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Abstract

In safety-critical applications, autonomous agents may need to learn in an envi-
ronment where mistakes can be very costly. In such settings, the agent needs to
behave safely not only after but also while learning. To achieve this, existing
safe reinforcement learning methods make an agent rely on priors that let it avoid
dangerous situations during exploration with high probability, but both the prob-
abilistic guarantees and the smoothness assumptions inherent in the priors are
not viable in many scenarios of interest such as autonomous driving. This paper
presents an alternative approach inspired by human teaching, where an agent learns
under the supervision of an automatic instructor that saves the agent from violating
constraints during learning. In this new model, the instructor needs to know neither
how to do well at the task the agent is learning, nor how the environment works.
Instead, it has a library of reset controllers that it activates when the agent starts
behaving dangerously, preventing it from doing damage. Crucially, the choices of
which reset controller to apply in which situation affect the speed of agent learning.
Based on observing agents’ progress, the teacher itself learns a policy for choosing
the reset controllers, a curriculum, to optimize the agent’s final policy reward.
Our experiments use this framework in two challenging environments to induce
curricula for safe and efficient learning.

1 Introduction

Safety is a major concern that prevents application of reinforcement learning (RL) [45] to many
practical problems [16]. Among the RL safety notions studied in the literature [23], ensuring that
the agent does not violate constraints is perhaps the most important. Consider, for exmple, training
a policy for a self-driving car’s autopilot. Although simulations are helpful, much of the training
needs to be done via a process akin to RL on a physical car [26]. At that stage, it is critical to avoid
damage to property, people, and the car itself. Safe RL techniques aim to achieve this primarily by
imparting the agent with priors about the environment and equipping it with sound ways of updating
this information with observations [17, 9, 12, 13]. Some do this heuristically [2], while others provide
safety guarantees through demonstrations [47], or by assuming access to fairly accurate dynamical
models [4], or at the cost of smoothness assumptions [9, 28, 48, 49]. These assumptions hold, e.g., in
certain drone control scenarios [8] but are violated in settings such as autonomous driving, where a
small delta in control inputs can make a difference between safe passage and collision.
∗The author did part of this work while at Microsoft Research, Redmond.
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In this paper, we propose Curriculum Induction for Safe Reinforcement learning (CISR, “Caesar”),
a safe RL approach that lifts several prohibitive assumptions of existing ones. CISR is motivated
by the fact that, as humans, we successfully overcome challenges similar to those in the autopilot
training scenario when we help our children learn safely. Children possess inaccurate notions of
danger, have difficulty imitating us at tasks requiring coordination, and often ignore or misunderstand
requests to be careful. Instead, e.g., when they learn how to ride a bicycle, we help them do it safely
by first equipping the bicycle with training wheels, then following the child while staying prepared to
catch them if they fall, finally letting them ride freely but with elbow and knee guards for some time,
and only then allowing them to ride like grown-ups. Importantly, each “graduation" to the next stage
happens based on the learner’s observed performance under the current safeguard mechanism.

Key ideas. In CISR, an artificial teacher helps an agent (student) learn potentially dangerous skills
by inducing a sequence of safety-ensuring training stages called curriculum. A student is an RL
agent trying to learn a policy for a constrained MDP (CMDP) [6]. A teacher has a decision rule – a
curriculum policy – for constructing a curriculum for a student given observations of the student’s
behavior. Each curriculum stage lasts for some number of RL steps of the student and is characterized
by an intervention (e.g., the use of training wheels) that the teacher commits to use throughout that
stage. Whenever the student runs the risk of violating a constraint (falling off the bike), that stage’s
intervention automatically puts the agent into a safe state (e.g., the way training wheels keep the
bike upright), in effect by temporarily overriding the dynamics of the student’s CMDP. The teacher’s
curriculum policy chooses interventions from a pre-specified set such as {use of training wheels,
catching the child if they fall, wearing elbow and knee guards} with the crucial property that any
single intervention from this set keeps the agent safe as described above. A curriculum policy that
commits to any one of these interventions for the entire learning process is sufficient for safety,
but note that in the biking scenario we don’t keep the training wheels on the bike forever: at some
point they start hampering the child’s progress. Thus, the teacher’s natural goal is to optimize the
curriculum policy with respect to the student’s policy performance at the end of the learning process,
assuming the process is long enough that the student’s rate of attempted constraint violations becomes
very small. In CISR, the teacher does this via a round-based process, by playing a curriculum policy
in every round, observing a student learn under the induced curriculum, evaluating its performance,
and trying an improved curriculum policy on a new student in the next round.

Related Work. CISR is a form of curriculum learning (CL) [39]. CL and learning from demon-
stration (LfD) [15] are two classes of approaches that rely on a teacher as an aid in training a
decision-making agent, but CISR differs from both. In LfD, a teacher provides demonstrations of a
good policy for the task at hand, and the student uses them to learn its own policy by behavior cloning
[37], online imitation [35], or apprenticeship learning [1]. In contrast, CISR does not assume that the
teacher has a policy for the student’s task at all: e.g., a teacher doesn’t need to know how to ride a bike
in order to help a child learn to do it. CL generally relies on a teacher to structure the learning process.
A range of works [33, 22, 21, 41, 52, 38, 51] explore ways of building a curriculum by modifying the
learning environment. CISR is closer to Graves et al. [24], which uses a fixed set of environments for
the student and also uses a bandit algorithm for the teacher, and to [34], which studies how to make
the teacher’s learning problem tractable. CISR’s major differences from existing CL work is that
(1) it is the first approach, to our knowledge, that uses CL for ensuring safety and (2) uses multiple
students for training the teacher, which allows it to induce curricula in a more data-driven, as opposed
to heuristic, way. Regarding safe RL, in addition to the literature mentioned above, Le et al. [30],
which proposes a CMDP solver, considers the same training and test safety constraints as ours. In
that work, the student avoids potentially unsafe environment interaction by learning from batch data,
which places strong assumptions on MDP dynamics and data collection policy neither verifiable nor
easily satisfied in practice [42, 11, 3]. We use the same solver, but in an online setting.

The ideas introduced in this work may be applicable in several kinds of safety-sensitive settings where
CISR can be viewed as a meta-learning framework [50], with curriculum policy as a “hyperparame-
ter" being optimized. In our experiments, the number of iterations CISR needs to learn a good curricu-
lum policy is small. This allows its use in robotics, where a curriculum policy is trained on agents with
one set of sensors and applied to training agents with different sensors of similar capabilities, e.g., as
in Pan et al. [36] for autonomous rovers. Further promising scenarios are training a curriculum policy
in simulation and applying it to physical agents and using CISR in intelligent tutoring systems [14].

Contributions. Our main contributions are: (1) We introduce CISR, a novel framework for exploiting
prior knowledge to guarantee safe training and deployment in RL that forgoes many unrealistic
assumptions made in the existing safe RL literature. (2) We present a principled way of optimizing
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curriculum policies across generations of students while guaranteeing safe student training. (3) We
show empirically in two environments that students trained under CISR-optimized curricula attain
reward performance comparable or superior to those trained without a curriculum and remain safe
throughout training, while those trained without a curriculum don’t. (4) We release an open source
implementation of CISR and of our experiments2.

2 Background: Constrained Markov Decision Processes

In this work, we view a learning agent, which we will call a student, as performing constrained RL.
This framework has been strongly advocated as a promising path to RL safety [40], and expresses
safety requirements in terms of an a priori unknown set of feasible safe policies that the student should
optimize over. In practice, this feasible policy set is often described by a constrained Markov decision
process (CMDP) [6]. We consider CMDPs of the formM = 〈S,A,P, r,D〉, where S and A are a
state and action space, respectively, P(s′|s, a) is a transition kernel, r : S ×A× S → R is a reward
function, and D is a set of unsafe terminal states. We focus on settings where safety corresponds to
avoiding visits to the set D. The student’s objective, then, is to find a policy π : S → ∆A, i.e., a map-
ping from states to action distributions, that solves the following constrained optimization problem,
where ρπ is a distribution of trajectories induced by π andP given some fixed initial state distribution:

π∗ = arg max
π

Eρπ
T∑
t=0

r(st, at, st+1), s.t. Eρπ
T∑
t=0

I(st ∈ D) ≤ κ, (1)

where I is the indicator function. To ensure complete safety, we restrict our attention to problems
where the value of κ makes the constraints feasible. While we have presented the finite-horizon
undiscounted version of the problem, both the objective and the constraint can be expressed as the
average or a discounted sum over an infinite horizon. For a generic CMDPM we denote the set of
its feasible policies as ΠM, and the value of any π ∈ ΠM as VM(π).

There are a number of works on solving CMDPs that find a nearly feasible and optimal policy with
sufficiently many trajectories, but violate constraints during training [2, 13]. In contrast, we aim to
enable the student to learn a policy for CMDPM without violating any constraints in the process.

3 Curriculum Induction for Safe RL

We now describe CISR, our framework for enabling a student to learn without violating safety con-
straints. To address the seemingly impossible problem of students learning safely in an unknown envi-
ronment, CISR includes a teacher, which is a learning agent itself. The teacher serves two purposes:
(1) mediating between the student and its CMDP in order to keep the student safe, and (2) learning
a mediation strategy – a curriculum policy – that helps the student learn faster. First we formally
describe the teacher’s mediation tools called interventions (Section 3.1). Then, in Section 3.2 we show
how, from the student’s perspective, each intervention corresponds to a special CMDP where training
is safe and every feasible policy is also feasible in original CMDP, ensuring that objective (1) is always
met. Finally, in Section 3.3 we consider the teacher’s perspective and show how, in order to optimize
objective (2), it iteratively improves its curriculum policy by trying it out on different students.

3.1 Interventions

In CISR, the teacher has a set of interventions I = {〈Di, Ti〉}Ki=1. Hereby, each intervention is
defined by a set Di ⊂ S of trigger states where this intervention applies and Ti : S → ∆S\Di , a
state-conditional reset distribution. The semantics of an intervention is as follows. From the teacher’s
perspective, Di is a set of undesirable states, either because Di intersects with the student CMDP’s
unsafe state set D or because the student’s current policy may easily lead from Di’s states to D’s.
Whenever the student enters a state s ∈ Di, the teacher can intervene by resetting the student to
another, safe state according to distribution Ti(·|s). We assume the following about the interventions:
Assumption 1 (Intervention set). a) The intervention set I is given to the teacher as input and is
fixed throughout learning. b) The interventions in I cannot be applied after student learning.

Assumption a) is realistic in many settings, where the student is kept safe by heuristics in the form of
simple controllers such as those that prevent drones from stalling. At least one prior work, Eysenbach

2https://github.com/zuzuba/CISR_NeurIPS20
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et al. [18], focuses on how safety controllers can be learned, although their safety notion (policy
reversibility) is much more specialized than in CISR. Assumption b) is realistic in that a safety
controller practical enough to be used beyond training is likely to be part of the agent as in [5],
removing the need for safety precautions during training. An example of a safety mechanism that
cannot be used beyond training is motion capture lab equipment to prevent collisions.

3.2 The student’s problem

We now describe the student’s learning process under single and multiple interventions of the teacher.
As we explain here, training in the presence of an interventions-based teacher can be viewed as
learning in a sequence of CMDPs that guarantee student safety under simple conditions. Later, in
Sec. 3.3, we formalize these CMDP sequences as curricula, and show how the teacher can induce
them using a curriculum policy in order to accelerate students’ learning progress.

Intervention-induced CMDPs. Fix an intervention 〈Di, Ti〉 and suppose the teacher commits to
using it throughout student learning. As long as the student avoids states inDi, deemed by the teacher
too dangerous for the student’s ability, the student’s environment works like the original CMDP,M.
But whenever the student enters an s ∈ Di, the teacher leads it to a safe state s′ ∼ Ti(·|s), s′ /∈ Di.
Thus, each of teacher’s interventions i ∈ I induces a student CMDPMi = 〈S,A,Pi, ri,D,Di〉,
where S and A are as in the original CMDP M, but the dynamics are different: for all a ∈ A,
Pi(s′|s, a) = P(s′|s, a) for all s ∈ S\Di andPi(s′|s, a) = Ti(s′|s) for s ∈ Di. The reward function
is modified to assign ri(s, a, s′) = 0 for s ∈ Di, s′ /∈ Di: all student’s actions in these cases get over-
ridden by the teacher’s intervention, having no direct cost for the student. However, the teacher cannot
supervise the student forever; the student must learn a safe and high-return policy that does not rely on
its help. We thus introduce a constraint on the number of times the student can use the teacher’s help.
This yields the following problem formulation for the student, where ρπi is a distribution of trajectories
induced by π given some fixed initial state distribution and the modified transition function Pi:

π∗ = arg maxEρπi
T∑
t=0

ri(st, at, s
′
t+1), s.t. Eρπi

T∑
t=0

I(st ∈ D) ≤ κi, Eρπi
T∑
t=0

I(st ∈ Di) ≤ τi, (2)

where κi ≥ 0 and τi ≥ 0 are intervention-specific tolerances set by the teacher. Thus, although the
student doesn’t incur any cost for the teacher’s interventions, they are associated with violations
of teacher-imposed constraints. Our CMDP solver [30], discussed in Section 4, penalizes the student
for them during learning, making sure that the student doesn’t exploit them in its final policy.

By construction, each intervention-induced CMDPMi has two important properties, which we state
below and prove in Appendix C. First, if the teacher has lower tolerance for constraint violations than
the original CMDP, an optimal learner operating inMi will eventually come up with a policy that is
safe in its original environmentM:
Proposition 1 (Eventual safety). Let ΠM and ΠMi be the sets of feasible policies for the problems
in Equations (1) and (2), respectively. Then, if τi + κi ≤ κ, ΠMi

⊆ ΠM.

Intuitively, once the teacher is removed, the student can fail either by passing through states where it
used to be rescued or by reaching states where the teacher was not able to save it in the first place;
τi + κi ≤ κ ensures that the probability of either of these cases is sufficiently low that a feasible
policy inMi is also feasible inM. While this guarantees the student’s eventual safety, it doesn’t say
anything about safety during learning. The second proposition states conditions for learning safely:
Proposition 2 (Learning safety). Let D be the set of unsafe states of CMDPsM andMi, and let
Di be the set of trigger states of intervention i. If D ⊆ Di and P(s′|a, s) = 0 for every s′ ∈ D,
s ∈ S \ Di, and a ∈ A, then an optimal student learning in CMDPMi will not violate any ofM’s
constraints throughout learning.

Informally, Proposition 2 says that if the set of trigger statesDi of the teacher’s intervention “blankets"
the set of unsafe states D, the student has no way of reaching states in D without triggering the
intervention and being rescued first, and hence is safe even when it violatesMi’s constraints.
Assumption 2 (Intervention safety). In the rest of the paper, we assume all teacher interventions to
meet the conditions of Proposition 2.

We make this assumption for conceptual simplicity, but it can hold in reality: systems such as aircraft
stall prevention and collision avoidance guarantee near-absolute safety. Even in the absence thereof,
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CISR informally keeps the student as safe during training as teacher’s interventions allow. In Sec. 5,
we show that, even when this assumption is violated and the interventions cannot guarantee absolute
safety, CISR still improves training safety by three orders of magnitude over existing approaches.

Sequences of intervention-induced CMDPs and knowledge transfer. As suggested by the biking
example, the student’s learning is likely to be faster under a sequence of teacher interventions,
resulting in a sequence of CMDPsMi1 ,Mi2 , . . .. This requires a mechanism for the student to carry
over previously acquired skills from one CMDP to the next. We believe that most knowledge transfer
approaches for unconstrained MDPs, such as transferring samples [29], policies [20], models [19]
and values [46], can be applied to CMDPs as well, with the caveat that the transfer mechanism should
be tailored to the environment, teacher’s intervention set, and the learning algorithm the student uses.
In Section 4, we present the knowledge transfer mechanism used in our implementation.

3.3 The teacher’s problem

Algorithm 1 CISR

1: Input: Interventions I, Initial teacher πT0
2: for j = 0, 1, . . . , Nt do
3: π0,j ← get_student()
4: for n = 0, 1, . . . , Ns do
5: Min ← πTj (oT0 , . . . , o

T
n )

6: if n > 0 then πn,j ← transfer(πn−1,j)
7: πn,j ← student.train(Min)
8: oTn ← φ(πn,j)

9: πTj+1 ← teacher.train({(πTk , V̂ (πNs,k))}jk=1)

Given that, under simple conditions, any
sequence of teacher’s interventions will
keep the student safe, the teacher’s task
is to sequence interventions/CMDPs for
the student so that the student learns the
highest-expected-reward policy. In CISR,
the teacher does this by iteratively trying
a curriculum policy on different students
and improving it after each attempt. This
resembles human societies, where curricu-
lum policies are implicitly learned through
educating generations of students. At the
same time, it is different from prior ap-
proaches such as Graves et al. [24], Matiisen et al. [31], which try to learn and apply a curriculum on
the same student. These approaches embed a fixed, heuristic curriculum policy within the teacher to
induce a curriculum but cannot improve this policy over time. In contrast, CISR exploits information
from previous students to optimize its curriculum policy following a data-driven approach.

What does not need to be assumed of the teacher. CISR makes very few assumptions about the
teacher’s abilities. In particular, while the teacher needs to be able to evaluate the student’s progress,
it can do so according to its internal notion of performance, which may differ from the student’s one.
Thus, the teacher does not need to know the student’s reward. Moreover, since the interventions
are given, the teacher does not need to know the student’s dynamics. However, the intervention
design may still require approximate and local knowledge of the dynamics, which is much less
restrictive than perfect and global knowledge. Furthermore, the teacher does not need to have a
policy for performing the task that the student is trying to learn nor to be able to communicate the
set Di of an intervention’s trigger states for any i to the student. It only needs to be able to execute
any intervention in I without violating laws governing the CMPDM, i.e., using conditional reset
distributions that are realizable according toM’s dynamics. However, the teacher is not assumed to
use only the student’s action and observation set A and S to execute the interventions — it may be
able to do things the student can’t, such as setting the the student upright if it is falling from a bike.

In CISR the teacher learns online. Abstractly, we view the teacher as an online learner presented
in Algorithm 1. In particular, for rounds j = 1, . . . , Nt:

1. The teacher plays a decision rule πTj that makes a new student j learn under an adaptively
constructed sequence Cj = (Mi1 , . . . ,MiNs

) of intervention-induced CMDPs (lines 4-8).

2. Each student j learns via a total of Ns interaction units (e.g., steps, episodes, etc.) with an
environment. During each unit, it acts in a CMDP in Cj . It updates its policy by transferring
knowledge across interaction units (Line 6). The teacher computes features φ(πn,j) of student j’s
performance (lines 8) by evaluating j’s policies throughout j’s learning process. Based on them,
the teacher’s decision rule proposes the next intervention MDP in Cj .

3. The teacher adjusts its decision rule’s parameters (line 9) that govern how a CMDP sequence
Cj+1 will be produced in the next round.
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Assumption 3 (Length of student learning). For all potential students, their CMDP solvers
student.train are sound and complete.3 Ns is much larger than the number of interactions
it takes the solver to find a feasible policy π ∈ ΠMi

for at least one intervention CMDPMi, i ∈ I.

This assumption ensures that students can, in principle, learn a safe policy in the allocated amount
of training Ns under some intervention sequence. It also allows the teacher to learn to induce
such sequences, given enough rounds Nt, even though not every student trained in the process will
necessarily have a feasible policy forM at the end of its learning.

This framework’s concrete instantiations depend on the specifics of (i) the decision rule that produces
a sequence Cj in each round, (ii) the teacher’s evaluation of the student to estimate V̂ (πNs,k) in each
round. Next, we consider each of these aspects.

Curricula and curriculum policies (i). Before discussing teacher’s decision rules that induce
intervention sequences in each round, we formalize the notion of these sequences themselves:
Definition 1 (Curriculum). Suppose a student learns viaNs interaction units (e.g., steps or episodes)
with an environment, and let I be a set of teacher’s interventions. A curriculum C is a sequence
Mi1 , . . . ,MiNs

of length Ns of CMDPs s.t. the student interacts with CMDPMin during unit n,
whereMin is induced by an intervention in ∈ I.

The difference between a curriculum and a teacher’s decision rule that produces it is crucial. While
a decision rule for round j can be a mapping Cj : [Ns] → I exactly like a curriculum, in general
it is useful to make it depend on the student’s policy πn,j at the start of each interaction unit n. In
practice, the teacher doesn’t have access to πn,j directly, but can gather some statistics φ(πn,j) about
it by conducting an evaluation procedure that we discuss shortly. Examples of useful statistics include
the number of times the student’s policy triggers teacher’s interventions, features of states where this
happens, and, importantly, an estimate of the policy value V̂ (πn,j).

Thus, an adaptive teacher is an agent operating in a partially observable MDP
〈ST ,AT ,PT ,RT ,OT ,ZT 〉, where ST = ΠM is the space of all student policies for the
original CMDP M (not only feasible ones), AT = I is the set of all teacher interventions,
PT : ΠM × I ×ΠM → [0, 1] is governed by the student’s learning algorithm, OT = Φ is the space
of evaluation statistics the teacher gathers, and ZT = φ is the mapping from the student’s policies
to statistics about them, governed by the teacher’s evaluation setup. The reward function RT can
be defined as RT (n) = V̂ (πn,j) − V̂ (πn−1,j), with RT (0) = V̂ (π0,j) the “progress" in student’s
policy quality from one curriculum stage to the next. Note, however, that what really matters to the
teacher is the student’s perceived policy quality at the end of round, V̂ (πNs,j) =

∑Ns
n=1RT (n).

Thus, in general, a teacher’s decision rule is a solution to this POMDP:
Definition 2 (Curriculum policy). LetH be the space of teacher’s observation histories. A curricu-
lum policy is a mapping πT : H → I that, for any n ∈ [Ns], specifies an intervention given the
teacher’s observation history φ(π1), . . . , φ(πn−1) at the start of the student’s n-th interaction unit.

In the context of curriculum learning, modeling the teacher as a POMDP agent similar to ours
was proposed in [31, 34] – though not for RL safety. However, from the computational standpoint,
CISR’s view of a teacher as an online learning agent captures a wider range of possibilities for the
teacher’s practical implementation. For instance, it suggests that it is equally natural to view the
teacher as a bandit algorithm that plays suitably parameterized curriculum policies in each round,
which is computationally much more tractable than using a full-fledged POMDP solver. As described
in Section 4, this is the approach we take in this work.

Safely evaluating students’ policies (ii). Optimizing the curriculum policy requires the evaluation
of students’ policies to create features and rewards for the teacher. Since a student’s intermediate
policy may not be safe w.r.t. M, evaluating it inM could lead to safety violations. Instead, we
assume that the teacher’s intervention set I includes a special intervention i0 satisfying Proposition 2.
Hence, this intervention induces a CMDPM0 where the student can’t violate the safety constraint.
The teacher uses it for evaluation, although it can also be used for student learning. Therefore, for
any policy π over the state-action space S × A, we define V̂ (π) , VM0(π). SinceM0 has more

3That is, it finds a feasible policy after enough interactions with the CMDP, assuming one exists.
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constraints thanM, evaluation inM0 underestimates the quality of the teacher’s curriculum policy.
Let π̂∗ be the optimal policy forM0 and π∗ the optimal policy forM. The value of the teacher’s
curriculum policy is, then, V̂ (π̂∗) ≤ VM(π∗). If the student policy violates a constraint in M0

during execution, the teacher gets a reward −2TRmax where Rmax is the largest environment reward.

4 Implementation Details

CISR allows for many implementation choices. Here, we describe those used in our experiments.

Student’s training and knowledge transfer. Our students are CMDP solvers based on [30], but
train online rather than offline as in [30] since safety is guaranteed by the teacher. This is a primal-dual
solver, where the primal consists of an unconstrained RL problem including the original rewards and
a Lagrange multiplier penalty for constraint violation. The dual updates the multipliers to increase
the penalty for violated constraints. We use the Stable Baselines [25] implementation of PPO [43] to
optimize the Lagrangian of a CMDP for a fixed value of the multipliers, and Exponentiated Gradient
[27], a no-regret online optimization algorithm, to adapt the multipliers. Our students transfer both
value functions and policies across interventions, but reset the state of the optimizer.

Teacher’s observation. Before every switch to a new intervention in+1, our teacher evaluates the
student’s policy in CMDPMin induced by the previous intervention. The features estimated in this
evaluation, which constitute the teacher’s observation oTn , are VMin

(π), the student’s policy value in
CMDPMin , and the rate of its constraint violation there, Eρπin [

∑T
t=0 I(st ∈ Din)− τin ].

Reward. As mentioned in Sec. 3.3, from a computational point of view it is convenient to ap-
proach the curriculum policy optimization problem as an online optimization problem for a given
parametrization of the teacher’s curriculum policy. This is the view we adopt in our implementation,
where in round j, the teacher’s objective is the value of the student’s final policy V̂ (πNs,j). Moreover,
since after Ns curriculum steps the student’s training is over, we compute the student’s return directly
inM rather than using a separate evaluation interventionM0.

Policy class. To learn a good teaching policy efficiently, we restrict the teacher’s search space to a
computationally tractable class of parameterized policies. We consider reactive policies that depend
only on the teacher’s current observation, oTn , so πT (oT0 , o

T
1 , . . . , o

T
n ) = πT (oTn ). Moreover, we

restrict the number of times the teacher can switch their interventions to at most K ≤ Ns. A policy
from this class is determined by a sequence of K interventions and by a set of rules that determines
when to switch to the next intervention in the sequence. Here, we consider simple rules that require
the average return and constraint violation during training to be greater/smaller than a threshold.
Formally, we denote the threshold array as ω ∈ R2. The teaching policy we consider switches from
the current intervention to the next when φ(πn,j)[0] ≥ ω[0] ∧ φ(πn,j)[1] ≤ ω[1]. Thus, teacher’s
policies are fully determined by 3K + 1 parameters.

Teacher’s training with GP-UCB. Given the teacher’s policy is low dimensional and sample ef-
ficiency is crucial, we use Bayesian optimization (BO) [32] to optimize it. That is, we view the
3K + 1 dimensional parameter vector of the teacher as input to the BO algorithm, and search for
parameters that approximately optimize the teacher’s reward. Concretely, we use GP-UCB [44], a
simple Bayesian optimization algorithm that enjoys strong theoretical properties.

5 Experiments

We present experiments where CISR efficiently and safely trains deep RL agents in two environments:
the Frozen Lake and the Lunar Lander environments from Open AI Gym [10]. While Frozen Lake
has simple dynamics, it demonstrates how safety exacerbates the difficult problem of exploration
in goal-oriented environments. Lunar Lander has more complex dynamics and a continuous state
space. We compare students trained with a curriculum optimized by CISR to students trained with
trivial or no curricula in terms of safety and sample efficiency. In addition, we show that curriculum
policies can transfer well to students of different architectures and sensing capabilities (Table 1). For
a detailed overview of the hyperparameters and the environments, see Appendices A and B.
Frozen Lake. In this grid-world environment (Fig. 1a), the student must reach a goal in a 2D map
while avoiding dangers. It can move in 4 directions. With probability 80% it moves in the desired
direction and with 10% probability it moves in either of the orthogonal ones. The student only sees
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(a) Original map (b) SR1 and HR

Safe
Goal
Danger
Start
Teacher

(c) SR2
Figure 1: Interventions for Frozen Lake. Maps 1b and 1c
show trigger state sets DSR1 and DSR2 for interventions SR1
and SR2 , which get triggered at distance = 1 and 2 from lakes
(dangers), respectively. Intervention HR has DHR = DSR1 .

Trigger
Reset

Lander

(a) “Narrow"

Trigger
Reset

Lander

(b) “Wide"
Figure 2: Interventions for Lunar Lan-
der. If the student hits the green line, it
gets reset to a state on the orange line.
See Appendix B for more details.
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Figure 3: Student success rate (Left) and average returns (Right) in Frozen Lake as student training under
different curriculum policies progresses. The Optimized curriculum policy outperforms training in the original
environment (No-interv.), in each of the individual interventions (SR1, SR2, HR) and the pre-specified curriculum
policy of [31] (Bandit).

.

the map in Fig. 1a and is not aware of the teacher interventions’ trigger states (Figs. 1b and 1c).
Note that the high density of obstacles, the strong contrast between performance and safety, the safe
training requirement and the high-dimensional observations (full map, as opposed to student location)
make this environment substantially harder than the standard Frozen Lake.

We use three interventions, whose trigger states are shown in Figs. 1b and 1c: soft reset 1 (SR1), soft
reset 2 (SR2), and hard reset (HR). SR1 and SR2 have tolerance τ = 0.1 and reset the student to the
state where it was the time step before being rescued by the teacher. HR has zero tolerance, τ = 0
and resets the student to the initial state.

We compare six different teaching policies: (i) No-intervention, where students learn in the original
environment; (ii-iii-iv) single-intervention, where students learn under each of the interventions fixed
for the entire learning duration; (v) Bandit, where students follow curricula induced by the a priori
fixed curriculum policy from [31]; (vi) Optimized, where we use the curriculum policy found by
CISR within the considered policy class after interacting with 30 students. We let each of these
curriculum policies train 10 students. For the purposes of analysis, we periodically freeze the students’
policies and evaluate them in the original environment.

Results. Fig. 3 shows the success rate and the return of the students’ policies deployed in the original
environment as training progresses. Without the teacher’s supervision (No-interv.), the students
learn sensible policies. However, the training is slow and results in thousands of failures (Table 6
in Appendix B). The HR intervention resets the students to the initial state distribution whenever
the teacher constraint is violated. However, since it has more trigger states than No-interv. (Fig. 1b
vs Fig. 1a), the students training exclusively under it do not explore enough to reach the goal. SR1
and SR2 allow the student to learn about the goal without incurring failures thanks to their reset
distribution, which is more forgiving that HR’s one. However, they result in performance plateaus
as the soft reset of the training environment lets the students recover from mistakes in a way the
deployment environment doesn’t. The Optimized curriculum retains the best of both worlds by
initially proposing a soft reset intervention that allows the agent to reach the goal and subsequently
switching to the hard reset such that the training environment is more similar to the original one.
Finally, the Bandit curriculum policy from [31] requires an initial exploration of different interventions
with each student as it does not learn across students. This is in contrast with CISR, which exploits
information acquired from previous students to improve its curriculum policy, and results in slower
training. Table 6 in Appendix B shows the confidence intervals of mean performance across 10
students and teachers trained on 3 seeds, indicating CISR’s robustness.
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Eval. on noiseless, 2-layer student Eval. on noisy student Eval. on 1-layer student
VM(πNs) Succ. Test

fail
Train
fail

VM(πNs) Succ. Test
fail

Train
fail

VM(πNs) Succ. Test
fail

Train
fail

Optimized 233.8 88.4% 10.5% 1.6 221.1 86.7% 10.5% 2.95 254.5 92.2% 6.6% 2.2
Narrow 183.0 72.4% 30.0% 1.0 149.1 65.1% 32.4% 1.2 220.4 83.3% 15.9% 1.3
Wide 210.6 81.4% 17.6% 3.4 153.9 75.1% 14.0% 4.05 119.9 67.4% 17.6% 4.0
No-interv. 236.3 90.1% 7.9% 1228.8 210.3 85.5% 11.8% 1651.9 248.7 92.4% 6.1% 1368.1

Table 1: Lunar Lander final performance summary. Noiseless, 2-layer student (Left): The Wide and Narrow
interventions result in low performance due to the difficulty of exploration and early plateau, respectively.
Students that learn under the Optimized curriculum policy achieve a comparable performance to those training
under No-intervention, but suffer three orders of magnitude fewer training failures. Noisy student (Center),
One layered-student (Right): The results are similar when we use the curriculum optimized for students with
noiseless observations and a 2-layer MLP policy for students with noisy sensors or a 1-layer architecture.

Lunar Lander. In this environment, the goal is to safely land a spaceship on the Moon. Crucially,
the Moon surface is rugged and differs across episodes. The only constant is a flat landing pad that
stretches across Xland along the x dimension (at y = 0). Landing safely is particularly challenging
since agents do not observe their distance from the ground, only their absolute x and y coordinates.

Since the only way to ensure safe training is to land on the landing pad each time, we use the two
interventions in Fig. 2. Each gets triggered based on the student’s tilt angle and y-velocity if the
student is over the landing pad (x ∈ Xland), and on a funnel-shaped function of its x, y coordinates
otherwise (x 6∈ Xland). The former case prevents crashing onto the landing pad, the latter, landing
(and possibly crashing) on the rugged surface the student cannot sense. We call the interventions
Narrow and Wide (see Fig. 2); both set the student’s velocity to 0 after rescuing it to a safe state.
The interventions, despite ensuring safety, make exploration harder as they make experiencing a
natural ending of an episode difficult.

We compare four curriculum policies: (i) No-intervention, (ii-iii) single-intervention and (iv) Opti-
mized. We let each policy train 10 students and we compare their final performance in the original
Lunar Lander. Moreover, we use the Optimized curriculum to train different students than those it
was optimized for, thus showing the transferability of curricula.

Results. Table 1 (left) shows for each curriculum policy the mean of the students’ final return,
success rate and failure rate in the original environment and the average number of failures during
training. The Narrow intervention makes exploration less challenging but prevents the students
from experiencing big portions of the state space. Thus, it results in fast training that plateaus early.
The Wide intervention makes exploration harder but it is more similar to the original environment.
Thus, it results in slow learning. Optimized retains the best of both worlds by initially using the
Narrow intervention to speed up learning and subsequently switching to the Wide one. In No-interv.,
exploration is easier since the teacher’s safety considerations do not preclude a natural ending of the
episode. Therefore, No-interv. attains a comparable performance to Optimized. However, the absence
of the teacher results in three orders of magnitude more training failures.

Table 1 shows the results of using the teaching policy optimized for students with 2-layer MLP policies
and noiseless observations to train students with noisy sensors (center) and different architectures
(right). These results are similar to those previously observed: the Optimized curriculum attains
a comparable performance to the No interv. training while greatly improving safety. This shows
that teaching policies can be effectively transferred, which is of great interest in many applications.
Table 7 in Appendix B shows the confidence intervals for these experiments over 3 seeds.

6 Concluding remarks

In this work, we introduce CISR, a novel framework for safe RL that avoids many of the impractical
assumptions common in the safe RL literature. In particular, we introduce curricula inspired by
human learning for safe training and deployment of RL agents and a principled way to optimize them.
Finally, we show how training under such optimized curricula results in performance comparable or
superior to training without them, while greatly improving safety.

While it yields promising results, the teaching policy class considered here is quite simplistic. The
use of more complex teaching policy classes, which is likely to require a similarity measure between
interventions and techniques to reduce the teacher’s sample complexity, is a relevant topic for future
research. Finally, it would be relevant to study how to combine the safety-centered interventions we
propose with other task-generating techniques that are used in the field of curriculum learning for RL.
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APPENDIX

A Hyperparameters

In this section, we report the hyperparameters that we use for the students, which are CMDP solvers
based on an online version of [30], and for the teachers, which are based on the GP-UCB algorithm
for multi-armed bandits [44].

A.1 Students

The students comprise two components: an unconstrained RL solver and a no-regret online optimizer.
The first component is used to solve the unconstrained RL problem that results from optimizing the
Lagrangian of a given CMDP for a fixed value of the Lagrange multipliers. For this, we use the
Stable Baselines [25] implementation of the Proximal Policy Optimization (PPO) algorithm [43]. The
second component is used to adapt the Lagrangian multipliers online. As suggested in [30], we use
the Exponentiated Gradient algorithm [27] for this. In the following, we use the hyperaparameters
naming convention from Stable Baselines [25] for PPO and from [30] for Exponentiated Gradient.

Frozen Lake. In Table 2, we show the hyperparameters used for the students in the Frozen Lake
experiments, except for those that determine their policy class. In these experiments, the student’s
policies are parametrized as convolutional neural networks with 2 convolutional layers followed by a
fully connected layer. The first convolutional layer has 32 filters of size 3 and stride 1. The second
one has 64 filters of size 3 and stride 1. The fully connected layers contains 32 neurons. We use
ReLU as activation function.

Lunar Lander. In Table 3, we show the hyperparameters used for the students in the Lunar Lander
experiments, except for those that determine their policy class. In these experiments, the student’s
policies are parametrized as MLP networks with 2 hidden layers with 20 neurons each. We use ReLU
as activation function.

A.2 Teachers

Our teachers are based on the the GPyOpt [7] implementation of GP-UCB.

The teacher’s hyperparameters are those of the Gaussian process (GP) model used by GP-UCB. In
all the experiments, we use a GP with radial basis function (RBF) kernel with automatic relevance
determination (ARD) and a Gaussian likelihood. Therefore, the teacher has the following hyperpa-
rameters: the signal variance, σ2

f , an array of 3K + 1 lengthscales l ∈ R3K+1, where 3K + 1 is the
number of parameters that determines the teacher’s policy for a fixed number of intervention switches,
K, see Sec. 4, and the noise variance σ2

n. Rather than fixing the hyperparameters a priori, we define
hyperpriors over them and use their maximum a posteriori (MAP) estimate, which we update after
every newly acquired data point.

The data is normalized before being fed to the GP.

Frozen Lake. In the Frozen Lake experiments, we allow for up to two switches between interventions;
that is, K = 2. Therefore, l ∈ R7. In Table 4, we show the mean and the variance of the Gamma
hyperprior of each hyperparameter.

Lunar Lander. In the Lunar Lander experiments, we allow for up to one switch between interven-
tions; that is, K = 1. Therefore, l ∈ R4. In Table 5, we show the mean and the variance of the
Gamma hyperprior of each hyperparameter.

Name Value
n_steps 128
ent_coef 0.05
learning_rate 0.001
noptepochs 9

(a) PPO

Name Value
B 0.5
η 1.0

(b) Exponentiated Gradient

Table 2: Student’s hyperparameters for the Frozen lake environment.
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Name Value
n_steps 500
ent_coef 0.001
learning_rate 0.005
noptepochs 32

(a) PPO

Name Value
B 120
η 1.0

(b) Exponentiated Gradient

Table 3: Student’s hyperparameters for the Lunar Lander environment.

Hyperparameter σ2
f l1 l2 l3 l4 l6 l5 l7 σ2

n

µ 1 1 0.05 1 0.05 0.2 0.2 0.2 0.01
σ2 0.2 1 0.02 1 0.02 0.2 0.2 0.2 0.1

Table 4: Mean and variance of the Gamma hyperpriors for the teacher’s hyperparameters for the
Frozen Lake environment.

B Experiments

In this section, we provide a detailed explanation of our experimental setup and we present the results
we obtained repeating the curriculum optimization and evaluation for multiple random seeds.

B.1 Frozen Lake

Environment. In the Frozen Lake experiments, we use the 10 × 10 map in Fig. 1a. The student
receives the full map as observation but is not aware of the areas of influence of the teacher, Figs. 1b
and 1c. In each location, it can take one of four actions: up, right, left or down. With probability
80% it moves in the desired direction and with 10% probability it moves in either of the orthogonal
ones. After each move, it can end up in one of three kind of tiles: goal, which results in a successful
termination of the episode, danger, which results in a failure and the consequent termination of
the episode and safe. The agent receives a reward of 6 for reaching the goal and −0.01 otherwise
(entering dangerous tiles is discouraged via the constraint rather than with low rewards).

An interaction unit between the student and the teacher consists of 10000 time steps. A curriculum
lasts for 11 of such interaction units.

Teacher’s training. We consider curriculum policies that allow for up to two intervention switches,
i.e., K = 2. To initialize the GP model, we sample 10 curriculum policies at random, train a student
with each of those and feed their final performance to the GP model. To optimize the curriculum, we
run GP-UCB for 20 iterations, where each iteration corresponds to training a single student with the
curriculum policy proposed by GP-UCB.

Teacher’s evaluation. To evaluate the quality of a curriculum policy, we get 10 new students, we
let them train with the curricula induced by such policy and we record their failures during training
as well as their returns and their successes when they are deployed in the original environment (i.e.
without supervision) for 10000 time steps. Fig. 3 reports the mean of these quantities over the 10
students for all the curriculum policies that we consider at the end of each interaction unit. Notice
that evaluating after each intervention unit is done solely for analysis purposes as, in practice, one
should not deploy a student in the original environment before the curriculum is completed.

For each of the teaching policies considered, we report the mean returns and success rates at the end of
the curriculum over the 10 students as well as their mean number of failures during training in Table 6.
Here, the confidence intervals are obtained by optimizing 3 curriculum policies independently with
different random seeds and repeating the evaluation procedure for each one.

B.2 Lunar Lander

The observation space of the Lunar Lander environment is 8-dimensional and it includes: x and y
position, tilt angle, linear and angular velocities and two Booleans that indicate whether each leg is in
contact with the ground. At each time step, the lander can take one of four actions: fire the main, the
left or the right engine or do nothing. The agent receives a reward of 100 for a successful landing,
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Hyperparameter σ2
f l1 l2 l3 l4 σ2

n

µ 1 20 1 0.2 0.2 0.01
σ2 0.2 4 0.3 0.2 0.2 0.1

Table 5: Mean and variance of the Gamma hyperpriors for the teacher’s hyperparameters for the
Lunar Lander environment.

Success Training failures VM(πNs)
Optimized 0.960± 0.004 0± 0 5.368± 0.025
SR2 0.827± 0.027 0± 0 4.669± 0.168
SR1 0.850± 0.011 0± 0 4.839± 0.065
HR 0.000± 0.000 0± 0 −0.222± 0.013
Bandit 0.574± 0.049 0± 0 3.077± 0.288
No-interv. 0.768± 0.028 3075.6± 492.1 4.329± 0.160

Table 6: Final deployment performance in Frozen Lake with confidence intervals obtained by training
and evaluating the teachers with three different random seeds. The students trained with the optimized
curriculum outperform both naive curricula and training in the original environment in terms of
success rate and return. All the agents supervised by a teacher are safe during training. In contrast,
training directly in the original environment results in many failures. These results are consistent
across random seeds, thus showing the robustness of CISR.

of -0.3 for firing the main engine and of -0.03 for firing the side engines. Additionally, there is a
potential based reward shaping that encourages the contact of the legs with the ground and moving
toward the origin, i.e., the center of the landing pad. At the beginning of each episode, a random force
is applied to the agent and the surface of the Moon is generated at random, with the only constant
being the flat surface of the landing pad in the center of the map. Since the agent does not observe its
distance from the ground and since the surface of the Moon is generated at every episode, the only
way to guarantee safety is to land on the landing pad. In the original environment, each episode can
terminate with either a successful landing or a failure (either a crash or exiting the game window from
the sides, which we call an out of map, OOM, outcome). However, since the teacher’s interventions
make it hard for inexperienced students to come across a natural ending of the episode, we introduce
a timeout, which we set to 500 during training and to 2000 during deployment (a well trained agent
usually requires between 150 and 250 steps to land). Every time an episode ends because of a timeout,
the student receives a reward of -100.

The trigger function of the interventions depends on whether the student’s is above the landing pad,
i.e., x ∈ Xland, or not. In particular, let us denote with x and y the position of the agent, with ẋ and ẏ
its linear velocities, with α its tilt angle and with α̇ its angular velocity. The landing pad stretches
between−0.2 and 0.2, while the whole map extends from−1 to 1. For a fixed steepness of the funnel
a, the trigger function of the interventions are of the form:

trigger(x, y, ẋ, ẏ, α, α̇) =


I(ẏ ≥ 0.3 + 10y) ∨ I(α ≥ 0.5 + 10y) if x ∈ [−0.2, 0.2]

y ≤ a(−0.2− x) if x < −0.2

y ≤ a(x− 0.2) if x > −0.2

(3)

The reset distribution that determines the student’s state after the teacher intervenes also depends on
whether the teacher rescues the student above the landing pad or not. We denote with (x, y, ẋ, ẏ, α, α̇)
the state where the students gets rescued and with (x′, y′, ẋ′, ẏ′, α′, α̇′) the state where the student
gets reset. First of all, the teacher always stabilizes the student and, therefore, we have ẋ′ = ẏ′ =
α′ = α̇′ = 0. Thus, the reset distributions only differ based on the location where the teacher steers
the student to make it stay clear from danger. In particular, if x ∈ [−0.2, 0.2], we have x′ = x and
y′ = y − 0.1. However, if x > 0.2, the reset location of the student is determined by a geometric
construction: we reset the student at the intersection between the line of that forms and angle of 135◦

with the horizontal axis passing through x and y and the line a′(x − 0.2), for a given a′ > a (the
orange line in Fig. 2). A symmetric construction is used in case x < −0.2.

The Narrow intervention corresponds to a = 20 and a′ = 100, while the Wide intervention corre-
sponds to a = 0.5 and a′ = 1.

An interaction unit between the student and the teacher consists of 100000 time steps. A curriculum
lasts for 15 of such interaction units.
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Succ. Crash OOM VM(πNs) Training
failures

Optimized 89.2± 0.4% 9.5± 0.6% 0.4± 0.1% 236.1± 0.9 1.7± 0.13
Wide 79.2± 2.2% 18.7± 1.5% 0.4± 0.1% 199.5± 8.3 3.5± 0.15
Narrow 72.7± 3.1% 23.4± 2.1% 0.4± 0.2% 187.2± 9.0 0.9± 0.02
No-interv. 88.5± 1.6% 7.3± 0.1% 1.9± 1.4% 225.1± 7.4 1251.0± 33.72

(a) Evaluation on noiseless, 2-layer students.

Success Crashes OOM VM(πNs) Training
failures

Optimized 83.4± 2.3% 13.2± 2.2% 0.3± 0.1% 211.5± 6.8 2.6± 0.23
Wide 78.8± 2.6% 13.8± 0.8% 0.7± 0.4% 184.7± 21.8 4.2± 0.12
Narrow 63.2± 1.3% 32.9± 1.0% 0.6± 0.2% 139.1± 7.1 1.8± 0.46
No-interv. 86.0± 0.4% 10.8± 0.1% 0.8± 0.2% 214.7± 3.1 1695.8± 31.04

(b) Evaluation on 2-layer students with noisy sensors.

Success Crashes OOM VM(πNs) Training
failures

Optimized 92.1± 1.6% 5.1± 0.6% 0.0± 0.0% 253.4± 5.0 1.9± 0.13
Wide 72.2± 2.9% 16.6± 0.9% 2.4± 1.1% 151.6± 18.5 3.5± 0.25
Narrow 81.7± 1.0% 16.3± 0.2% 0.0± 0.0% 221.0± 2.1 1.3± 0.03
No-interv. 94.5± 1.0% 4.5± 0.9% 0.1± 0.0% 256.4± 3.7 1175.0± 80.56

(c) Evaluation on noiseless, 1-layer students.

Table 7: Lunar Lander final deployment performance summary for three different kinds of students with
confidence intervals obtained by training and evaluating the teachers with three different random seeds. Noiseless,
2-layer student (Top): The Narrow intervention helps exploration but results in policy performance plateau, the
Wide one slows down student learning due to making exploration more challenging, and the Optimized teacher
provides the best of both by switching between Narrow and Wide. Students that learn under the Optimized
curriculum policy achieve a comparable performance to those training under No-intervention, but suffer three
orders of magnitude fewer training failures. Noisy student (Center), One layered-student (Bottom): The
results are similar when we use the curriculum optimized for students with noiseless observations and a 2-layer
MLP policy for students with noisy sensors (center) or a 1-layer architecture (bottom), thus showing teaching
policies can be transferred across classes of students. These results are consistent across random seeds, thus
showing the robustness of CISR.

Teacher’s training. We consider curriculum policies that allow for up to one intervention switch,
i.e., K = 1. Since the student’s learning dynamics are quite noisy in this environment, we evaluate
each curriculum policy for a class of 10 students in parallel and use the mean final performance of
the students as a signal for GP-UCB. To initialize the GP model, we use 4 curriculum policies, one
for each possible combination of interventions allowed by the policy class considered. To optimize
the curriculum, we run GP-UCB for 10 iterations, where each iteration corresponds to training a class
of 10 students in parallel with the curriculum policy proposed by GP-UCB.

Teacher’s evaluation. The evaluation of teaching policies is analogous to the Frozen Lake case:
we let each curriculum policy train 10 newly sampled students and we deploy them in the original
environment for 200000 time steps to measure their performance. Since a much longer deployment
time compared to Frozen Lake is required to obtain accurate estimates of the student’s performance,
we only record it at the end of the curriculum rather than after each interaction unit.

In these experiments, we also investigate the transferability of teaching policies, which is of great
importance for many practically relevant scenarios. To this end, we apply the teaching policy
optimized for students with perfect state information to students with noisy sensors. In particular,
we consider students that observe x̃ = x + wx and ỹ = y + wy, where wx ∼ N (0, 10−4) and
wy ∼ N (0, 10−4). This level of noise is quite challenging as one standard deviation covers 2.5% of
the width of the landing pad. In these experiments, the teacher uses the noiseless state information
to rescue the student. This captures a scenario that is common in real-world applications where we
have hardware that helps preserving safety during training, such as motion capture systems, that
we cannot use during deployment. Since training in these conditions is harder and more prone to
constraint violation, we let the training run for 20 interaction units rather than 15 and we allow for
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higher penalty for constrain violation through the Lagrange multipliers by considering a higher upper
bound on them (we set B = 160 rather than B = 120).

In a separate experiment, we apply the teaching policies optimized for the student’s architecture
presented in Appendix A to students that only have one hidden layer with 20 neurons rather than two.

For each of the curriculum policies considered and for each of the experiments described above,
we report the mean returns, success rates and failure rates at the end of the curriculum over the 10
students as well as their mean number of failures during training in Table 7. Notice that the fact that
the rates do not sum to 100% is due to timeouts.The confidence intervals in Tables 7a–7c are obtained
by optimizing 3 curriculum policies independently with different random seeds and repeating the
evaluation procedure for each one.

C Proof

In this section, we provide proofs for Propositions 1 and 2.
Proposition 1 (Eventual safety). Let ΠM and ΠMi

be the sets of feasible policies for the problems
in Equations (1) and (2), respectively. Then, if τi + κi ≤ κ, ΠMi

⊆ ΠM.

Proof. The main idea of the proof is to show that the constraints in Equation (2), which are based
on expectations with respect to ρπi , are stricter than the constraint in Equation (1), which are based
on expectations with respect to ρπ. To this end, we need to distinguish between trajectories, or
segments thereof, that have the same probability under ρπ and ρπi for any π from those that do not.
Let us denote with ξ = (s0, s1, . . . , sT ), a generic trajectory inM and with Ξ the set of all possible
trajectories inM (this is the set that the distributions ρ and ρi are defined over). Moreover, for a
given set of trigger states Di, we indicate the set of trajectories where at least one state belongs to
Di with ΞDi = {ξ ∈ Ξ |ξ ∩ Di 6= ∅} and with ΞCDi = Ξ \ ΞDi its complement. With this notation,
the constraint Eρπi

∑T
t=0 I(st ∈ Di) ≤ τi is equivalent to

∑
ξ∈Ξ ρ

π
i (ξ)|ξ ∩ Di| ≤ τi. Therefore, for

a π ∈ ΠMi
, we know that:∑

ξ∈ΞDi

ρπi (ξ)|ξ ∩ Di|+
∑
ξ∈ΞCDi

ρπi (ξ)|ξ ∩ Di| ≤ τi. (4)

Since, by definition, we know that |ξ ∩ Di| = 0 for all ξ ∈ ΞCDi , (4) simplifies to∑
ξ∈ΞDi

ρπi (ξ)|ξ ∩ Di| ≤ τi. (5)

Every trajectory ξ ∈ ΞDi can be divided in two segments: ξ1 = (s0, s1, . . . , sm), which contains
all the states up to the first one in the sequence that belongs to Di, i.e., s0, s1, . . . , sm−1 6∈ Di and
sm ∈ Di, and ξ2 = (sm+1, . . . , sT ), which contains the remaining part of the trajectory. Thus, we
can say:

τi ≥
∑
ξ∈ΞDi

ρπi (ξ)|ξ ∩ Di|, (6)

=
∑

(ξ1,ξ2)∈ΞDi

ρπi (ξ1, ξ2)|(ξ1, ξ2) ∩ Di|, (7)

≥
∑

(ξ1,ξ2)∈ΞDi

ρπi (ξ1, ξ2)|ξ1 ∩ Di|, (8)

=
∑

ξ1∈ΞDi

ρπi (ξ1)|ξ1 ∩ Di|
∑

ξ2∈ΞDi

ρπi (ξ2|ξ1), (9)

=
∑

ξ1∈ΞDi

ρπ(ξ1)|ξ1 ∩ Di|
∑

ξ2∈ΞDi

ρπ(ξ2|ξ1), (10)

=
∑

(ξ1,ξ2)∈ΞDi

ρπ(ξ1, ξ2)|ξ1 ∩ Di|, (11)

≥
∑

(ξ1,ξ2)∈ΞDi

ρπ(ξ1, ξ2)|(ξ1, ξ2) ∩ D| =
∑
ξ∈ΞDi

ρπ(ξ)|ξ ∩ D|. (12)
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In the previous chain of inequalities, (10) holds because ρ and ρi are the same for the portion of the
trajectory before the teacher intervenes for the first time, i.e., ξ1, and because

∑
ξ2∈ΞDi

ρπi (ξ2|ξ1) =∑
ξ2∈ΞDi

ρπ(ξ2|ξ1) = 1. Furthermore, (11) holds because |ξ1 ∩ Di| = 1 by definition of ξ1 and
because |(ξ1, ξ2) ∩ D| ≤ 1 since the states in D are terminal.

Moreover, for a π ∈ ΠMi
, we know that:∑
ξ∈ΞDi

ρπi (ξ)|ξ ∩ D|+
∑
ξ∈ΞCDi

ρπi (ξ)|ξ ∩ D| ≤ κi. (13)

Since the teacher does not modify the original dynamics unless the student enters a trigger state, we
know that ρπi = ρ for every ξ ∈ ΞCDi . Therefore, (13) becomes:∑

ξ∈ΞDi

ρπi (ξ)|ξ ∩ D|+
∑
ξ∈ΞCDi

ρπ(ξ)|ξ ∩ D| ≤ κi. (14)

By summing (12) and (14), we obtain:∑
ξ∈ΞDi

ρπ(ξ)|ξ ∩ D|+
∑
ξ∈ΞCDi

ρπ(ξ)|ξ ∩ D| ≤ τi + κi −
∑
ξ∈ΞDi

ρπi (ξ)|ξ ∩ D| ≤ τi + κi, (15)

which means Eρπ
∑T
t=0 I(st ∈ D) ≤ τi + κi ≤ κ, which implies that π ∈ ΠM.

Proposition 2 (Learning safety). Let D be the set of unsafe states of CMDPsM andMi, and let
Di be the set of trigger states of intervention i. If D ⊆ Di and P(s′|a, s) = 0 for every s′ ∈ D,
s ∈ S \ Di, and a ∈ A, then an optimal student learning in CMDPMi will not violate any ofM’s
constraints throughout learning.

Proof. During learning, the student may use any policy π from the set of all possible policies for the
origianl environmentM, ΠM (which includes unfeasible and, therefore, unsafe policies). However,
during training, for any intervention i the student transitions according to the dynamics Pi rather than
P . Therefore, we aim to show that Eρπi

∑T
t=0 I(st ∈ D) ≤ κ for all π ∈ ΠM. If st ∈ S \ D, we can

either have (i) st ∈ S \ Di or (ii) st ∈ Di \ D. Let us consider these two cases separately. In (i), we
know that P(st+1|st, at) = 0 for any action at and any st+1 ∈ D by assumption. Moreover, since
P(st+1|st, at) = Pi(st+1|st, at) for all st 6∈ Di, we have Pi(st+1|st, at) = 0 for all st ∈ S \ Di
and st+1 ∈ D. In case (ii), we know that Pi(st+1|st, at) = 0 for all st+1 ∈ Di ⊇ D and st ∈ Di
by definition of reset distribution. Therefore, we have shown that for all st ∈ S \ D, at ∈ A and
st+1 ∈ D, we have Pi(st+1|st, at) = 0. As a consequence, the only way the student can reach an
unsafe state under the dynamics Pi is if s0 ∈ D, which corresponds to starting an episode in an
unsafe terminal state, which only depends on the initial state distribution and not on the policy. If the
initial state distribution is such that it is not possible for the student to start an episode in an unsafe
state, then we have Eρπi

∑T
t=0 I(st ∈ D) = 0 ≤ κ for every π ∈ ΠM. Otherwise, we have assumed

κ to be such that the problem in (1) is feasible. Therefore, it must be such that all the trajectories
starting with s0 ∈ D can be tolerated.
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