-



Algorithm 2: Forecaster LIL
1 Parameters: η ∈ (0, 1]
2 Initialize: time t = 1, weights wtj = 1 ∀j ∈ [N ]

foreach t = 1, 2, . . . , T do
/* Selecting an expert */

3 ∀j ∈ [N ], define probability

ptj = (1− η) ·
wtj(∑

k∈[N ] w
t
k

) +
η

N

4 Draw it from the multinomial distribution (ptj)j∈[N ]

5 Perform action atit recommended by EXPit
/* Making updates */

6 Observe loss lt(atit)
7 ∀j ∈ [N ], do the following:

8 Set l̃tj =
lt(atit)

ptit
for j = it, else l̃tj = 0

9 Update wt+1
j ← wtj · exp(−

η · l̃tj
N

)

/* Blocking the feedback */

10 ξt ∼ Bernoulli( η

N · ptit
)

11 if (ξt = 0) then
12 EXPit does not observe the feedback f t(atit)

and has no change in the learning state

cable to generic black-box settings where experts’ learning
algorithms are not directly controlled by the forecaster and
could have different feedback structure.

With this additional coordination power, we design our
forecaster LIL (Learning to Interact with Learners), pre-
sented in Algorithm 2. The selection strategy of the fore-
caster LIL is similar to the EXP3 algorithm (Auer et al.
2002). The core idea of guiding the experts’ learning process
is presented in lines 10,11, and 12 of the Algorithm 2. At time
t, the forecaster LIL blocks the feedback observed by the
selected expert when ξt = 0 where ξt is a Bernoulli( η

N ·pt
it

)

random variable. By choosing this particular random vari-
able, the forecaster LIL ensures that the probability that any
expert EXPj ∀j ∈ [N ] observes feedback is constant over
time t ∈ [T ] and is given by η/N. Considering the negative
example used in the proof of Theorem 1, this means that by
carefully restricting the feedback, the forecaster LIL avoids
any “blind spots" in the feedback history of the experts. How-
ever, in order to achieve this, LIL is required to explore at a
higher rate, as is evident by the value of η in Theorem 2.

Performance Analysis
In this section, we analyze the performance of the forecaster
LIL. We first introduce a novel property, we termed as smooth
no-regret learning dynamics, quantifying the robustness of an
online learning algorithm w.r.t. the sparsity in the observed
feedback. Then, the key ingredient of our results (cf. Theo-
rem 2) relies on showing that a rich class of no-regret online
learning algorithms that experts might be implementing also
satisfy this property of smoothness (cf. Proposition 1). This
property is of independent interest towards designing learning
algorithms that are robust against deletion of feedback.

Theoretical Guarantees
Smooth no-regret learning dynamics. In the bandit feed-
back setting, not all the experts get to observe feedback at
a given time, and hence the feedback history would not be
complete for the experts (cf. Equation 1). Consider the same
setting as used in defining the no-regret learning dynamics in
Equation 1 for a specific expert EXPj . Again, the forecaster
executes a simple policy which always select this expert
EXPj , however, let us consider a situation where the expert
EXPj only gets to observe the feedback with a probability
α ∈ (0, 1] at a given time. We denote this sparse feedback
history at any time τ ∈ [|D|] asHτj,α-FULL. Then, the smooth
no-regret learning dynamics of EXPj guarantees that the cu-
mulative loss of the forecaster satisfies the following:

E
[ |D|∑
τ=1

lτ
(
πj(Hτj,α-FULL)

)]
− min
a∈Aj

|D|∑
τ=1

lτ (a) ≤ O
( (α · |D|)βj

α

)
(4)

where the expectation is w.r.t. the randomization of function
πj as well as w.r.t. the randomization in generating this sparse
feedback history. The following proposition states that a rich
class of online learning algorithms indeed have smooth no-
regret learning dynamics that can be used by the experts—the
proof is given in the extended version of this paper (Singla,
Hassani, and Krause 2018).
Proposition 1. A rich class of no-regret online learning algo-
rithms based on gradient-descent style updates have smooth
learning dynamics including the Online Mirror Descent fam-
ily of algorithms with exact or estimated gradients (Shalev-
Shwartz 2011) and Online Convex Programming via greedy
projections (Zinkevich 2003).

No-regret guarantees of LIL. Next, we prove the no-
regret guarantees of our forecaster LIL when competing
with the best expert EXPj∗ (cf. Equation 3). The following
theorem states the bounds, keeping only the leading terms of
T . The proof is given in the extended version of this paper
(Singla, Hassani, and Krause 2018).
Theorem 2. Let T be the fixed time horizon. Consider that
the best expert j∗ ∈ [N ] has no-regret smooth learning
dynamics parameterized by βj∗ ∈ [0, 1] and LIL is invoked
with input β ∈ [0, 1] such that β ≥ βj∗ . Set parameters η =

Θ
(
T−

1−β
2−β ·N

1−β
2−β · (logN)(

1
2 ·1{β=0})

)
. Then, for sufficiently

large T , the worst-case expected cumulative regret of the
forecaster LIL is:

REG(T, LIL) ≤ O
(
T

1
2−β ·N

1
2−β · (logN)(

1
2 ·1{β=0})

)
For the special case of multi-armed bandits (where β = 0),

this regret bound matches the bound of Θ(T
1
2 )—in fact, for

this special case, our algorithm LIL is exactly equivalent to
EXP3. For an important case when experts are implement-
ing algorithms like HEDGE or EXP3 (where β = 1

2 ), our
algorithm LIL achieves the bound of O(T

2
3 ).

Simulation Results
Next, we evaluate the performance of the forecaster LIL via
simulations, and compare against the following benchmarks:
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Figure 2: Simulation results showing the performance of LIL against different benchmarks for a setting with two experts (similar
to what we used in the proof of Theorem 1). (a) considers adversarial losses from Figure 1(a); (b) considers stochastic losses.
Results illustrate that LIL has provable no-regret guarantees in general, and also a fast convergence rate in the stochastic setting.

• EXP3: using EXP3 algorithm (Auer et al. 2002) as the
forecaster for the specification in Protocol 1.

• ALL-LEARN: using EXP3 algorithm (Auer et al. 2002)
as the forecaster for a relaxed/easier setting in which all
experts j ∈ [N ] observe the feedback at any time t.

Adversarial losses. As our first simulation setting, we
consider the same set up used in the proof of Theorem 1
and we use the loss sequence shown in Figure 1(a). For this
loss sequence, the loss of actions A = {a1, a2, b} averaged
over t ∈ [T ] is given by (0.4583, 0.5, 0.7487)—hence the
best expert is EXP1 and the best action is a1 (cf. Equation 3).
Figure 2(a) shows the regret REG(T,ALGO) for LIL, EXP3,
and ALL-LEARN, and illustrates the following points. First,
EXP3 suffer a linear regret, as dictated by the hardness result
in Theorem 1. Second, LIL has a sub-linear regret as proved
in Theorem 2. Note that if we plot REG(T,ALGO) shown in
Figure 2(a) on a log-log plot, the slope s of a linear fit on
the resulting plot defines the rate T s of the growth of regret.
The slope is s = 0.62 for LIL—our results from Theorem 2
dictate an upper bound of 0.66 on LIL’s slope (for β = 0.5).

Stochastic losses. To complement the above results,
we next consider a stochastic version of the above setup
where losses of actions A = {a1, a2, b} are sampled
i.i.d. from Bernoulli distributions with means given by
(0.45, 0.5, 0.475)—as before, the best expert is EXP1 and the
best action is a1 for this stochastic setting. Figure 2(b) shows
the regret REG(T,ALGO) for LIL, EXP3, and ALL-LEARN,
and illustrates the following points. First, EXP3 performs bet-
ter than LIL: this is expected because in the stochastic setting,
the strategy to block the feedback only slows down conver-
gence; furthermore, LIL has a higher rate of exploration η
compared to EXP3. Second, in the log-log plot, the slope
is s = 0.56 for LIL, s = 0.47 for EXP3, and s = 0.40
for ALL-LEARN—this signifies the fast convergence rate of
LIL. Third, the regret of LIL in Figure 2(a) (adversarial)
and Figure 2(b) (stochastic) is about the same because LIL’s
coordination approach essentially adds stochasticity in the
feedback observed by experts.

Further Related Work
Markovian, rested, and restless bandits. Our setting is sim-
ilar in spirit to that of the rested Markovian bandits where
each action/arm is associated with its own stochastic MDP
and an arm changes its state only when it is pulled. In the
seminal work, Gittins (1979) introduced the Gittins index
to find an optimal sequential policy for these Markovian
bandits problem. This work has been extended to settings
where all arms change their reward distributions at every time
step according to their associated stochastic MDPs, termed
as restless bandits (Whittle 1988; Slivkins and Upfal 2008;
Besbes, Gur, and Zeevi 2014). However, none of these frame-
works could model learning dynamics of the experts in the
adversarial setting we consider.

Online boosting and adaptive control. Another line of
recent work similar in spirit to ours is online boosting—
combining a set of “weak" online learning algorithms to form
a “strong" online learning algorithm (Beygelzimer, Kale, and
Luo 2015; Beygelzimer et al. 2015). However, there are sub-
stantial differences when compared to our problem setting:
online boosting techniques have been studied in the context of
classification/regression problems, (most of) the techniques
are for the full-information setting, and one of the key chal-
lenges revolves around defining the weights for an online
training example to be passed on to the “weak" learners. Our
work is also similar to that of switching adaptive control
(Fu 2015) which employs an array of simple candidate con-
trollers; the goal is to design a meta-controller that can switch
across controllers to search for the best candidate controller in
real-time. Our result in Theorem 1 highlights the challenges
in designing a meta-controller in an adversarial setting.

Learning in games. An orthogonal line of research stud-
ies the interaction of agents in multiplayer games where each
agent uses a no-regret learning algorithm (Blum and Man-
sour 2007; Syrgkanis et al. 2015). The questions tackled in
this line of research are very different as it focuses on in-
teractions of the agents, their individual as well as social
utilities, and the convergence of the game to an equilibrium.
This orthogonal line of research reassures that the no-regret



learning dynamics that we consider in this paper are indeed
important and natural dynamics that are also prevalent in
other application domains.

Conclusions and Future Work
In this paper, we investigated the framework of online learn-
ing using expert advice with bandit feedback when experts
themselves are learning agents. Our hardness result highlights
the fundamental challenges faced by traditional AI and ma-
chine learning methods when interacting with learning agents.
In order to circumvent the hardness result, we introduced a
new coordination approach allowing the forecaster to guide
the experts’ learning process by restricting the feedback re-
ceived by them. In comparison to existing meta-algorithms
that modify losses seen by the experts, our approach is more
suitable for real-world applications where learning agents
might have more complex feedback structure—for instance, a
deal-aggregator site interacting with daily-deal marketplaces,
or an AI system interacting with humans.

An important direction would be to study other practical
ways of coordination and to understand the minimal commu-
nication required between the central algorithm and learning
agents to achieve desired guarantees. For our problem setting,
an interesting question to tackle is whether it is possible to
design a forecaster using our coordination approach (which
requires only 1-bit of communication at every time step) with
a cumulative regret of Θ(T

1
2 ) when the individual experts

have no-regret learning dynamics with parameter β = 1
2 . Fi-

nally, we would like to point out that while we focused on the
framework of online learning using expert advice, our results
call for further studies of other frameworks and methods, e.g.,
active learning methods when dealing with dynamic oracles.
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