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Why is Autonomous Crowd Navigation Needed?
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Why is Autonomous Crowd Nawgatlon Needed7

e Malls, hospitals,

e (afeterias!

Pioneer 3-DX




The Freezing Robot Problem




The Freezing Robot Problem

Independent agents = uncertainty explosion




The Freezing Robot Problem

Independent agents — uncertainty explosion
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The Freezing Robot Problem

Independent agents — uncertainty explosion

Frozen
¢ 44 robot

Uncertainty explosion = freezing robot problem




Approaches to Solving the Freezing Robot Problem
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State of the art methods
assume culprit of FRP is
uncertainty explosion [6]

Control covariance, keep cost low
(call it " constant covariance” method)

Precise agent dynamic modeling
has same motivation [18,16,2,7,9]
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Control covariance, keep cost low
(call it " constant covariance” method) Severely crowded environments:

BUT: all paths lower bounded by

Precise agent dynamic modeling large cost

has same motivation [18,16,2,7,9]
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State of the art methods
assume culprit of FRP is
uncertainty explosion [6]
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Control covariance, keep cost low
(call it " constant covariance” method) Severely crowded environments:
BUT: all paths lower bounded by

Precise agent dynamic modeling large cost

has same motivation [18,16,2,7,9]

Conclusion: improving prediction or reducing covariance
cannot be expected to solv§I the freezing robot problem




Approaches Continued

"Agnostic’ robot:
agent independence

e Const. cov. unreliable

e Reactive planning unreliable



Approaches Continued
“Agnostic’ robot: “Cooperative” robot:
agent independence robot/agent system

lllustration:

robot cooperates
with agents to

proceed optimally

e Const. cov. unreliable

e Reactive planning unreliable 13



Our Solution

(1)) robot state
() D £, f(1)™

f(?) agent path
~f(®) robot path




Our Solution

(1)), robot state
(1) (1)@, ()™

f(?) agent path
~f(®) robot path

— £ is agent i's continuous path in the plane R2?:

f': [0, 00] — R?
e [z ()W, y ()]

— f(t) = (F)W,£(#)P), ..., £(t)™) is concatenation of n agent paths

|5



Challenge: how to efficiently and accurately model

random, continuous trajectories (functions)




Gaussian Processes for Trajectory Modeling
GP prior: distribution
over functions
—> models trajectories well
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e
e Draw trajectories

£(t); ~ GP(0, k)

e kernel function k controls
smoothness of x(t)
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Gaussian Processes for Trajectory Modeling

GP prior: distribution GP posterior: incorporates
over functions information at any
—> models trajectories well point along trajectory

e Draw trajectgries e Incorporate probabilistic
f(t); ~ GP(0,k) goal information

e kernel function k controls e Encode smoothness in
smoothness of x(?) a non-Markovian way




Conditioning on Goal Information
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(7).
T

Train prior GPs to find k() condition on goal information z

Pr(R) (f(R) | Zl:tazgﬂR))vpk(l)(f(l) ‘ Zgif)?Z’_(Fl))? ooy Pr(n) (f(n) ‘ Zl:tazgfj))
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Interacting Gaussian Processes
Prior GPs: ) times GPs:
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Navigation with Interacting Gaussian Processes

p(f®) | z,.,) suggests a natural way to perform navigation:
at time ¢, find that MAP of the posterior

prap(fF) f | zy.)




Navigation with Interacting Gaussian Processes

p(f®) | z,.,) suggests a natural way to perform navigation:
at time ¢, find that MAP of the posterior

prap(fF) f | zy.)

() £)* = argmax p(f, £ | z1.4)
f(R) f

and take {7 (t 4+ 1)* as the next action in the path




Evaluation: ETH Data Set

A e
e Very dense crowds, large numbers of pedestrians

e Many instances of crowd interaction
e Goal oriented behavior

e Ground truthed for over 8 minutes
29




IGP and pedésl:rian
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Const. covariance
Const. cov. evasive:




Results

Path Length versus Safety

Const. cov.
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Path length vs safety, 10 runs
|GP outperforms pedestrians.
Constant cov inappropriate




Results

Path Length versus Safety

Const. cov.
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Path length

Path length vs safety, 10 runs
|GP outperforms pedestrians.
Constant cov inappropriate

Runtime in Matlab: ~ 10Hz
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Conclusions
Defined frozen robot problem

In dense crowds, freezing robot problem occurs if
p(f|z1¢) =[], p(f9 | z1.4) assumed

Navigation in dense crowds requires interaction
modeling

|GP, a nonparametric statistical model based on

dependent output GPs

Navigation ='s inference in this model
Evaluation on real world pedestrian data

|GP outperformed pedestrians, state of the art
algorithm

Future: develop experiments for cafeteria at lunchtime
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