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Fig. 1. Crowded street scene

ance is required to solve the FRP,
• development of a novel model for interaction based

on coupled output Gaussian Processes (GPs), called
Interacting Gaussian Processes (IGP),

• development of an approximate inference algorithm for
prediction and navigation of the IGP, and

• demonstration of the effectiveness of this model under
real world crowd conditions.

II. THE FREEZING ROBOT PROBLEM
A. Formalizing the FRP
We now formalize the FRP. Fix an agent i. Suppose we have
a prior distribution p(f (i)) over the agent’s trajectory f (i) =
(f (i)

1 , . . . , f (i)
T ) over T timesteps, where each f (i)

t = (xt, yt)
is the location of agent i in R2 at time t. We also have a like-
lihood function p(z(i)

t | f (i)
t ) for our observations. In the fol-

lowing, we will assume that the observations do not depend
on the robot’s actions. After obtaining the first t observations
z(i)
1:t, we can perform Bayesian inference to calculate the

posterior p(f (i) | z(i)
1:t). Assuming all agents behave indepen-

dently of each other, we have a prior joint distribution over
trajectories, p(f (1), . . . , f (n)) =

�
i p(f (i)), and the posterior

is still independent, p(f (1), . . . , f (n) | z1:t) =
�

i p(f (i) |
z(i)
1:t), where z1:t is the set of observations about all agents.
Our goal in dynamic navigation is to pick a policy π that

adaptively chooses a path f (R) for the robot based on its ob-
servations. π is typically specified by stating which next lo-
cation f (R)

t+1 the robot should choose given observations z1:t.
Thus, for each sequence of observations z1:T , it can

potentially end up choosing a different path f (R) = π(z1:T ).
The cost J(π) of a policy π is the expected cost

J(π) =
�

p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz,

where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions1, solving for the optimal policy π
requires solving a continuous-state Markov Decision Process

1If the observations depend on the actions, the problem becomes a
continuous state-space POMDP which is even more intractable.

MDP, where the dimensionality grows linearly with the
number of agents, which is intractable.

The intractability of such MDPs is fairly common; in the
path planning community, a state of the art, tractable alterna-
tive to MDPs is a method called Receding Horizon Control

(RHC). RHC proceeds in a manner similar to MDPs, albeit
online: as observations become available, RHC calculates,
based on some cost function, the optimal non-adaptive action
(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) |
z1:t) be the objective function which calculates the “cost” of
each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =
�

c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, a new path f∗τ is
calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the crowd,
J(f (R)|z1:t) can become very large, causing the navigation
algorithm to either freeze or take unnecessary evasive
action. This is the Freezing Robot Problem (see Figure 2(d)
for an illustration).

B. Approaches for solving the FRP
How can we go about fixing the FRP then? One state of
the art approach [6], called partially closed loop receding

horizon control (PCLRHC), anticipates the observations (ef-
fectively hallucinating that a certain measurement sequence
of the entire trajectory sequence has already taken place at
time t < T ); ultimately, the approach is motivated by the
assumption that the culprit of the FRP is the uncertainty
explosion, illustrated in Figure 2(c). The claim is that if
you can control the covariance, then you can keep the value
of J(f (R)|z1:t) low for some (short path length) trajectories
f (R), and thus solve the FRP (more accurate agent modeling
is similar in motivation to PCLRHC, since better dynamic
models would reduce predictive covariance as well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from the FRP. This
is because we can lower bound the optimal MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )],

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot behavior. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

So what is a roboticist to do when the MDP fails? If we
revisit our probability density,

p(f (1), . . . , f (n) | z1:t),
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• demonstration of the effectiveness of this model under
real world crowd conditions.
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(f (i)

1 , . . . , f (i)
T ) over T timesteps, where each f (i)

t = (xt, yt)
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t+1 the robot should choose given observations z1:t.
Thus, for each sequence of observations z1:T , it can
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where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions1, solving for the optimal policy π
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continuous state-space POMDP which is even more intractable.

MDP, where the dimensionality grows linearly with the
number of agents, which is intractable.
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path planning community, a state of the art, tractable alterna-
tive to MDPs is a method called Receding Horizon Control

(RHC). RHC proceeds in a manner similar to MDPs, albeit
online: as observations become available, RHC calculates,
based on some cost function, the optimal non-adaptive action
(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) |
z1:t) be the objective function which calculates the “cost” of
each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =
�

c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, a new path f∗τ is
calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the crowd,
J(f (R)|z1:t) can become very large, causing the navigation
algorithm to either freeze or take unnecessary evasive
action. This is the Freezing Robot Problem (see Figure 2(d)
for an illustration).

B. Approaches for solving the FRP
How can we go about fixing the FRP then? One state of
the art approach [6], called partially closed loop receding

horizon control (PCLRHC), anticipates the observations (ef-
fectively hallucinating that a certain measurement sequence
of the entire trajectory sequence has already taken place at
time t < T ); ultimately, the approach is motivated by the
assumption that the culprit of the FRP is the uncertainty
explosion, illustrated in Figure 2(c). The claim is that if
you can control the covariance, then you can keep the value
of J(f (R)|z1:t) low for some (short path length) trajectories
f (R), and thus solve the FRP (more accurate agent modeling
is similar in motivation to PCLRHC, since better dynamic
models would reduce predictive covariance as well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from the FRP. This
is because we can lower bound the optimal MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )],

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot behavior. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

So what is a roboticist to do when the MDP fails? If we
revisit our probability density,

p(f (1), . . . , f (n) | z1:t),

Approaches to Solving the Freezing Robot Problem

• State of the art methods
assume culprit of FRP is
uncertainty explosion [6]

• Control covariance, keep cost low
(call it ”constant covariance” method)

• Precise agent dynamic modeling
has same motivation [18,16,2,7,9]
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prediction

current 
position
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Fig. 4. (a) Crowded still from the ETH data sequence. Near the center of the group is a subgroup of about 6 people moving upwards (red arrows) through
a crowd of about 10 people moving down (cyan arrows). Experiments were run on this particular scenario, with IGP performing (in terms of safety and
path length) about the same or slightly better than the actual pedestrians, and greatly outperforming state of the art methods, such as seen in [6]. (b-d) The
blue squares over the gray lines are the agents traveling downward (lowest dot is current position), the cyan diamond over the green line is the pedestrian
walking upwards through the crowd; IGP is red circles on top of blue prediction line, and PCLRHC is blue prediction line. In (b) PCLRHC chooses an
overcautious path because the crowd is too dense. In (c) and (d), IGP follows nearly the same path as the pedestrian in green, validating the model. This
set of figures illustrates the free space created by the pedestrian walking through the crowd—this is the interaction we capture with the IGP model.

potential. We show how navigation in this model is naturally
cast as an inference task, which can be approximately solved
using importance sampling. Lastly, we demonstrated the
efficacy of this algorithm on real world pedestrian data. Our
results show that IGP leads to paths which are both safer
and shorter than those taken by actual pedestrians.
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Fig. 2. (a,b) Empirical evidence of joint collision avoidance: blue circles (representing current position) over gray lines are pedestrians moving down,
green dots are the trajectory of the pedestrian moving up, green dots with red encircling are current position of the pedestrian moving up, and black
circles are the area of interest. In (a), the blue pedestrians have not yet seen the green person; their projected trajectories are very narrow. In (b), all of the
pedestrians have adjusted their trajectories to create space—notice how wide the gray prediction has become. It is this joint collision avoidance behavior
which we capture in this paper. (c-e) Illustration of FRP. Dynamic crowd agents in red traveling downward, robot we are trying to control in blue. The
multiple dots indicate multiple points along one trajectory. (c) Uncertainty explosion using standard motion models (e.g., constant velocity Kalman filters).
(d) Even with perfect prediction, there may not be room for the robot to navigate. (e) Modeling cooperative collision avoidance remedies the FRP.

we notice that a crucial element is missing—the agent
motion model is agnostic of the navigating robot. As shown
in Figure 2(b), and as familiar from everyday experience,
dynamic agents exhibit joint collision avoidance behavior.

A naive approach to modeling interaction would be to
model a conditional density p(f | z1:t, f (R)), that encodes
assumptions on how the agents react to the robot’s actions,
i.e., the idea that all agents will “give way” to the robot’s
trajectory. The problem with this approach is that it implicitly
assumes that the robot has the ability to control the crowd.
Thus, this approach would not only create an obnoxious
robot, but an overaggressive and potentially dangerous one
as well. This method is unsuitable for crowded situations.

The other alternative, which we advocate in this paper, is
to consider the robots actions themselves as random response
to the other agents behavior and to model a joint distribution
describing their interaction:

p(f (R), f |, z1:t).

This distribution encodes the idea of cooperative planning,
and joint collision avoidance. Planning then corresponds to
computing p(f (R) | z1:t), i.e., inferring what the robot should
do given observations of the other agents. In effect, the
dynamic agents and the robot cooperate to simultaneously
achieve the best (safest and shortest) paths. This idea is
illustrated in Figure 2(e). Section III formalizes p(f (R), f).

III. INTERACTION GP (IGP) MODEL

A. Gaussian process models for trajectories

A Gaussian process (GP) [13] is a distribution over
(typically smooth) functions, and thus arguably well-suited

to model trajectories. Formally, a GP is a collection of
Gaussian random variables indexed by a set, in our case,
the set of time steps {1, . . . , T}, and parameterized by
a mean function m (typically taken as zero w.l.o.g.) and
covariance (or kernel) function k. The kernel parameterizes
the smoothness of the functions, and can be learned from
data. In a sense, GPs generalize linear models such as
Kalman filters by replacing the Markov assumption with a
(more general) smoothness assumption. This fact alone leads
to less diffuse predictions than standard Kalman filters.

We start by modeling each agent’s trajectory as an inde-
pendent sample from a GP, f (i) ∼ GP (0, k). For simplicity
of notation, we formalize the model for one-dimensional
locations only – multiple dimensions are easily incorporated
by modeling each dimension as a separate GP. Given the ob-
servations z1:t through time t, we can calculate the posterior
as p(f (i) | z1:t) = GP (f (i), m(i)

t , k(i)
t ), where

m(i)
t (t�) = ΣT

1:t,t�(Σ1:t,1:t + σ2I)−1z1:t,

k(i)
t (t1, t2) = k(t1, t2)− ΣT

1:t,t1(Σ1:t,1:t + σ2I)−1Σ1:t,t2 .

Hereby, Σ1:t,t� = [k(1, t�), k(2, t�), . . . , k(t, t�)], and Σ1:t,1:t

is the matrix such that the (i, j) entry is Σi,j = k(i, j) and
the indices (i, j) take values from 1 : t. Lastly, σ2 is the
measurement noise (which is assumed to be Gaussian).

B. Incorporating goal information

An advantage to the GP formalism is that it estimates
the entire trajectory in a non-Markovian way. Indeed,
this allows us to incorporate goal information (either
probabilistic or exact) in a principled way, such that the
resulting distribution over trajectories reflects the full impact

BUT:
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servations. π is typically specified by stating which next lo-
cation f (R)

t+1 the robot should choose given observations z1:t.
Thus, for each sequence of observations z1:T , it can

potentially end up choosing a different path f (R) = π(z1:T ).
The cost J(π) of a policy π is the expected cost

J(π) =
�

p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz,

where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions1, solving for the optimal policy π
requires solving a continuous-state Markov Decision Process

1If the observations depend on the actions, the problem becomes a
continuous state-space POMDP which is even more intractable.

MDP, where the dimensionality grows linearly with the
number of agents, which is intractable.

The intractability of such MDPs is fairly common; in the
path planning community, a state of the art, tractable alterna-
tive to MDPs is a method called Receding Horizon Control

(RHC). RHC proceeds in a manner similar to MDPs, albeit
online: as observations become available, RHC calculates,
based on some cost function, the optimal non-adaptive action
(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) |
z1:t) be the objective function which calculates the “cost” of
each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =
�

c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, a new path f∗τ is
calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the crowd,
J(f (R)|z1:t) can become very large, causing the navigation
algorithm to either freeze or take unnecessary evasive
action. This is the Freezing Robot Problem (see Figure 2(d)
for an illustration).

B. Approaches for solving the FRP
How can we go about fixing the FRP then? One state of
the art approach [6], called partially closed loop receding

horizon control (PCLRHC), anticipates the observations (ef-
fectively hallucinating that a certain measurement sequence
of the entire trajectory sequence has already taken place at
time t < T ); ultimately, the approach is motivated by the
assumption that the culprit of the FRP is the uncertainty
explosion, illustrated in Figure 2(c). The claim is that if
you can control the covariance, then you can keep the value
of J(f (R)|z1:t) low for some (short path length) trajectories
f (R), and thus solve the FRP (more accurate agent modeling
is similar in motivation to PCLRHC, since better dynamic
models would reduce predictive covariance as well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from the FRP. This
is because we can lower bound the optimal MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )],

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot behavior. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

So what is a roboticist to do when the MDP fails? If we
revisit our probability density,

p(f (1), . . . , f (n) | z1:t),

Approaches to Solving the Freezing Robot Problem

• State of the art methods
assume culprit of FRP is
uncertainty explosion [6]

• Control covariance, keep cost low
(call it ”constant covariance” method)

• Precise agent dynamic modeling
has same motivation [18,16,2,7,9]
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Conclusion: improving prediction or reducing covariance
cannot be expected to solve the freezing robot problem

(a) Example pedestrian interaction

current 
position

current 
position

prediction

(b) PCLRHC

prediction

current 
position

(c) IGP (d) IGP

Fig. 4. (a) Crowded still from the ETH data sequence. Near the center of the group is a subgroup of about 6 people moving upwards (red arrows) through
a crowd of about 10 people moving down (cyan arrows). Experiments were run on this particular scenario, with IGP performing (in terms of safety and
path length) about the same or slightly better than the actual pedestrians, and greatly outperforming state of the art methods, such as seen in [6]. (b-d) The
blue squares over the gray lines are the agents traveling downward (lowest dot is current position), the cyan diamond over the green line is the pedestrian
walking upwards through the crowd; IGP is red circles on top of blue prediction line, and PCLRHC is blue prediction line. In (b) PCLRHC chooses an
overcautious path because the crowd is too dense. In (c) and (d), IGP follows nearly the same path as the pedestrian in green, validating the model. This
set of figures illustrates the free space created by the pedestrian walking through the crowd—this is the interaction we capture with the IGP model.

potential. We show how navigation in this model is naturally
cast as an inference task, which can be approximately solved
using importance sampling. Lastly, we demonstrated the
efficacy of this algorithm on real world pedestrian data. Our
results show that IGP leads to paths which are both safer
and shorter than those taken by actual pedestrians.
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Fig. 2. (a,b) Empirical evidence of joint collision avoidance: blue circles (representing current position) over gray lines are pedestrians moving down,
green dots are the trajectory of the pedestrian moving up, green dots with red encircling are current position of the pedestrian moving up, and black
circles are the area of interest. In (a), the blue pedestrians have not yet seen the green person; their projected trajectories are very narrow. In (b), all of the
pedestrians have adjusted their trajectories to create space—notice how wide the gray prediction has become. It is this joint collision avoidance behavior
which we capture in this paper. (c-e) Illustration of FRP. Dynamic crowd agents in red traveling downward, robot we are trying to control in blue. The
multiple dots indicate multiple points along one trajectory. (c) Uncertainty explosion using standard motion models (e.g., constant velocity Kalman filters).
(d) Even with perfect prediction, there may not be room for the robot to navigate. (e) Modeling cooperative collision avoidance remedies the FRP.

we notice that a crucial element is missing—the agent
motion model is agnostic of the navigating robot. As shown
in Figure 2(b), and as familiar from everyday experience,
dynamic agents exhibit joint collision avoidance behavior.

A naive approach to modeling interaction would be to
model a conditional density p(f | z1:t, f (R)), that encodes
assumptions on how the agents react to the robot’s actions,
i.e., the idea that all agents will “give way” to the robot’s
trajectory. The problem with this approach is that it implicitly
assumes that the robot has the ability to control the crowd.
Thus, this approach would not only create an obnoxious
robot, but an overaggressive and potentially dangerous one
as well. This method is unsuitable for crowded situations.

The other alternative, which we advocate in this paper, is
to consider the robots actions themselves as random response
to the other agents behavior and to model a joint distribution
describing their interaction:

p(f (R), f |, z1:t).

This distribution encodes the idea of cooperative planning,
and joint collision avoidance. Planning then corresponds to
computing p(f (R) | z1:t), i.e., inferring what the robot should
do given observations of the other agents. In effect, the
dynamic agents and the robot cooperate to simultaneously
achieve the best (safest and shortest) paths. This idea is
illustrated in Figure 2(e). Section III formalizes p(f (R), f).

III. INTERACTION GP (IGP) MODEL

A. Gaussian process models for trajectories

A Gaussian process (GP) [13] is a distribution over
(typically smooth) functions, and thus arguably well-suited

to model trajectories. Formally, a GP is a collection of
Gaussian random variables indexed by a set, in our case,
the set of time steps {1, . . . , T}, and parameterized by
a mean function m (typically taken as zero w.l.o.g.) and
covariance (or kernel) function k. The kernel parameterizes
the smoothness of the functions, and can be learned from
data. In a sense, GPs generalize linear models such as
Kalman filters by replacing the Markov assumption with a
(more general) smoothness assumption. This fact alone leads
to less diffuse predictions than standard Kalman filters.

We start by modeling each agent’s trajectory as an inde-
pendent sample from a GP, f (i) ∼ GP (0, k). For simplicity
of notation, we formalize the model for one-dimensional
locations only – multiple dimensions are easily incorporated
by modeling each dimension as a separate GP. Given the ob-
servations z1:t through time t, we can calculate the posterior
as p(f (i) | z1:t) = GP (f (i), m(i)

t , k(i)
t ), where

m(i)
t (t�) = ΣT

1:t,t�(Σ1:t,1:t + σ2I)−1z1:t,

k(i)
t (t1, t2) = k(t1, t2)− ΣT

1:t,t1(Σ1:t,1:t + σ2I)−1Σ1:t,t2 .

Hereby, Σ1:t,t� = [k(1, t�), k(2, t�), . . . , k(t, t�)], and Σ1:t,1:t

is the matrix such that the (i, j) entry is Σi,j = k(i, j) and
the indices (i, j) take values from 1 : t. Lastly, σ2 is the
measurement noise (which is assumed to be Gaussian).

B. Incorporating goal information

An advantage to the GP formalism is that it estimates
the entire trajectory in a non-Markovian way. Indeed,
this allows us to incorporate goal information (either
probabilistic or exact) in a principled way, such that the
resulting distribution over trajectories reflects the full impact

BUT:
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ance is required to solve the FRP,
• development of a novel model for interaction based

on coupled output Gaussian Processes (GPs), called
Interacting Gaussian Processes (IGP),

• development of an approximate inference algorithm for
prediction and navigation of the IGP, and

• demonstration of the effectiveness of this model under
real world crowd conditions.

II. THE FREEZING ROBOT PROBLEM
A. Formalizing the FRP
We now formalize the FRP. Fix an agent i. Suppose we have
a prior distribution p(f (i)) over the agent’s trajectory f (i) =
(f (i)

1 , . . . , f (i)
T ) over T timesteps, where each f (i)

t = (xt, yt)
is the location of agent i in R2 at time t. We also have a like-
lihood function p(z(i)

t | f (i)
t ) for our observations. In the fol-

lowing, we will assume that the observations do not depend
on the robot’s actions. After obtaining the first t observations
z(i)
1:t, we can perform Bayesian inference to calculate the

posterior p(f (i) | z(i)
1:t). Assuming all agents behave indepen-

dently of each other, we have a prior joint distribution over
trajectories, p(f (1), . . . , f (n)) =

�
i p(f (i)), and the posterior

is still independent, p(f (1), . . . , f (n) | z1:t) =
�

i p(f (i) |
z(i)
1:t), where z1:t is the set of observations about all agents.
Our goal in dynamic navigation is to pick a policy π that

adaptively chooses a path f (R) for the robot based on its ob-
servations. π is typically specified by stating which next lo-
cation f (R)

t+1 the robot should choose given observations z1:t.
Thus, for each sequence of observations z1:T , it can

potentially end up choosing a different path f (R) = π(z1:T ).
The cost J(π) of a policy π is the expected cost

J(π) =
�

p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz,

where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions1, solving for the optimal policy π
requires solving a continuous-state Markov Decision Process

1If the observations depend on the actions, the problem becomes a
continuous state-space POMDP which is even more intractable.

MDP, where the dimensionality grows linearly with the
number of agents, which is intractable.

The intractability of such MDPs is fairly common; in the
path planning community, a state of the art, tractable alterna-
tive to MDPs is a method called Receding Horizon Control

(RHC). RHC proceeds in a manner similar to MDPs, albeit
online: as observations become available, RHC calculates,
based on some cost function, the optimal non-adaptive action
(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) |
z1:t) be the objective function which calculates the “cost” of
each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =
�

c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, a new path f∗τ is
calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the crowd,
J(f (R)|z1:t) can become very large, causing the navigation
algorithm to either freeze or take unnecessary evasive
action. This is the Freezing Robot Problem (see Figure 2(d)
for an illustration).

B. Approaches for solving the FRP
How can we go about fixing the FRP then? One state of
the art approach [6], called partially closed loop receding

horizon control (PCLRHC), anticipates the observations (ef-
fectively hallucinating that a certain measurement sequence
of the entire trajectory sequence has already taken place at
time t < T ); ultimately, the approach is motivated by the
assumption that the culprit of the FRP is the uncertainty
explosion, illustrated in Figure 2(c). The claim is that if
you can control the covariance, then you can keep the value
of J(f (R)|z1:t) low for some (short path length) trajectories
f (R), and thus solve the FRP (more accurate agent modeling
is similar in motivation to PCLRHC, since better dynamic
models would reduce predictive covariance as well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from the FRP. This
is because we can lower bound the optimal MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )],

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot behavior. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

So what is a roboticist to do when the MDP fails? If we
revisit our probability density,

p(f (1), . . . , f (n) | z1:t),

Approaches to Solving the Freezing Robot Problem

• State of the art methods
assume culprit of FRP is
uncertainty explosion [6]

• Control covariance, keep cost low
(call it ”constant covariance” method)

• Precise agent dynamic modeling
has same motivation [18,16,2,7,9]

11

Severely crowded environments:
all paths lower bounded by

large cost



12

Approaches Continued

Fig. 1. Crowded street scene

ance is required to solve the FRP,
• development of a novel model for interaction based

on coupled output Gaussian Processes (GPs), called
Interacting Gaussian Processes (IGP),

• development of an approximate inference algorithm for
prediction and navigation of the IGP, and

• demonstration of the effectiveness of this model under
real world crowd conditions.

II. THE FREEZING ROBOT PROBLEM
A. Formalizing the FRP
We now formalize the FRP. Fix an agent i. Suppose we have
a prior distribution p(f (i)) over the agent’s trajectory f (i) =
(f (i)

1 , . . . , f (i)
T ) over T timesteps, where each f (i)

t = (xt, yt)
is the location of agent i in R2 at time t. We also have a like-
lihood function p(z(i)

t | f (i)
t ) for our observations. In the fol-

lowing, we will assume that the observations do not depend
on the robot’s actions. After obtaining the first t observations
z(i)
1:t, we can perform Bayesian inference to calculate the

posterior p(f (i) | z(i)
1:t). Assuming all agents behave indepen-

dently of each other, we have a prior joint distribution over
trajectories, p(f (1), . . . , f (n)) =

�
i p(f (i)), and the posterior

is still independent, p(f (1), . . . , f (n) | z1:t) =
�

i p(f (i) |
z(i)
1:t), where z1:t is the set of observations about all agents.
Our goal in dynamic navigation is to pick a policy π that

adaptively chooses a path f (R) for the robot based on its ob-
servations. π is typically specified by stating which next lo-
cation f (R)

t+1 the robot should choose given observations z1:t.
Thus, for each sequence of observations z1:T , it can

potentially end up choosing a different path f (R) = π(z1:T ).
The cost J(π) of a policy π is the expected cost

J(π) =
�

p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz,

where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions1, solving for the optimal policy π
requires solving a continuous-state Markov Decision Process

1If the observations depend on the actions, the problem becomes a
continuous state-space POMDP which is even more intractable.

MDP, where the dimensionality grows linearly with the
number of agents, which is intractable.

The intractability of such MDPs is fairly common; in the
path planning community, a state of the art, tractable alterna-
tive to MDPs is a method called Receding Horizon Control

(RHC). RHC proceeds in a manner similar to MDPs, albeit
online: as observations become available, RHC calculates,
based on some cost function, the optimal non-adaptive action
(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) |
z1:t) be the objective function which calculates the “cost” of
each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =
�

c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, a new path f∗τ is
calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the crowd,
J(f (R)|z1:t) can become very large, causing the navigation
algorithm to either freeze or take unnecessary evasive
action. This is the Freezing Robot Problem (see Figure 2(d)
for an illustration).

B. Approaches for solving the FRP
How can we go about fixing the FRP then? One state of
the art approach [6], called partially closed loop receding

horizon control (PCLRHC), anticipates the observations (ef-
fectively hallucinating that a certain measurement sequence
of the entire trajectory sequence has already taken place at
time t < T ); ultimately, the approach is motivated by the
assumption that the culprit of the FRP is the uncertainty
explosion, illustrated in Figure 2(c). The claim is that if
you can control the covariance, then you can keep the value
of J(f (R)|z1:t) low for some (short path length) trajectories
f (R), and thus solve the FRP (more accurate agent modeling
is similar in motivation to PCLRHC, since better dynamic
models would reduce predictive covariance as well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from the FRP. This
is because we can lower bound the optimal MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )],

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot behavior. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

So what is a roboticist to do when the MDP fails? If we
revisit our probability density,

p(f (1), . . . , f (n) | z1:t),

?!?
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ance is required to solve the FRP,
• development of a novel model for interaction based

on coupled output Gaussian Processes (GPs), called
Interacting Gaussian Processes (IGP),

• development of an approximate inference algorithm for
prediction and navigation of the IGP, and

• demonstration of the effectiveness of this model under
real world crowd conditions.

II. THE FREEZING ROBOT PROBLEM
A. Formalizing the FRP
We now formalize the FRP. Fix an agent i. Suppose we have
a prior distribution p(f (i)) over the agent’s trajectory f (i) =
(f (i)

1 , . . . , f (i)
T ) over T timesteps, where each f (i)

t = (xt, yt)
is the location of agent i in R2 at time t. We also have a like-
lihood function p(z(i)

t | f (i)
t ) for our observations. In the fol-

lowing, we will assume that the observations do not depend
on the robot’s actions. After obtaining the first t observations
z(i)
1:t, we can perform Bayesian inference to calculate the

posterior p(f (i) | z(i)
1:t). Assuming all agents behave indepen-

dently of each other, we have a prior joint distribution over
trajectories, p(f (1), . . . , f (n)) =

�
i p(f (i)), and the posterior

is still independent, p(f (1), . . . , f (n) | z1:t) =
�

i p(f (i) |
z(i)
1:t), where z1:t is the set of observations about all agents.
Our goal in dynamic navigation is to pick a policy π that

adaptively chooses a path f (R) for the robot based on its ob-
servations. π is typically specified by stating which next lo-
cation f (R)

t+1 the robot should choose given observations z1:t.
Thus, for each sequence of observations z1:T , it can

potentially end up choosing a different path f (R) = π(z1:T ).
The cost J(π) of a policy π is the expected cost

J(π) =
�

p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz,

where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions1, solving for the optimal policy π
requires solving a continuous-state Markov Decision Process

1If the observations depend on the actions, the problem becomes a
continuous state-space POMDP which is even more intractable.

MDP, where the dimensionality grows linearly with the
number of agents, which is intractable.

The intractability of such MDPs is fairly common; in the
path planning community, a state of the art, tractable alterna-
tive to MDPs is a method called Receding Horizon Control

(RHC). RHC proceeds in a manner similar to MDPs, albeit
online: as observations become available, RHC calculates,
based on some cost function, the optimal non-adaptive action
(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) |
z1:t) be the objective function which calculates the “cost” of
each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =
�

c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, a new path f∗τ is
calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the crowd,
J(f (R)|z1:t) can become very large, causing the navigation
algorithm to either freeze or take unnecessary evasive
action. This is the Freezing Robot Problem (see Figure 2(d)
for an illustration).

B. Approaches for solving the FRP
How can we go about fixing the FRP then? One state of
the art approach [6], called partially closed loop receding

horizon control (PCLRHC), anticipates the observations (ef-
fectively hallucinating that a certain measurement sequence
of the entire trajectory sequence has already taken place at
time t < T ); ultimately, the approach is motivated by the
assumption that the culprit of the FRP is the uncertainty
explosion, illustrated in Figure 2(c). The claim is that if
you can control the covariance, then you can keep the value
of J(f (R)|z1:t) low for some (short path length) trajectories
f (R), and thus solve the FRP (more accurate agent modeling
is similar in motivation to PCLRHC, since better dynamic
models would reduce predictive covariance as well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from the FRP. This
is because we can lower bound the optimal MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )],

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot behavior. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

So what is a roboticist to do when the MDP fails? If we
revisit our probability density,

p(f (1), . . . , f (n) | z1:t),

?!?

• Const. cov. unreliable

• Reactive planning unreliable

“Agnostic” robot:
agent independence

Fig. 1. Crowded street scene

ance is required to solve the FRP,
• development of a novel model for interaction based

on coupled output Gaussian Processes (GPs), called
Interacting Gaussian Processes (IGP),

• development of an approximate inference algorithm for
prediction and navigation of the IGP, and

• demonstration of the effectiveness of this model under
real world crowd conditions.

II. THE FREEZING ROBOT PROBLEM
A. Formalizing the FRP
We now formalize the FRP. Fix an agent i. Suppose we have
a prior distribution p(f (i)) over the agent’s trajectory f (i) =
(f (i)

1 , . . . , f (i)
T ) over T timesteps, where each f (i)

t = (xt, yt)
is the location of agent i in R2 at time t. We also have a like-
lihood function p(z(i)

t | f (i)
t ) for our observations. In the fol-

lowing, we will assume that the observations do not depend
on the robot’s actions. After obtaining the first t observations
z(i)
1:t, we can perform Bayesian inference to calculate the

posterior p(f (i) | z(i)
1:t). Assuming all agents behave indepen-

dently of each other, we have a prior joint distribution over
trajectories, p(f (1), . . . , f (n)) =

�
i p(f (i)), and the posterior

is still independent, p(f (1), . . . , f (n) | z1:t) =
�

i p(f (i) |
z(i)
1:t), where z1:t is the set of observations about all agents.
Our goal in dynamic navigation is to pick a policy π that

adaptively chooses a path f (R) for the robot based on its ob-
servations. π is typically specified by stating which next lo-
cation f (R)

t+1 the robot should choose given observations z1:t.
Thus, for each sequence of observations z1:T , it can

potentially end up choosing a different path f (R) = π(z1:T ).
The cost J(π) of a policy π is the expected cost

J(π) =
�

p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz,

where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions1, solving for the optimal policy π
requires solving a continuous-state Markov Decision Process

1If the observations depend on the actions, the problem becomes a
continuous state-space POMDP which is even more intractable.

MDP, where the dimensionality grows linearly with the
number of agents, which is intractable.

The intractability of such MDPs is fairly common; in the
path planning community, a state of the art, tractable alterna-
tive to MDPs is a method called Receding Horizon Control

(RHC). RHC proceeds in a manner similar to MDPs, albeit
online: as observations become available, RHC calculates,
based on some cost function, the optimal non-adaptive action
(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) |
z1:t) be the objective function which calculates the “cost” of
each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =
�

c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, a new path f∗τ is
calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the crowd,
J(f (R)|z1:t) can become very large, causing the navigation
algorithm to either freeze or take unnecessary evasive
action. This is the Freezing Robot Problem (see Figure 2(d)
for an illustration).

B. Approaches for solving the FRP
How can we go about fixing the FRP then? One state of
the art approach [6], called partially closed loop receding

horizon control (PCLRHC), anticipates the observations (ef-
fectively hallucinating that a certain measurement sequence
of the entire trajectory sequence has already taken place at
time t < T ); ultimately, the approach is motivated by the
assumption that the culprit of the FRP is the uncertainty
explosion, illustrated in Figure 2(c). The claim is that if
you can control the covariance, then you can keep the value
of J(f (R)|z1:t) low for some (short path length) trajectories
f (R), and thus solve the FRP (more accurate agent modeling
is similar in motivation to PCLRHC, since better dynamic
models would reduce predictive covariance as well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from the FRP. This
is because we can lower bound the optimal MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )],

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot behavior. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

So what is a roboticist to do when the MDP fails? If we
revisit our probability density,

p(f (1), . . . , f (n) | z1:t),

Illustration:
robot cooperates
with agents to

proceed optimally

“Cooperative” robot:
robot/agent system
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ance is required to solve the FRP,
• development of a novel model for interaction based

on coupled output Gaussian Processes (GPs), called
Interacting Gaussian Processes (IGP),

• development of an approximate inference algorithm for
prediction and navigation of the IGP, and

• demonstration of the effectiveness of this model under
real world crowd conditions.

II. THE FREEZING ROBOT PROBLEM
A. Formalizing the FRP
We now formalize the FRP. Fix an agent i. Suppose we have
a prior distribution p(f (i)) over the agent’s trajectory f (i) =
(f (i)

1 , . . . , f (i)
T ) over T timesteps, where each f (i)

t = (xt, yt)
is the location of agent i in R2 at time t. We also have a like-
lihood function p(z(i)

t | f (i)
t ) for our observations. In the fol-

lowing, we will assume that the observations do not depend
on the robot’s actions. After obtaining the first t observations
z(i)
1:t, we can perform Bayesian inference to calculate the

posterior p(f (i) | z(i)
1:t). Assuming all agents behave indepen-

dently of each other, we have a prior joint distribution over
trajectories, p(f (1), . . . , f (n)) =

�
i p(f (i)), and the posterior

is still independent, p(f (1), . . . , f (n) | z1:t) =
�

i p(f (i) |
z(i)
1:t), where z1:t is the set of observations about all agents.
Our goal in dynamic navigation is to pick a policy π that

adaptively chooses a path f (R) for the robot based on its ob-
servations. π is typically specified by stating which next lo-
cation f (R)

t+1 the robot should choose given observations z1:t.
Thus, for each sequence of observations z1:T , it can

potentially end up choosing a different path f (R) = π(z1:T ).
The cost J(π) of a policy π is the expected cost

J(π) =
�

p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz,

where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions1, solving for the optimal policy π
requires solving a continuous-state Markov Decision Process

1If the observations depend on the actions, the problem becomes a
continuous state-space POMDP which is even more intractable.

MDP, where the dimensionality grows linearly with the
number of agents, which is intractable.

The intractability of such MDPs is fairly common; in the
path planning community, a state of the art, tractable alterna-
tive to MDPs is a method called Receding Horizon Control

(RHC). RHC proceeds in a manner similar to MDPs, albeit
online: as observations become available, RHC calculates,
based on some cost function, the optimal non-adaptive action
(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) |
z1:t) be the objective function which calculates the “cost” of
each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =
�

c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, a new path f∗τ is
calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the crowd,
J(f (R)|z1:t) can become very large, causing the navigation
algorithm to either freeze or take unnecessary evasive
action. This is the Freezing Robot Problem (see Figure 2(d)
for an illustration).

B. Approaches for solving the FRP
How can we go about fixing the FRP then? One state of
the art approach [6], called partially closed loop receding

horizon control (PCLRHC), anticipates the observations (ef-
fectively hallucinating that a certain measurement sequence
of the entire trajectory sequence has already taken place at
time t < T ); ultimately, the approach is motivated by the
assumption that the culprit of the FRP is the uncertainty
explosion, illustrated in Figure 2(c). The claim is that if
you can control the covariance, then you can keep the value
of J(f (R)|z1:t) low for some (short path length) trajectories
f (R), and thus solve the FRP (more accurate agent modeling
is similar in motivation to PCLRHC, since better dynamic
models would reduce predictive covariance as well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from the FRP. This
is because we can lower bound the optimal MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )],

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot behavior. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

So what is a roboticist to do when the MDP fails? If we
revisit our probability density,

p(f (1), . . . , f (n) | z1:t),

f (R), robot path
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ance is required to solve the FRP,
• development of a novel model for interaction based

on coupled output Gaussian Processes (GPs), called
Interacting Gaussian Processes (IGP),

• development of an approximate inference algorithm for
prediction and navigation of the IGP, and

• demonstration of the effectiveness of this model under
real world crowd conditions.

II. THE FREEZING ROBOT PROBLEM
A. Formalizing the FRP
We now formalize the FRP. Fix an agent i. Suppose we have
a prior distribution p(f (i)) over the agent’s trajectory f (i) =
(f (i)

1 , . . . , f (i)
T ) over T timesteps, where each f (i)

t = (xt, yt)
is the location of agent i in R2 at time t. We also have a like-
lihood function p(z(i)

t | f (i)
t ) for our observations. In the fol-

lowing, we will assume that the observations do not depend
on the robot’s actions. After obtaining the first t observations
z(i)
1:t, we can perform Bayesian inference to calculate the

posterior p(f (i) | z(i)
1:t). Assuming all agents behave indepen-

dently of each other, we have a prior joint distribution over
trajectories, p(f (1), . . . , f (n)) =

�
i p(f (i)), and the posterior

is still independent, p(f (1), . . . , f (n) | z1:t) =
�

i p(f (i) |
z(i)
1:t), where z1:t is the set of observations about all agents.
Our goal in dynamic navigation is to pick a policy π that

adaptively chooses a path f (R) for the robot based on its ob-
servations. π is typically specified by stating which next lo-
cation f (R)

t+1 the robot should choose given observations z1:t.
Thus, for each sequence of observations z1:T , it can

potentially end up choosing a different path f (R) = π(z1:T ).
The cost J(π) of a policy π is the expected cost

J(π) =
�

p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz,

where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions1, solving for the optimal policy π
requires solving a continuous-state Markov Decision Process

1If the observations depend on the actions, the problem becomes a
continuous state-space POMDP which is even more intractable.

MDP, where the dimensionality grows linearly with the
number of agents, which is intractable.

The intractability of such MDPs is fairly common; in the
path planning community, a state of the art, tractable alterna-
tive to MDPs is a method called Receding Horizon Control

(RHC). RHC proceeds in a manner similar to MDPs, albeit
online: as observations become available, RHC calculates,
based on some cost function, the optimal non-adaptive action
(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) |
z1:t) be the objective function which calculates the “cost” of
each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =
�

c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, a new path f∗τ is
calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the crowd,
J(f (R)|z1:t) can become very large, causing the navigation
algorithm to either freeze or take unnecessary evasive
action. This is the Freezing Robot Problem (see Figure 2(d)
for an illustration).

B. Approaches for solving the FRP
How can we go about fixing the FRP then? One state of
the art approach [6], called partially closed loop receding

horizon control (PCLRHC), anticipates the observations (ef-
fectively hallucinating that a certain measurement sequence
of the entire trajectory sequence has already taken place at
time t < T ); ultimately, the approach is motivated by the
assumption that the culprit of the FRP is the uncertainty
explosion, illustrated in Figure 2(c). The claim is that if
you can control the covariance, then you can keep the value
of J(f (R)|z1:t) low for some (short path length) trajectories
f (R), and thus solve the FRP (more accurate agent modeling
is similar in motivation to PCLRHC, since better dynamic
models would reduce predictive covariance as well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from the FRP. This
is because we can lower bound the optimal MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )],

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot behavior. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

So what is a roboticist to do when the MDP fails? If we
revisit our probability density,

p(f (1), . . . , f (n) | z1:t),

f (R), robot path
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— f (i) is agent i’s continuous path in the plane R2:

f i : [0,∞]→ R2

: t �→ [x(t)(i), y(t)(i)]

— f(t) = (f(t)(1), f(t)(2), . . . , f(t)(n)) is concatenation of n agent paths

f(1)(R), robot state

f(t)(1), f(t)(2), . . . , f(t)(n)

f (i), agent path
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We later define mf (t) ∈ F(R, Rs·M ) and kf (t, t�) ∈
F(R2, R). The mean function mf (t) defines what the

mean trajectory should look like. The kernel function

kf (t, t�) provides prior information on how much un-

certainty we have in advance about what types of tra-

jectories we will see (i.e., smooth trajectories, piece-

wise continuous, etc).

With the data D1:k we can calculate the posterior

(see [Ras06] and figure 2) such that

f |D1:k ∼ p(f |D1:k) ≈ GP(mD
f , kD

f )

where

mD
f (t) =

mf (t) + ΣT
1:k,t[Σ1:k,1:k + σ2

nI]
−1

(y1:k −m1:k)
T ,

σ2
n is the measurement noise,

ΣT
1:k,t = [kf (1, t), kf (2, t), . . . , kf (k, t)],

and m1:k = [mf (1), mf (2), . . . ,mf (k)]. Further-

more, Σ1:k,1:k is the k× k matrix such that the (i, j)
entry

Σi,j = kf (i, j)

and the indices (i, j) take values from 1 : k. Addi-

tionally, the kernel function is updated such that

kD
f (t, t�) = kf (t, t�)− ΣT

1:k,t[Σ1:k,1:k + σ2
nI]

−1Σ1:k,t�

The advantage to using GPs in this setting is the

following: they provide a method to do nonparamet-

ric model identification and prediction in the same
framework. Mathematically, GP(mD

f , kD
f ) provides

both model ID and prediction information.

Nonparametric model ID methods might be very

useful in this situation, especially if we do not want

to impose too many a-priori constraints on either

the classes of agent dynamic models in play or the

parameters of those classes. If we do have a-priori
knowledge, it can be incorporated into the Gaussian

process. We present a simple example of how the

above might work in figures 1 and 2.

3.2.2 Classical Bayes filter approximation of
p(fk� |D1:k, u0:k)

By “classical”, we mean that the dynamics models

are treated parametrically, and an estimation over

Figure 1: Three functions drawn from a GP prior,

f ∼ GP(mf , kf ), with large covariance (95% con-

fidence intervals shown in gray), mf = 0. From

[RW06].

Figure 2: Three functions drawn from the posterior,

f |D1:5 ∼ GP(mD
f , kD

f ) , where D1:5 is represented by

the five + signs. Observations shrink the gray 95%

confidence regions; observation free regions, like [2, 5],

retain high uncertainty. We can imagine that f is a

1D trajectory, and x = t, for the case of model ID +

predictive inference. From [RW06].

3

t
• Draw trajectories

x(t)(i) ∼ GP (0, k)

• kernel function k controls
smoothness of x(t)

f(t)
f(t)1

f(t)2

f(t)3

f(t)i ∼ GP (0, k)
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GP posterior: incorporates
information at any

point along trajectory

We later define mf (t) ∈ F(R, Rs·M ) and kf (t, t�) ∈
F(R2, R). The mean function mf (t) defines what the

mean trajectory should look like. The kernel function

kf (t, t�) provides prior information on how much un-

certainty we have in advance about what types of tra-

jectories we will see (i.e., smooth trajectories, piece-

wise continuous, etc).

With the data D1:k we can calculate the posterior

(see [Ras06] and figure 2) such that
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f , kD
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where

mD
f (t) =
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T ,
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n is the measurement noise,
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and m1:k = [mf (1), mf (2), . . . ,mf (k)]. Further-

more, Σ1:k,1:k is the k× k matrix such that the (i, j)
entry

Σi,j = kf (i, j)

and the indices (i, j) take values from 1 : k. Addi-

tionally, the kernel function is updated such that

kD
f (t, t�) = kf (t, t�)− ΣT

1:k,t[Σ1:k,1:k + σ2
nI]

−1Σ1:k,t�

The advantage to using GPs in this setting is the

following: they provide a method to do nonparamet-

ric model identification and prediction in the same
framework. Mathematically, GP(mD

f , kD
f ) provides

both model ID and prediction information.

Nonparametric model ID methods might be very

useful in this situation, especially if we do not want

to impose too many a-priori constraints on either

the classes of agent dynamic models in play or the

parameters of those classes. If we do have a-priori
knowledge, it can be incorporated into the Gaussian

process. We present a simple example of how the

above might work in figures 1 and 2.

3.2.2 Classical Bayes filter approximation of
p(fk� |D1:k, u0:k)

By “classical”, we mean that the dynamics models

are treated parametrically, and an estimation over

Figure 1: Three functions drawn from a GP prior,

f ∼ GP(mf , kf ), with large covariance (95% con-

fidence intervals shown in gray), mf = 0. From

[RW06].

Figure 2: Three functions drawn from the posterior,

f |D1:5 ∼ GP(mD
f , kD

f ) , where D1:5 is represented by

the five + signs. Observations shrink the gray 95%

confidence regions; observation free regions, like [2, 5],

retain high uncertainty. We can imagine that f is a

1D trajectory, and x = t, for the case of model ID +

predictive inference. From [RW06].
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certainty we have in advance about what types of tra-
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With the data D1:k we can calculate the posterior
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entry
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kD
f (t, t�) = kf (t, t�)− ΣT
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The advantage to using GPs in this setting is the
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knowledge, it can be incorporated into the Gaussian

process. We present a simple example of how the
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3.2.2 Classical Bayes filter approximation of
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By “classical”, we mean that the dynamics models
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Figure 1: Three functions drawn from a GP prior,

f ∼ GP(mf , kf ), with large covariance (95% con-

fidence intervals shown in gray), mf = 0. From
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Conditioning on Goal Information

Train prior GPs to find k(i), condition on goal information z(i)
T :

pk(R)(f (R) | z1:t, z
(R)
T ), pk(1)(f (1) | z(1)

1:t , z
(1)
T ), . . . , pk(n)(f (n) | z1:t, z

(n)
T )

include goal
−−−−−−−−→

z(i)
T
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ψ(f (R), f)
−−−−−−→

Prior GPs: ψ times GPs:

p(f (R), f | z1:t) = 1
Z ψ(f (R), f)

�n
i=R pk(i)(f (i) | z1:t, z

(i)
T )
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pIGP (f (R), f | z1:t)

argmax=⇒

(f (R), f)∗

p(f (R), f | z1:t) suggests a natural way to perform navigation:
at time t, find that MAP of the posterior
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pIGP (f (R), f | z1:t)

argmax=⇒

(f (R), f)∗

p(f (R), f | z1:t) suggests a natural way to perform navigation:
at time t, find that MAP of the posterior
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Fig. 3. The interaction potential 1− α exp(− 1
2h2 d2), for various α, h.

of the additional data. Implementation-wise, we merely treat

the goal information as a measurement on the final step of

the trajectory, i.e., observing y(i)
T to be the perceived goal.

By varying the amount of noise in the measurement, we can

encode how certain we are about the goal. For y(R)
T , i.e.,

the robot’s goal, we set the noise very small. Furthermore,

waypoints along the trajectory could be easily encoded in

the same manner. Compare this with a Kalman filter, which

has no way of naturally incorporating such information.

C. Interaction GP (IGP) model for cooperative navigation
Our key modeling idea is to model interactions by introduc-

ing dependencies between the GPs. We begin with indepen-

dent GP priors, p(f (R) | z1:t), p(f (1) | z1:t), . . . p(f (n) | z1:t),
and couple them by multiplying in an interaction potential
ψ(f (R), f) = ψ(f (R), f (1), . . . , f (n)), i.e.,

pIGP(f (R), f | z1:t) =
1
Z

ψ(f (R), f)
n�

i=R

p(f (i) | z1:t).

The product
�n

i=R is meant to indicate that the robot is

included in the calculation. In our experiments, we choose

the interaction potential as:

ψ(f (R), f) =
n�

i=R

n�

j=i+1

T�

τ=t

�
1−α exp

�
− 1

2h2
|f (i)

τ −f (j)
τ |

��

where |fi(τ)− fj(τ)| is the Euclidean distance at time τ
between agent i and agent j. The rationale behind our choice

is that any set of paths f (1), . . . , f (n)
and f (R)

is becoming

very unlikely if, at any time τ , any two agents i and j become

close. The parameter h controls the “safety distance” of the

repulsion, and α ∈ [0, 1] its strength. See Figure 3 for an

illustration.

IV. COOPERATIVE PLANNING AND INFERENCE

A. The Navigation Density
Our model p(f (R), f | z1:t) immediately suggests a natural

way to perform navigation: at time t, find the maximum a-

posteriori (MAP) assignment for the posterior

(f (R), f)∗ = arg max
f (R),f

p(f (R), f | z1:t),

and then take fR(t+1)∗ as the next action in the path (where

t+1 means the next step of the estimation). At time t+1, we

receive a new observation of the agents, update the posterior

to pint(f (R), f | z1:t+1), and find the MAP assignment again

and choose f (R)(t+2)∗ as the next step in the path. We repeat

this process until the robot has arrived at its destination.

B. Importance sampling for approximate inference in IGP
While in GPs exact, efficient inference is possible, the

introduction of the interaction potential makes the poste-

rior p(f (R), f | z1:t) non-Gaussian and thus approximate

inference is required. Standard approaches to approximate

inference in models derived from GPs include Laplace

approximation [3] and Expectation Propagation [11]. These

methods approximate the non-Gaussian posterior by a Gaus-

sian which has the same mode, or which minimizes the KL-

divergence respectively. These methods are most effective if

the posterior is unimodal (and can be well-approximated by

a Gaussian). In IGP, however, the posterior is expected to

be multimodal: In particular, for two agents moving towards

each other in a straight line, evasion in either direction is

equally likely. This is akin to people walking towards each

other, flipping from one “mode” to the other while attempting

to not collide.

To cope with the multimodality, we use an approxi-

mate inference technique based on importance sampling, a

well understood approximate inference method for Bayesian

statistics (for an introduction see [1], [4], [14], [17]; for a

more detailed, up to date analysis of the method see [5],

[8]). We implement importance sampling for estimation of

the navigation density as follows:

• For all j, sample independent trajectories of agent j
from the prior:

(f (j))i ∼ p(f (j)|z1:t),

where p(f (j) | z1:t) is the sampling density (GP) for

agent trajectory j.

• Evaluate the weight of each sample (f (R), f)i using the

rules of importance sampling:

wi =
pIGP((f (R), f)i | z1:t)�n

j=R p((f (j))i | z1:t)

=
ψ((f (R), f)i)

�n
j=R p((f (j))i | z1:t)�n

j=R p((f (j))i | z1:t)
= ψ((f (j))i).

• The posterior is then approximated by the empirical

sampling distribution,

pIGP ≈
N�

i=1

wiδ[(f (R), f)i],

where δ[(f (R), f)i] is a point mass at sample (f (R), f)i.

As we let the number N of samples grow, we approximate

distribution pIGP to arbitrary accuracy, based on how much

and take f (R)(t + 1)∗ as the next action in the path



(a) Example pedestrian interaction
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Fig. 4. (a) Crowded still from the ETH data sequence. Near the center of the group is a subgroup of about 6 people moving upwards (red arrows) through
a crowd of about 10 people moving down (cyan arrows). Experiments were run on this particular scenario, with IGP performing (in terms of safety and
path length) about the same or slightly better than the actual pedestrians, and greatly outperforming state of the art methods, such as seen in [6]. (b-d) The
blue squares over the gray lines are the agents traveling downward (lowest dot is current position), the cyan diamond over the green line is the pedestrian
walking upwards through the crowd; IGP is red circles on top of blue prediction line, and PCLRHC is blue prediction line. In (b) PCLRHC chooses an
overcautious path because the crowd is too dense. In (c) and (d), IGP follows nearly the same path as the pedestrian in green, validating the model. This
set of figures illustrates the free space created by the pedestrian walking through the crowd—this is the interaction we capture with the IGP model.

potential. We show how navigation in this model is naturally
cast as an inference task, which can be approximately solved
using importance sampling. Lastly, we demonstrated the
efficacy of this algorithm on real world pedestrian data. Our
results show that IGP leads to paths which are both safer
and shorter than those taken by actual pedestrians.
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Results
computation we are willing to dedicate. Note that since
every sample is independent of every other particle, so the
technique can be parallelized.

In practice, we found that as few as 100 particles were
sufficient for navigation and was computable in about 0.1
seconds in Matlab. We found that solutions did not really
improve beyond about 5000 particles, which took about
5 seconds to run in Matlab. Thus, our approach could
realistically be run in real time on a robot.

V. EVALUATION
A. Experimental setup: crowded pedestrian data
We evaluate our approach on a data set of over 8 minutes
of video recorded from above a doorway of a university
building at ETH (see [12] for more details of the video collect
and how to access the data). This data set exhibits high
crowd density, i.e., people frequently pass by one another
fairly closely). As an example, see Figure 4 for one frame
of the data sequence in which the crowds are dense. In this
frame, a number of pedestrians are heading down towards
the doorway (cyan arrows) while a few other people (red
arrows) head into and through the crowd.

We test the IGP algorithm on variations of just these
types of scenarios (one crowd or person intersecting another
crowd); our task is to utilize the navigation density in
combination with the particle filtering inference method to do
navigation through these crowds. Videos demonstrating the
navigation performance are available at http://www.cs.
caltech.edu/˜krausea/projects/igp.html.

Given the type of data that we are going to be experi-
menting with, we now explain our performance metric: For
navigation, we are interested in two quantities: path length
(the euclidean path distance in x−y space taken by the robot
from start to finish), and safety margin (the nearest distance
that the robot ever came to another pedestrian during a run).

We measure both these quantities in pixel values, because
transforming back to “real” distances (meters, for instance)
would be too inaccurate. Importantly, we have baselines for
the two metrics in pixels. For path length, we tended to
see pedestrians take paths which ranged from about 350-390
pixels. For the safety margin, we often observed pedestrians
within 11-12 pixels of one another, although never any closer.
So we take as “safe” any separation distance above 13 pixels.
Furthermore, we can roughly estimate 13 pixels to be about
the width of a person from shoulder to shoulder.

B. Navigation performance
We begin this section with anecdotal evidence of how our
algorithm performs in comparison to both pedestrians and
PCLRHC, in Figure 4. Note that for all 10 experiments we
ran, this behavior was typical: IGP performed similarly or
better than the pedestrian, and PCLRHC took evasive action,
usually going to the far outside to avoid the crowds.

Figure 5 is the main experimental result of this paper.
In Figure 5, we present the results of our algorithm over
10 experiments. Each box surrounding the colored dots
represents the standard error bars over the 10 experiments.

Fig. 5. Path length versus safety over 10 runs. IGP outperforms pedestrians
in both safety and path length, while PCLRHC is inappropriate for this
application.

TABLE I
NAVIGATION RESULTS: IGP VERSUS PEDESTRIAN

Run �ped sped �IGP sIGP �PCLRHC sPCLRHC

1 343 13 341 12 353 22
2 343 14 344 18 349 8
3 316 71 305 26 317 73
4 383 12 358 21 420 18
5 361 12 363 42 409 65
6 337 21 321 22 330 23
7 439 16 439 23 489 26
8 428 19 423 20 466 11
9 416 20 402 18 448 24
10 415 11 407 24 445 13

IGP (green dot) had a mean safety of around 22 pixels, with
standard error ranging over 2 pixels, and mean path length of
around 362, with standard error around 12. Table I presents
details for the 10 individual experiments. Columns labeled s
refer to safety (in pixels), � refers to path length (pixels).

The interpretation of Figure 5 is unequivocal: IGP

outperforms pedestrian behavior in both safety and path
length by a fairly large margin. Furthermore, PCLRHC

is, as theoretically demonstrated earlier, inappropriate for
very dense crowds—PCLRHC almost always takes evasive
maneuvers (long path length) in an effort to avoid the
crowds (large safety margin).

VI. CONCLUSIONS
In this paper, we studied the Freezing Robot Problem

(FRP), a phenomenon where planning algorithms exhibit
overcautious or evasive behavior due to anticipated collisions
with stochastically moving agents. While most existing tech-
niques for dealing with the FRP focus on more informed (or
less uncertain) models, we show that the FRP can occur even
with perfect prediction, and that the key to safely navigating
through dense crowds is to capture the cooperative collision
avoidance inherent in real world behavior. We develop IGP,
a nonparametric statistical model based on dependent output
Gaussian processes, coupled through a nonlinear interaction

Path length vs safety, 10 runs
IGP outperforms pedestrians.
Constant cov inappropriate

            Const. cov.
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computation we are willing to dedicate. Note that since
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very dense crowds—PCLRHC almost always takes evasive
maneuvers (long path length) in an effort to avoid the
crowds (large safety margin).

VI. CONCLUSIONS
In this paper, we studied the Freezing Robot Problem

(FRP), a phenomenon where planning algorithms exhibit
overcautious or evasive behavior due to anticipated collisions
with stochastically moving agents. While most existing tech-
niques for dealing with the FRP focus on more informed (or
less uncertain) models, we show that the FRP can occur even
with perfect prediction, and that the key to safely navigating
through dense crowds is to capture the cooperative collision
avoidance inherent in real world behavior. We develop IGP,
a nonparametric statistical model based on dependent output
Gaussian processes, coupled through a nonlinear interaction

Path length vs safety, 10 runs
IGP outperforms pedestrians.
Constant cov inappropriate

            Const. cov.
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Runtime in Matlab: ≈ 10Hz
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• Defined frozen robot problem

• In dense crowds, freezing robot problem occurs if
p(f | z1:t) =

�n
i=1 p(f (i) | z1:t) assumed

• Navigation in dense crowds requires interaction
modeling

• IGP, a nonparametric statistical model based on
dependent output GPs

• Navigation =’s inference in this model

• Evaluation on real world pedestrian data

• IGP outperformed pedestrians, state of the art
algorithm

• Future: develop experiments for cafeteria at lunchtime

Conclusions
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