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Abstract— In reinforcement learning (RL), an autonomous
agent learns to perform complex tasks by maximizing an
exogenous reward signal while interacting with its environ-
ment. In real world applications, test conditions may differ
substantially from the training scenario and, therefore, focusing
on pure reward maximization during training may lead to
poor results at test time. In these cases, it is important to
trade-off between performance and robustness while learning a
policy. While several results exist for robust, model-based RL,
the model-free case has not been widely investigated. In this
paper, we cast the robust, model-free RL problem as a multi-
objective optimization problem. To quantify the robustness of
a policy, we use delay margin and gain margin, two robustness
indicators that are common in control theory. We show how
these metrics can be estimated from data in the model-free
setting. We use multi-objective Bayesian optimization (MOBO)
to solve efficiently this expensive-to-evaluate, multi-objective
optimization problem. We show the benefits of our robust
formulation both in sim-to-real and pure hardware experiments
to balance a Furuta pendulum.

I. INTRODUCTION

In reinforcement learning (RL) [1], the goal is to learn a
controller to perform a desired task from the data produced
by the interaction between the learning agent and its envi-
ronment. In this framework, autonomous agents are trained
to maximize their return. It is common to assume that such
agents will be deployed in conditions that are similar, if not
equal, to those they were trained in. In this case, a return-
maximizing agent performs well at test time. However, in
real world applications, this assumption may be violated.
For example, in robotics, we can use RL to learn to fly
a drone indoor. However, later on we may use the same
drone to carry a payload in a windy environment. The new
environmental conditions and the possible deterioration of
the drone components due to their usage may result in a poor,
if not catastrophic, performance of the learned controller.
Another scenario where training and testing conditions differ
substantially is the sim-to-real setting, i.e., when we deploy
a controller trained in simulation on a real-world agent.

Considering robustness alongside performance when
learning a controller can limit performance degradation due
to different training and testing environments. In special
cases, these goals may be aligned, and a high-performing
controller can also be robust. This is the case for the Linear
Quadratic Regulator (LQR), a linear state-feedback controller
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that is optimal for the case of linear dynamics, quadratic
cost, and perfect state measurements. It is well-known that
the LQR exhibits strong robustness indicators, such as gain
and phase margins [2]. While performance and robustness
go hand in hand for the LQR, they are often conflicting in
other cases. For example, a celebrated result in control theory
shows that the Linear Quadratic Gaussian (LQG) regulator -
the noisy counterpart of the LQR - can be arbitrarily close
to instability, despite being optimal [3]. Thus, in general, we
need to trade-off between performance and robustness [4].

Contributions. While many works investigating the per-
formance/robustness trade-off exist in both the RL and
control theory literature for the model-based setting, few
results are known for the model-free scenario. However,
there are several real-world scenarios where models are not
available, inaccurate, or too expensive to use, but robustness
is fundamental. Thus, in this paper, we introduce the first
data-efficient, robust, model-free RL method based on pol-
icy optimization with multi-objective Bayesian optimization
(MOBO). In particular, these are our contributions:

• We formulate the robust, model-free RL as a multi-
objective optimization problem.

• We propose a model-free, data-driven evaluation of
delay and gain margins, two common robustness in-
dicators from the model-based setting (where they are
computed analytically).

• We solve this problem efficiently with expected hyper-
volume improvement (EHI).

• We introduce the first method that can learn robust
controllers directly on hardware in a model-free fashion.

• We show how our approach outperforms non-robust
policy optimization in evaluations on a Furuta pendulum
for both a sim-to-real and a pure hardware setting.

Related work. Robustness has been widely investigated
in control theory [5], and standard robust control techniques
for linear systems include loop transfer recovery [6], H∞
control, and µ synthesis [5], [7]. However, these methods
typically assume the availability of a model, and none of
these includes a learning component. Recently, robustness
has drawn attention in data-driven settings, giving rise to the
field of robust, model-based RL. Robust Markov decision
processes study the RL problem when the transition model is
subject to known and bounded uncertainties. For example, [8]
studies the dynamic programming recursion in this setting.
Other methods that consider parametric uncertainties include
[9], [10]. All the previous methods are model-based.

Robustness and performance are typical objectives in
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Fig. 1. The multi-objective optimization model for the robust, model-
free RL problem. We choose a controller corresponding to parameters θk .
Subsequently, we evaluate its performance and robustness by deploying it
on the system. Finally, we use these observations to choose a new controller.

control design, which often conflict each other, thus requiring
design trade-offs [4], [11]. In the model free literature, this
trade-off is often fixed a priori and the resulting problem
is solved with standard optimization methods. In [12] a
weighted cost that balances performance and robustness is
optimized. In [13] robust controllers are learned via gradient
ascent with random multiplicative noise on the control action.
In [14], [15] external, adversarial disturbances are used
instead. In these works, the upper bound on the magnitude
of the disturbance implicitly balances robustness and perfor-
mance. However, setting this trade-off is often not intuitive
and, in case the requirements are misspecified or updated,
a new controller must be learned. Alternatively, robust con-
trol design methods based on multi-objective optimization
explore the spectrum of such trade-offs. The work in [16]
gives a review of such methods, with a focus on genetic
algorithms, which, due to their low data efficiency require
the model to compute the robustness indices.

Model-free RL algorithms are typically validated in sim-
ulations due to their high sample complexity. However, in
robotics, it is crucial to test these methods on hardware.
Bayesian optimization (BO) [17], [18] has been successfully
applied to learn low-dimensional controllers for hardware
systems. For example, [19] learns to control the x-coordinate
for a quadrotor hovering task with a linear controller, [20]
learns a linear state feedback controller for a cart-pole system
in a sim-to-real setting and [21], [22] tune the parameters of
ad-hoc controllers for locomotion tasks. However, none of
these methods considers robustness, making ours the first one
to learn robust controllers from data directly on hardware.

MOBO is the branch of BO that solves multi-objective
problems. MOBO algorithms include EHI [23], ε-PAL [24],
and PESMO [25]. They have been applied to several tasks in-
cluding trading off prediction speed and accuracy in machine
learning models. However, they have rarely been applied
to RL. To the best of our knowledge, this has been done
only in [26], [27], where a trade-off between frontal camera
movement and forward speed is found for a snake-like robot,
for homoschedastic and heteroschedastic noise respectively.
Robustness is not explicitly treated in these works.

II. PROBLEM STATEMENT

In this section, we introduce our formulation of robust
model-free RL as a multi-objective optimization problem.
For ease of exposition, we limit ourselves to two objectives.

However, this approach naturally extends to the any number
of objectives, for example, multiple robustness indicators.

We assume we have a system with unknown dynamics, h,
and unknown observation model, g,

xt+1 = h(xt,ut,wt), ot = g(xt,vt) (1)

where x is the state, u is the control input, o is the
observation and w and v are the process and sensor noise.
An RL agent aims at learning a controller ut = π(ot|θ),
i.e., a mapping parametrized by θ from an observation ot
to an action ut that allows it to complete its task. Policy
optimization algorithms are a class of model-free RL meth-
ods that solve this problem by optimizing the performance
of a given controller for the task at hand as a function of the
parameters θ. Concretely, given a performance metric f1 :
Θ→ R, standard, non-robust policy optimization algorithms
aim to find θ∗ ∈ argmax f1(θ). In this work, we consider
regulation tasks, i.e., bringing and keeping the system in a
desired goal state x. This includes common problems like
stabilization, set-point tracking, or disturbance rejection. The
performance indicator f1 encodes these objectives.

To extend this framework to the robustness-aware case,
we use a second function f2 : Θ → R that measures the
robustness of a controller. Since both the dynamics h and
the observation model g are unknown, we must evaluate or
approximate the value of f2 from data. In Sec. III-B, we
introduce the gain and the delay margin, two alternatives for
f2 that are commonly used in model-based control and we
discuss how to evaluate them in the model-free setting.

We aim at finding the best controller in terms of perfor-
mance and robustness, as measured by f1 and f2. However,
since we compare controllers based on multiple, and possibly
conflicting, criteria, we cannot define a single best controller.
Given a controller θ, we denote with fθ = [f1(θ), f2(θ)] the
array containing its performance and robustness values. To
compare two controllers θ1 and θ2, we use the canonical
partial order over R2: fθ1 � fθ2 iff fi(θ1) ≥ fi(θ2) for
i = 1, 2. This induces a relation in the controller space Θ:
θ1 � θ2 iff fθ1 � fθ2 . If θ1 � θ2, we say that θ1 dominates
θ2. The Pareto set Θ∗ ⊆ Θ is the set of non-dominated
points in the domain, i.e., θ∗ ∈ Θ∗ iff ∃i = 1, 2 such that
fi(θ

∗) > fi(θ) for all θ ∈ Θ. The Pareto front is the set of
function values corresponding to the Pareto set. The Pareto
set is optimal in the sense that, for each point θ∗ in it, it is not
possible to find another point in the domain that improves
the value of one objective without degrading another [28].
The goal of this paper is to approximate Θ∗ from data.

Fig. 1 represent our problem graphically: we suggest a
controller, we evaluate its performance and robustness on
the system and we select a new controller based on these
observations to find an approximation of the Pareto front.

III. LEARNING THE PERFORMANCE-ROBUSTNESS
TRADE-OFF

For the robust, model-free RL setting we consider, we pro-
pose to learn the Pareto front characterizing the performance-
robustness trade-off of a given system with MOBO. Here,



we describe the necessary components to solve our problem
in a data efficient way: MOBO and the robustness and
performance indicators used in our experiments. Moreover,
we discuss how to evaluate such indicators from data in a
model-free fashion.

A. Multi-objective Bayesian optimization

MOBO algorithms solve multi-objective optimization
problems by sequentially querying the objective at different
inputs and obtaining noisy evaluations of the corresponding
values. They build a statistical model of the objectives to
capture the belief over them given the data available. They
measure how informative a point in the domain is about the
problem solution with an acquisition function. At every itera-
tion, they evaluate the objective at the most informative point,
as measured by the acquisition function. Thus, the complex
multi-objective optimization problem is decomposed into a
sequence of simpler scalar-valued optimization problems.
In the following, we describe the surrogate model and the
acquisition function used in this work.

Intrinsic Model of Coregionalization A single-output
Gaussian process (GP) [29] is a probability distribution over
the space of functions of the form f : Θ→ R, such that the
joint distribution of the function values computed over any
finite subset of the domain follows a multi-variate Gaussian
distribution. A GP is fully specified by a mean function
µ : Θ → R, which, w.l.o.g., is usually assumed to be zero,
µ(θ) = 0 for all θ ∈ Θ, and a covariance function, or kernel,
k : Θ×Θ→ R. The kernel encodes the strength of statistical
correlation between two latent function values and, therefore,
it expresses our prior belief about the function behavior.

Similarly, a D-output GP is a probability distribution over
the space of functions of the form f : Θ → RD. The
difference with respect to single-output GPs is that, in this
case, the kernel must capture the correlation across different
output dimensions in addition to the correlation of function
values at different inputs. The simplest way of doing this is
by assuming that each output is independent. However, this
model disregards the fundamental trade-off between robust-
ness and performance that we are considering. For a review
on kernels for multi-output GPs, see [30]. In this work, we
use the intrinsic model of coregionalization (ICM), which
defines the covariance between the ith value of f(θ) and the
jth value of f(θ′) by separating the input and the output
contribution as follows, bijk(θ, θ′). In this case, we say f ∼
GP(µ(·),K(·, ·) = Bk(·, ·)), where µ : Θ → RD is a D-
dimensional mean function, k : Θ×Θ→ R is a scalar-valued
kernel and B ∈ RD×D is a matrix describing the correlation
in the output space (more details on B in Sec. IV). Given N
noisy observations of f , D = {(θ1,y1), · · · (θN ,yN )}, with
yi = f(θi)+ωi, where ωi ∼ N (0,Σ) is i.i.d. Gaussian noise,
we can compute the posterior distribution of the function
values conditioned on D at a target input θ? in closed form as
p(f(θ?)|D, θ?) ∼ N (f?(θ?),K?(θ?, θ?))). We denote with
θ the inputs contained in D and with K(θ,θ) the ND×ND
matrix with entries (K(θu, θv))i,j for u, v = 1, . . . , N and

i, j = 1, . . . , D, then

f?(θ?) = K>θ?(K(θ,θ) + Σ)−1y, (2)

K?(θ?, θ?) = K(θ?, θ?)−Kθ?(K(θ,θ) + Σ)−1K>θ? , (3)

where Σ = Σ⊗IN , with ⊗ denoting the Kronecker product,
Kθ? ∈ RD×ND has entries (K(θ?, θv))i,j for v = 1, . . . , N
and i, j = 1, . . . , D and y is the ND-dimensional vector
containing the concatenation of the observations in D.

Expected Hypervolume Improvement EHI is an acqui-
sition function introduced in [23], which selects inputs to
evaluate based on a notion of improvement with respect
to the incumbent solution. In multi-objective optimization,
incumbent solutions take the form of approximations of the
Pareto set, X ∗, whose quality is measured by the hyper-
volume indicator induced by the corresponding front, Y∗
with respect to a reference r. Formally, the hypervolume
indicator of a set of points A with respect to a reference
r, HV(A; r), is the Lebesgue measure of the hypervolume
covered by the boxes that have an element in A as upper
corner and the reference as lower corner. It quantifies the size
of the portion of the output space that is Pareto-dominated
by the points in A. Given an estimate of the Pareto front,
Y∗, the hypervolume improvement of θ ∈ Θ is defined as
the relative improvement in hypervolume obtained by adding
the function value at θ, f(θ), to Y∗, HI(f(θ);Y∗, r) =
HV(Y∗ ∪ f(θ); r) − HV(Y∗; r). However, we do not know
f(θ). Instead, we have a belief over its value expressed
by the posterior distribution of the GP, which, in turn,
induces a distribution over the hypervolume improvement
corresponding to an input θ. The EHI acquisition function
quantifies the informativeness of an input θ toward the
solution of the multi-objective optimization problem through
the expectation of this distribution,

α(θ|D,Y∗, r) =

∫
f(θ)∈Rn

HI(f(θ);Y∗), r)p(f(θ)|D)df(θ).

(4)
[23] shows how to compute the integral in (4) in closed form.

B. Robustness

In general, robustness can have very different meanings.
One may desire to ensure robustness to a certain class
of disturbances, imperfections in the control system, or
uncertainty in the process, for example. In control theory,
the latter is often understood as robustness in the stricter
sense. Specifically, robust stability assures that a controller
stabilizes every member from a set of uncertain processes
[5]. Such processes can, for example, be defined through
a nominal process and variations thereof. Different varia-
tions lead to different robustness characterizations. Likewise,
there are different notions of stability that are meaningful
depending on the context. For example, for a deterministic
system, asymptotic stability, i.e., xt → x as t → ∞, where
x is an equilibrium of the system, is often used; for systems
that are continuously excited, e.g., through noise, and thus
cannot approach x, one may seek the above limit to hold in
expectation or practical stability in the sense of a bounded



state, i.e., ‖xt − x‖ ≤ xmax for all t ≥ t. A controller is
unstable when the respective condition does not hold (e.g.,
no asymptotic convergence, or xt grows beyond any bounds).

While many sophisticated robustness metrics have been
developed, stability margins such as gain and delay margins
are some of the most common and intuitive ones [11,
Sec. 9.3]. We consider these in this work and comment on
alternatives in Sec. V. Below, we formally introduce them
and we explain how to evaluate them in a model-free setting.
Notice that, our data-driven definitions can be extended to
any setting where a success/failure outcome can be defined
and, therefore, are not limited to stability considerations.

Gain margin. In classical control, the upper (lower)
gain margin is defined for single-input-single-output (SISO)
linear systems as the largest factor κmax ∈ (1,∞) (the
smallest factor κmin ∈ (0, 1)) that can multiply the open-
loop transfer function so that the closed-loop system is stable
[31, Sec. 9.5]. As the open-loop transfer function encodes
both the process and the controller dynamics, the factor
may represent uncertainty in the process gain or the actuator
efficiency, for example. In this work, we consider a factor κ
to be multiplied by the control action (i.e., ut = κ×π(ot|θ)),
which is equivalent to the definition for linear SISO systems,
but can also be used for nonlinear ones. It quantifies how
much we can lower/amplify the control action before making
the system unstable. In a way, it quantifies how “far” we
are from instability and, thus, how much we can tolerate
differences between training and testing.

Delay margin. Similarly, we define the delay margin as
the largest time delay on the measurement ot such that the
controlled system is still stable. Formally, it is the largest
value of d ∈ (0,∞) such that the closed-loop system with
the delayed control action ut = π(ot−d|θ) is stable. As delay
in data transmission between sensor, controller, and actuator,
and in the control computation are present in most control
systems, the delay margin is a very relevant measure.

Estimate from data. While the indicators above can be
readily computed for linear systems, they are difficult to
compute analytically if the model is nonlinear, or impossible
if no model is available, as considered herein. We describe
an experiment to estimate the delay margin from data in a
model-free setting (those for the gain margins are analogous).
For general non-linear systems, stability with respect to an
equilibrium is a local property. Thus, we assume we can reset
the system to a state in the neighborhood of the equilibrium
of interest, i.e., we have x0 ∈ B(x, ρ), where B(x, ρ) is
a ball centered at x of radius ρ. We can establish whether
the delay margin, denoted with d∗, is larger or smaller than
a delay d by resetting the system near x, deploying the
delayed controller π(ot−d|θ) and evaluating the stability of
the resulting trajectory.

In practice, two problems arise with this approach: (i) we
can evaluate a finite number of delays with a finite number
of experiments; and (ii) while stability is an asymptotic
condition on the state, we do not know the state and we run
finite experiments. The first problem requires us to select
carefully the delays we evaluate. We know that increasing

Algorithm 1 Robust policy optimization
1: Inputs: Reference r
2: D0 ← ∅, Y∗0 ← {r}
3: for k = 0, 1, . . . do
4: θk+1 ← argmaxθ∈Θ EHI(θ|Dk,Y∗k , r)
5: y1

k+1 ← performance experiment(θk+1)
6: y2

k+1 ← robustness experiment(θk+1)
7: Dk+1 ← Dk ∪ {(θk+1, [y

1
k+1, y

2
k+1])}

8: Θ∗k+1,Y∗k+1 ← Pareto set and front(Dk+1)
9: Outputs: Pareto set Θ∗, Pareto front Y∗

values of delay take a stable system closer to instability.
Thus, given m delays [d1, · · · , dm], we do a binary search
to find the largest one for which the closed-loop system
is stable. This allows us to approximate the delay margin
with logm experiments. Not knowing the state x can be
solved by estimating it from the noisy sensor measurements
ot or by introducing a new definition of stability based on
ot rather than xt. Concerning the finite trajectories we note
that, in practical cases, it is rare to have small compounding
deviations from x resulting in a divergent behavior emerging
only in the long run. Often, a controller makes the system
converge to or diverge from x within a short amount of
time. In our experiments, we say that a controller stabilizes
the system if, after a burn-in time that accounts for the
transient behavior, it keeps the state within a box around x.
Controllers with good margins are investigated further with
longer experiments to eliminate potential outliers due to the
finite trajectory issue.

Reliably estimating robustness indicators and stability of
a system without a model is challenging. The estimation
technique we presented is intuitive and easy to implement.
While it does not provide formal guarantees on the estimation
error, we show in Sec. IV that it is accurate enough to greatly
improve the robustness of our algorithm with respect to the
non-robust policy optimization baseline.

C. Algorithm

In this section, we describe our robust policy optimization
algorithm, for the pseudocode see Algorithm 1. At iteration
k, we select the controller that maximizes the EHI criterion.
Then, we run two experiments to estimate its performance
and robustness. For the performance, we introduce a state
and action dependent reward and we define the return as the
average reward obtained over an episode. The performance
index is defined as the expectation of the return, which
we approximate with a Monte Carlo estimate over multiple
episodes. To estimate the robustness, we use the experiments
from Sec. III-B. We update the data set with the experiments
results. Finally, we update the estimate of the Pareto front
that is used to compute the EHI as the set of dominating
points of the data set. Other options to compute such estimate
from the posterior of the GP exist. However, they are com-
putationally more expensive and they resulted in a similar
performance in our experiments. In the end, the algorithm
returns an estimate of the Pareto set and front. The choice of
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hardware, see Table I. The gray circles indicate the controllers that appeared to be outliers and were discarded after running longer simulations.
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Fig. 3. Pareto fronts identified in simulation for the gain margin experiment (MOBO-GM). The green square indicates the controller that is tested on the
hardware, see Table I.

a controller from the Pareto set depends on the performance-
robustness trade-off required by the test applications and,
therefore, the choice is left to the practitioner.

IV. EXPERIMENTAL RESULTS

We compare the robust policy optimization algorithm in
Algorithm 1 to its non-robust counterpart based on scalar
BO as, e.g., in [19], [32]. We use the scalar equivalent of
EHI for the non-robust case, i.e., the expected improvement
(EI) algorithm [17]. We present two set of experiments:
training controllers in simulation and directly on hardware,
respectively. In both cases, the learned controllers are tested
on the hardware in a set of different conditions.

System. We learn a controller for a Furuta pendulum [33]
(see Figure 1), a system that is closely related to the well-
known cart pole. It replaces the cart with a rotary arm that
rotates on the horizontal plane. In our experiments, we use
the Qube Servo 2 by Quanser [34], a small scale Furuta
pendulum. It uses a brushless DC motor to exert a torque
on the rotary arm, and it is equipped with two incremental
optical encoders with 2048 counts per revolution to measure
the angle of the rotary arm and the pendulum. For sim-to-
real, we use the dynamics model provided in the Qube Servo
2 manual [34], which is a non-linear rigid body model. A
more detailed model is presented in [33].

Controller. We consider a state feedback controller to
stabilize the pendulum about the vertical equilibrium. The
system has four states, x = [α, β, ω, φ]: the angular position
of the rotary arm and the pendulum, α, β, with β = 0
being the vertical position, and the corresponding angular
velocities, ω, φ. We control the voltage applied to the motor,
Vm. We use the encoder readings as estimates of the angular
positions, α̂, β̂. We apply a low-pass filter to the difference
of consecutive angular positions to estimate the angular

velocities, ω̂, φ̂. We aim to find a controller of the form
ut = Vm = [θ1, θ2, θ3, θ4][α̂, β̂, ω̂, φ̂]>.

Scaling and reward. We define a state and action depen-
dent reward as the negative of a quadratic cost, r(x,u) =
−(x>Qx + u>Ru) with Q = diag(1, 10, 0, 0) and R = 8.
The performance associated to a controller is the expected
average reward it induces on the system, that is, for a trajec-
tory of duration T , E[1/T

∫ T
0
r(xt, π(xt|θ))dt]. To prevent

one of the objectives from dominating the contribution to
the hypervolume improvement in the EHI algorithm, we
must normalize them. We control the range of the robustness
indicators, see Sec. III-B, and, therefore it is easy to rescale
them to the [0, 1] range. We observe empirically that the
unnormalized return ranges in [−500, 0]. Thus, we clip every
return value to this range and we rescale it to the [0, 1] inter-
val. Since the pendulum incurs substantially different returns
when a stabilizing or destabilizing controller is used, we
cannot rescale the range linearly. Instead, we use a piece-wise
linear function. In particular, since we observe empirically
that stabilizing controllers have a performance between -20
and 0, we rescale linearly the range [−500,−20] to [0, 0.5]
and the range [−20, 0] to [0.5, 1]. This differentiates coarsely
the quality of unstable controllers, and it gives a more refined
scale over stable ones.

Surrogate models. For the non-robust algorithm, we
use a standard GP model with a zero mean prior and a
Matérn kernel with ν = 5/2 with automatic relevance
determination (ARD). We set the hyperprior over the length-
scales to Lognormal(1, 3) and over the standard deviation to
Lognormal(0.35, 1). We use a Gaussian likelihood with no
hyperprior. Similarly, for the robust algorithm, we use a zero
prior mean. The correlation in the input space in the ICM
model is captured by an ARD Matérn kernel with ν = 5/2,



TABLE I
SIM-TO-REAL EXPERIMENT: WE TRAIN IN SIMULATION 5 DIFFERENT CONTROLLERS WITH SCALAR BO, MOBO WITH DELAY MARGIN OR LOWER

GAIN MARGIN. WE TEST EACH ONE 5 TIMES ON THE HARDWARE IN 4 SCENARIOS AND WE COMPARE THEM ACCORDING TO 3 METRICS (SEE THE MAIN

TEXT FOR AN IN DEPTH DESCRIPTION). THE ROBUST CONTROLLERS CONSISTENTLY OUTPERFORM THE NON-ROBUST ONES ACROSS ALL SCENARIOS.

Standard Motor noise Sensor noise Add 2 g
E[R] Fail Fail time (s) E[R] Fail Fail time (s) E[R] Fail Fail time (s) E[R] Fail Fail time (s)

Scalar BO -0.150 80% 0.92 -0.151 80% 0.97 -0.151 80% 1.05 -0.185 100% 1.03
MOBO-DM -0.044 32% 4.61 -0.038 20% 4.07 -0.063 20% 4.32 -0.126 84% 3.21
MOBO-GM -0.003 0% ∞ -0.013 0% ∞ -0.057 0% ∞ -0.004 0% ∞

TABLE II
HARDWARE EXPERIMENT: WE TRAIN ON HARDWARE ONE CONTROLLER WITH SCALAR BO AND ONE WITH MOBO WITH LOWER GAIN MARGIN. WE

TEST EACH ONE 5 TIMES ON THE HARDWARE IN 4 SCENARIOS AND WE COMPARE THEM ACCORDING TO 3 METRICS (SEE THE MAIN TEXT FOR AN IN

DEPTH DESCRIPTION). THE ROBUST CONTROLLER CONSISTENTLY OUTPERFORM THE NON-ROBUST ONES ACROSS ALL SCENARIOS.

Add 5 g Add 9 g Add 10 g and 8 cm Add 5 g, motor + sensor noise
E[R] Fail Fail time (s) E[R] Fail Fail time (s) E[R] Fail Fail time (s) E[R] Fail Fail time (s)

Scalar BO -0.101 0% ∞ -0.669 100% 4.07 -0.711 100% 3.59 -0.259 0% ∞
MOBO-GM -0.031 0% ∞ -0.026 0% ∞ -0.0259 0% ∞ -0.366 0% ∞

with the same hyperprior as the non-robust case. For the
correlation in the output space, we set a Gaussian hyperprior
over each entry of the matrix B, N (0, 1). We use a Gaussian
likelihood with a diagonal covariance matrix. In both cases,
we udpate the hyperparameters using a maximum a posteriori
estimate after every new data point is acquired.

Training. In the sim-to-real setting, we train 5 different
controllers for each of these methods: scalar BO (non-
robust), MOBO with performance and delay margin (DM),
and MOBO with performance and lower gain margin (GM).
The training consists of 200 BO iterations evaluated in
simulation. In the hardware training setting, we train one
controller for scalar BO and one for MOBO-GM using
70 BO iterations evaluated on hardware. In both settings,
MOBO requires fewer iterations than the given budget to
find satisfactory solutions. Thus, using a stopping criterion
in Algorithm 1 would reduce the total number of iterations.
We estimate performance by averaging the return over 10
independent runs. To estimate robustness, we require that the
controller stabilizes the system for a given delay or gain for 5
independent runs. A trial is deemed stable if αt ∈ [−8◦, 8◦]
and βt ∈ [−4◦, 4◦] for all t ∈ [4, 5]. Every training run
lasts for 5 seconds. Fig. 2 and 3 show the fronts obtained
by the MOBO-DM and MOBO-GM sim-to-real training,
respectively. The gray circles correspond to controllers that
appeared stabilizing at first, but that were ruled out with
longer simulations, cf. Sec. III-B. The green squares indicate
controllers tested on hardware. To emphasize the generality
of our method, they were selected to be approximately at the
elbow of the front without further tuning.

Sim-to-real test. We test each controller learned in sim-
ulation on the hardware 5 times in 4 scenarios: (i) standard
sim-to-real, (ii) sim-to-real adding Gaussian noise N (0, 0.5)
to the motor voltage, (iii) sim-to-real adding noise to the
encoder readings following a multinomial distribution over
the integers in [−4, 4] with p(0) = 0.6 and 0.05 everywhere
else, and (iv) sim-to-real with the pendulum mass increased
by 2 g. A run is a failure if |β| > 20◦. In Table I, we compare

the controllers in terms of average return, failure rate, and
failing time, averaged over the runs that resulted in a failure.
The robust methods consistently outperform the non-robust
policy optimization across all test scenarios. It appears that
the lower gain margin is a more suitable robustness indicator
in this setting. This may be due to the fact that, in our
experience, the gain margin is less noisy to estimate.

Hardware test. We test each controller learned in hard-
ware 5 times in 4 scenarios: (i) extra mass of 5 g, (ii) extra
mass of 9 g, (iii) extra mass of 10 g and extra pendulum
length of 8 cm, and (iv) extra mass of 5 g with the actuation
and sensor noise used in the sim-to-real experiments. Table II
summarizes the test results. Similarly to the sim-to-real
setting, the robust algorithm consistenlty outperforms its non-
robust counterpart.

V. CONCLUDING REMARKS

We present a data-efficient algorithm for robust policy
optimization based on multi-objective Bayesian optimization.
We suggest a data-driven evaluation of two common robust-
ness indicators, which is suitable to model-free settings. Our
hardware experiments on a Furuta pendulum show that (i)
our method facilitates simulation to real transfer, and (ii)
consistently increases robustness of the learned controllers as
compared to BO with a single performance objective. Our
results indicate a promising avenue toward robust learning
control by leveraging robustness measures from control the-
ory and multi-objective Bayesian optimization and point to
several directions for extensions. While we show that gain
and delay margings are effective in practice on a mildly
nonlinear system, they may not fully characterize robust sta-
bility in general [31], [4]. Thus, investigating other relevant
robustness indicators that can efficiently be estimated from
data in a model-free setting is a topic for future research.
Also, using multiple robustness indicator simultaneously is
relevant, which our method could do at the expense of a more
complex scaling to balance robustness and performance.
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