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Game theory has a great advantage in explicitly analyzing the conse-

quences of trading rules that presumably are really common knowl-

edge; it is deficient to the extent it assumes other features to be com-

mon knowledge, such as one player’s probability assessment about

another’s preferences or information.

I foresee the progress of game theory as depending on successive re-

ductions in the base of common knowledge required to conduct useful

analyses of practical problems. Only by repeated weakening of com-

mon knowledge assumptions will the theory approximate reality.

Wilson [1987]
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Abstract

This thesis addresses the challenge of peer prediction, which seeks to elicit pri-

vate information from rational agents without the requirement that ground truth

is eventually revealed. The classical peer prediction method provides a solution

to the peer prediction challenge. It compares the reported information of an

agent with the reported information of another agent, and computes a pay-

ment rule that implements truth revelation in a strategic equilibrium. However,

the algorithm computing the payments critically depends on the method’s as-

sumption that all agents share the same prior beliefs and that the algorithm

(“mechanism”) knows these beliefs.

In this thesis, I relax this common knowledge assumption. I first design

the Robust Bayesian Truth Serum (RBTS), which asks agents for two types

of reports, the report of the private information it is interested in and a pre-

diction report corresponding to an agent’s belief about the private information

of other agents. RBTS dispenses with the assumption that the agents’ prior

beliefs need to be known to compute the payments. It does, however, still rely

on the agents sharing the same prior beliefs. My second contribution is the

design of subjective-prior peer prediction mechanisms, which further reduce the

assumption of common knowledge. As in RBTS, they do not require knowl-

edge of the agents’ prior beliefs. Moreover, they allow the agents’ prior beliefs

to be subjective, i.e. different from one another. My third contribution is the

study of effort-incentivizing peer prediction. In many applications of interest,

the information that seeks to be elicited first needs to be acquired. When this

information acquisition requires costly effort, agents may have an incentive to

avoid it and choose to guess instead. Addressing this problem, I suggest pay-

ments, where only agents with good enough information have an incentive to

participate in the mechanism. Agents not investing effort and agents with low

quality, choose to pass, effectively self-selecting according to quality.





Zusammenfassung

Diese Dissertation beschäftigt sich mit Peer-Prediction-Mechanismen, welche

Nutzern von Online-Systemen einen Anreiz geben, private Meinungen oder Er-

fahrungen ehrlich abzugeben. Der ursprüngliche Peer-Prediction-Mechanismus

[Miller et al., 2005] vergleicht dazu die Antworten von zwei Nutzern miteinan-

der und bezahlt diese anhand einer Zahlungsregel, welche sicherstellt, dass die

Übermittlung von ehrlichen Informationen ein spieltheoretisches Gleichgewicht

bildet. Das Problem dieses Mechanismus ist, dass er für die Praxis zu hohe An-

forderungen an das gemeinsame Wissen (common knowledge) der Nutzer stellt.

In dieser Dissertation entwickle ich Peer-Prediction-Mechanismen mit stark

abgeschwächten Annahmen an das gemeinsame Wissen, was eine praktische

Anwendung dieser Mechanismen ermöglicht. Ich entwickle zuerst das Robust

Bayesian Truth Serum (RBTS), welches, zusätzlich zur Meinung oder Erfahrung

des Nutzers, auch eine probabilistische Vorhersage der übermittelten Erfahrun-

gen anderer Nutzer abfragt. Im Gegensatz zum Original-BTS-Mechanismus ist

RBTS bereits ab drei Nutzern anreizkompatibel und kann außerdem so konfi-

guriert werden, dass die Zahlungen an die Nutzer nie negativ sind. Aufbauend

auf RBTS schwäche ich die Anforderungen an gemeinsames Wissen weiter ab

und entwickle einen anreizkompatiblen Mechanismus, in dem jeder Nutzer nicht

nur subjektive Erfahrungen macht, sondern auch ein subjektives Modell der

Wirklichkeit hat. Wie bei RBTS müssen die Nutzer sowohl die eigentliche In-

formation als auch eine Vorhersage über die von anderen Nutzern abgegebenen

Informationen übermitteln. Im Unterschied zu RBTS kann der Mechanismus

dafür jedoch nicht auf die von anderen Nutzern übermittelten probabilistischen

Vorhersagen zurückgreifen. Während alle diese Mechanismen den Nutzern An-

reize geben, Informationen ehrlich zu übermitteln, müssen Nutzer diese Infor-

mationen in vielen Anwendungen, insbesondere im crowdsourcing, jedoch erst

beschaffen. Ich entwickle hierfür einen Mechanismus, der den Nutzern einen An-

reiz gibt, den für die Informationsbeschaffung nötigen Aufwand zu betreiben.

Nutzer, die sich bei einer Antwort nicht sicher sind, gibt der Mechanismus

darüber hinaus einen Anreiz zu passen und keine Bewertung abzugeben.
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Chapter 1

Introduction

1.1 Peer Prediction

User-generated content is essential to the effective functioning of many social

computing and e-commerce platforms. Prominent examples include the elicita-

tion of feedback about products or services on sites such as Amazon Reviews1

or Expedia2, and the elicitation of information from workers on crowdsourcing

platforms, such as Amazon Mechanical Turk3. On these platforms, workers are

paid small rewards to do so-called human computation tasks, which are tasks

that are easy to solve for humans but difficult for computers. For example,

humans have no problem recognizing a celebrity in an image they are shown,

whereas even state-of-the-art computer vision algorithms are still not capable

of solving this task with sufficient accuracy. While statistical estimation tech-

niques can be adopted for the purpose of adjusting for biases or identifying users

whose inputs are especially noisy, they are appropriate only in settings with re-

peated participation by the same user and when user inputs are informative in

the first place. But what if providing accurate information is costly for users,

or if users have incentives to submit false reports?

Consider a worker in a crowdsourcing context who labels images, so that

they can be indexed by search engines, and who would rather avoid investing

effort by typing in random words as labels or choosing labels that are too generic

(e.g. “man”). Alternatively, consider the crowdsourcing task of labeling websites

that contain inappropriate content for an advertiser. When workers are paid

a fixed amount per task, they can improve their hourly rate by skipping over

tasks without investing due effort. Or consider a web service that wishes to

1http://www.amazon.com
2http://www.expedia.com
3http://www.mturk.com
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publish the expected download speed of a file mirrored on different server sites.

A user who found a fast server may be concerned that sharing truthful, positive

feedback could cause the server to become more popular, slowing down future

downloads. Moreover, there are settings where privacy is a concern. Consider

a public health program that requires participants to report whether they have

ever used illegal drugs, and where participants may lie about their drug abuse

because of shame or concerns about not being eligible for the program.

Peer prediction mechanisms address these incentive problems. They are

designed to elicit truthful private information from self-interested participants.

For example, they can be used to elicit a truthful answer to the question “Have

you ever used illegal drugs?” It is important to emphasize that peer prediction

mechanisms cannot use ground truth for incentive alignment. In the public

health example this means that the program has no way of testing whether a

participant indeed has or has not ever used illegal drugs. All it can use are the

participants’ voluntary reports.

The classical peer prediction method by Miller et al. [2005] provides an ap-

proach to peer prediction. It compares the reported information of a participant

with the reported information of another participant, and computes a payment

rule that implements truth revelation in a strategic equilibrium. If the partici-

pants’ prior beliefs are such that every participant always believes that her true

answer or experience is also the most likely for others, simply paying partici-

pants a reward upon agreement (and nothing otherwise) is sufficient. However,

the most interesting peer prediction settings are those where participants may

believe that their true answer or experience is not the most likely for others.

For example, somebody who has used illegal drugs may still believe that the

majority of people have not. What is required for incentive alignment in peer

prediction is that there is a positive correlation between an individual’s own ex-

perience and the experiences of others. For example, a participant may believe

that another participant’s possibility of having used illegal drugs is 40% if she

herself has used drugs and 20% otherwise if she has not.

The major shortcoming of the classical peer prediction method with regard

to practical applications is that it relies on too much common knowledge. In

particular, the participants’ prior beliefs are assumed to be known and the

same for all participants. In the public health example, this would mean that

every participant using drugs has the same belief that 40% of participants use

drugs, and every participant not using drugs has the same belief that 20%

do. Moreover, these numbers need to be known by the mechanism in order to

compute the payment rule.

In this thesis, I relax these common knowledge assumptions, and design

2



peer prediction mechanisms that do not require having full knowledge of the

participants’ prior beliefs. I refer to this property as robustness [Bergemann

and Morris, 2005].

1.2 Related Areas

It is instructive to differentiate between peer prediction and related research

areas:

• Machine Learning approaches.

Machine learning techniques have been adopted for information aggre-

gation in applications where multiple participants provide noisy reports

(“labels”) about the same item. Raykar et al. [2010], for example, train a

classifier to decide whether a tumor on a medical image is malignant (can-

cerous) or benign. They present crowd workers on Amazon Mechanical

Turk with pictures of tumors and ask them to report the size and shape of

the tumor. Based on these reports, they apply expectation maximization

to jointly fit the parameters of the classifier, each worker’s reliability (or

noise level), and the estimated true label. Similarly, Piech et al. [2013]

apply machine learning to peer grading in massive open online courses

(MOOCs), where students grade each others’ assignments.

Both applications are related to peer prediction because the authors do not

assume access to any gold standard or objective ground truth. Moreover,

the models used in these papers are more complex than in standard peer

prediction mechanisms, in that agents are assumed to differ in reliability,

and allow for agent-specific biases. But these approaches do not provide

incentives for agents to invest effort or report truthfully. Unifying peer

prediction with machine learning is an important direction of future work.

• Classical Mechanism Design and Social Choice.

Mechanism design is concerned with eliciting private information about

preferences [Nisan, 2007]. The outcome of a mechanism is the selected

alternative, such as a public choice (e.g., whether to build a bridge) or

the allocation of a resource, and it can include payments. Peer prediction

is concerned with eliciting more general private information about the

agents’ environment, such as an agent’s experience with a service provider

(e.g., the speed of a server or the perceived quality of a hotel). Peer

prediction mechanisms always use payments.

Social choice is concerned with aggregating private information about pref-

erences into a single preference order of a set of alternatives (or to choose a

3



single alternative). Similar to classical mechanisms of mechanism design,

a social choice rule also selects an alternative. However, no payments are

used in social choice, and there is less focus on incentives due to the early

impossibility results by Arrow [1963], and Gibbard [1973] and Satterth-

waite [1975]. In that sense, peer prediction is closer to mechanism design

than it is to social choice.

• Prediction Markets and Proper Scoring Rules.

Prediction markets [e.g. Wolfers and Zitzewitz, 2004; Pennock and Sami,

2007; Chen and Pennock, 2010] and proper scoring rules [e.g. Brier, 1950;

Good, 1952] are related to peer prediction in that the focus is to truthfully

elicit information from rational, selfish agents using payments. (Prediction

markets are also concerned with the aggregation of the elicited informa-

tion.) The key difference to peer prediction is that these other types of

information elicitation mechanisms elicit agents’ private probabilistic be-

liefs about publicly-observable future events. For example, one could use

a prediction market or a proper scoring rule to elicit the probabilistic

belief that the next president of the United States is a member of the

Democratic party. Eventually, it will be publicly known if the event mate-

rialized, which is then used to score the agents’ probabilistic predictions.

That is, ground truth is eventually revealed. This is in contrast to peer

prediction, where there is no such publicly-observable event that can be

used for scoring but where only the reports of other agents can be used for

scoring. Moreover, prediction markets and proper scoring rules are used

to elicit probabilistic beliefs, whereas peer prediction is concerned with

the elicitation of opinions, ratings, or experiences.

• Principal-Agent and Contract Theory.

In the economics literature, principal-agent problems and contract the-

ory are areas related to peer prediction in that they also study incentive

problems with costly effort and payments. The main difference is that

the principal usually observes a noisy signal of an agent’s effort. This

is in contrast to peer prediction mechanisms, which do not assume any

observations on behalf of the mechanism other than through voluntary

reports.

Other, more closely related work will be discussed in more detail in the

respective chapters.

4



1.3 Contributions

The contributions in this thesis can be grouped into three parts. In the first part

(Chapters 3 and 4), I design the Robust Bayesian Truth Serum (RBTS), which

asks agents for two types of reports, the report of the private information it is

interested in and a prediction report corresponding to a agent’s belief about the

private information of other agents. RBTS dispenses with the assumption that

the agents’ prior beliefs need to be known to compute the payments. It does,

however, still rely on all agents having the same prior beliefs. In the second

part of the thesis (Chapters 5 and 6), I design subjective-prior peer prediction

mechanisms, which further reduce the common knowledge assumptions of peer

prediction. As in RBTS, subjective-prior mechanisms do not assume knowledge

of the agents’ prior beliefs. In addition, they allow the agents’ prior beliefs to be

subjective, i.e. different from one another. In the third part (Chapter 7), I study

effort-incentivizing peer prediction. In many applications, the information that

the designer seeks to elicit first needs to be acquired. When this information

acquisition requires costly effort, agents may have an incentive to avoid it and

choose to guess instead. I design a payment rule that incentivizes only those

agents with good enough information to participate, invest effort, and report

their information truthfully, and where all others pass.

Part 1: The Robust Bayesian Truth Serum

The Bayesian Truth Serum [Prelec, 2004] is a peer prediction mechanism that

does not assume knowledge of the agents’ prior beliefs. It asks for two reports:

a report about the information itself (the opinion, rating, or experience, which

I henceforth refer to as signal) and a prediction report corresponding to the

agent’s belief about the distribution of signals in the population. In the drug

example this would mean that each participant, in addition to reporting whether

she has used illegal drugs would also have to report her belief that another,

randomly-chosen participant is a drug user, e.g. 20%. The mechanism’s major

drawback is that it is truthful only for a large number of participants, where

this number depends on the agents’ prior beliefs and is thus unknown to the

mechanism.

I design a Robust Bayesian Truth Serum (RBTS) that alleviates this prob-

lem. As in the original Bayesian Truth Serum, RBTS takes a signal and a

prediction report, and does not need to know the participants’ prior beliefs.

However, RBTS is truthful for three or more participants. For binary signals, I

present a version of RBTS that only requires two participants.

RBTS also improves upon BTS in a number of other ways. First, BTS

does not satisfy interim individual rationality, which means that participants,

5



after learning their signal, sometimes do not have an incentive to participate

in the mechanism because their expected payment is negative. RBTS satisfies

the stronger ex post individual rationality, meaning that no participant makes

a negative payment in any outcome. This is important for many crowdsourcing

applications, where it is often infeasible for the mechanism to receive payments

from participants. Second, RBTS is well defined for all possible reports, in-

cluding out-of-equilibrium prediction reports. This is in contrast to BTS, which

computes payments of negative infinity when a participant predicts 0% for any

signal. Third, RBTS is conceptually simpler than BTS, and the incentive anal-

ysis is more straightforward. Moreover, the payments computed by RBTS are

bounded for all reports, and this bound can be set to any value chosen by the

designer. Bounded ex post payments are important in practice because they

provide an upper bound on the designer’s willingness to pay. For example, the

designer may want to cap payments for a single report at $0.50.

Part 2: Subjective-Prior Peer Prediction

In the second part of the thesis, I design subjective-prior peer prediction mecha-

nisms, which further reduce the common knowledge assumptions of peer predic-

tion. While Bayesian Truth Serum mechanisms do not require knowledge of the

agents’ prior beliefs, every agent is still assumed to have the same prior beliefs.

Relaxing this assumption of a common prior, I design truthful peer prediction

mechanisms where every agent is allowed to have her own subjective prior beliefs,

i.e. different agents can hold different beliefs despite the same experience. In

the aforementioned drug example, this could mean that a participant who uses

drugs believes that 40% of participants do, and that another participant who

uses drugs believes that 60% do. Obtaining robustness for such differences in

beliefs seems important for practical applications.

I first design mechanisms that ask a participant for two reports: one be-

fore she observes her signal and one afterwards. The ability to elicit relevant

information from a participant both before and after she receives her signal is

critical for this first group of subjective-prior mechanisms but seems reasonable

in many applications. For example, a travel site could ask a user for her expec-

tation about a hotel at the time of booking and then again after her stay. The

basic subjective-prior peer-prediction mechanism (BSPP) requires a participant

to report two belief reports, one before and one after receiving her signal. BSPP

infers the participant’s signal from the change in the participant’s belief reports.

Building on this, I introduce the shadow subjective-prior peer-prediction mecha-

nism (SSPP) that, instead of requiring two belief reports, requires only a belief

and a signal report.
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In moving from a common knowledge model to one with unknown and sub-

jective priors, an important consideration is the amount of additional informa-

tion that must be elicited from a participant over and above a signal report.

Exploring the perceived trade-off between the robustness and reporting costs, I

design the Empirical Shadowing Method, which allows for subjective priors but

requires only a signal report. This combination is compelling because it pro-

vides robustness against strategic participants with non-standard (and possibly

wrong) beliefs, without requiring truthful participants to deliberate about their

beliefs. Moreover, this mechanism dispenses with the requirement that relevant

information needs to be elicited both before and after a participant receives her

signal.

Part 3: Effort Incentives

Peer prediction mechanisms have traditionally been focused on providing in-

centives for truthful reporting. However, in many applications, the information

that the designer seeks to elicit first needs to be acquired. When this acquisition

of information requires costly effort, agents can have an incentive to avoid it and

choose to guess instead.

In the classical peer prediction method, the assumption is that mechanism

knows the agents’ prior beliefs. This allows the method to scale its payments

until the expected informational improvement associated with a signal acquisi-

tion outweighs the cost for effort. In robust peer prediction, the agents’ prior

beliefs are no longer assumed to be known, which inhibits the mechanism in

computing the required scaling of payments.

I present an approach to address this challenge in a setting that is different

from the usual peer prediction setting. It is simpler in that every worker believes

that her own experience is also the most likely experience for others but it is

more complex in that it incorporates the reliability of an agent. I then explicitly

model the decision of an agent as to whether she participates in the mechanism

or “passes,” in which case she obtains zero utility. In addition, I allow for

negative payments. These two changes go hand in hand since every rational

agent would choose to participate without negative payments. The main result

is that a payment rule can be computed that incentivizes only those agents

with good enough information to participate, invest effort, and report their

information truthfully, and where all others pass. That is, agents self-select

according to quality and those agents with high quality also invest effort. This

mechanism is the first peer prediction mechanism that incentivizes fixed-cost

effort without the mechanism needing to know the agents’ prior beliefs.
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Summary of Contributions

To summarize, this thesis makes the following contributions:

• Design of first strictly truthful peer prediction mechanism that does not

rely on knowledge of the common belief model to provide strict incentive

compatibility for any number of participants n ≥ 3.

• Design of first Bayesian Truth Serum with bounded ex post payments.

Also first numerically stable Bayesian Truth Serum for any inputs, includ-

ing out-of-equilibrium prediction reports assigning 0% to some signals.

• Natural generalization of classical peer prediction method to robust peer

prediction in that participants are presented with a menu of signals that is

translated into a belief report, which is then scored using a proper scoring

rule.

• First analysis of how different conditions on the signal prior and signal

posterior required for strict truthfulness by different peer prediction mech-

anisms relate to each other.

• First definition of a solution concept for subjective priors. This ex post

subjective equilibrium is more general than Bayes-Nash equilibrium but

less general than dominant-strategy implementation.

• Design of first strictly truthful peer prediction mechanism for a model

without a common prior.

• First analysis of peer prediction mechanism that requires sequential infor-

mation elicitation.

• First peer prediction mechanism that combines minimal reporting, i.e.

participants only need to report their signals, with subjective priors; laying

out theory for learning the signal prior.

• Development of general method that incentivizes fixed-cost effort when

mechanism is not assumed to know participants’ belief models. When

participants differ in reliability/quality, method provides free screening

through self-selection of participants.

• Discovery and exploration of trade-off between robustness of incentive

properties, reporting requirements, and number of participants.
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1.5 Outline

The remainder of the thesis is organized as follows. In Chapter 2, I introduce the

classical peer prediction method and its common knowledge belief model. From

Chapter 3 to Chapter 5, I successively relax these knowledge assumptions. In

Chapter 3, I first introduce the Shadowing Method, which requires less common

knowledge than the classical peer prediction method. The Shadowing Method

also serves as a building block for mechanisms in later chapters, including the

Robust Bayesian Truth Serum (RBTS), which I introduce in Chapter 4. In

Chapter 5, I then introduce truthful mechanisms that allow for subjective prior

beliefs, which are also unknown to the mechanism. In Chapter 6, I present the

Empirical Shadowing Method, which, as the mechanisms from Chapter 5, allows

for subjective prior beliefs, but which only requires signal reports. In Chapter 7,

I analyze a setting that is different from the setting studied in Chapters 2

to 6, in that the participants’ signals are of different quality and require the

investment of effort associated with a known, fixed cost. I conclude with a brief

discussion of the lessons learned and the most important directions of future

work in Chapter 8.
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Chapter 2

Classical Peer Prediction

In this chapter, I introduce the peer prediction method by Miller et al. [2005],

which is the classical mechanism to incentivize truthful reporting in peer pre-

diction. The major shortcoming of classical peer prediction is that it critically

relies on common knowledge assumptions that are prohibitive in practice. In the

drug example introduced in Chapter 1, this mechanism would require that all

participants who use drugs have the same belief about a randomly-chosen par-

ticipant being a drug user (e.g. 40%) and all participants not using drugs have

the same belief about a randomly-chosen participant being a drug user (e.g.

20%). Moreover, to compute the payment rule, the classical peer prediction

method needs to assume that the mechanism knows these beliefs as well.

The remainder of this chapter is organized as follows: in Section 2.1, I de-

scribe the basic peer prediction model and I give a numerical example in Sec-

tion 2.2. In Section 2.3, I introduce the required game-theoretic concepts, fol-

lowed by an analysis of the simple output agreement mechanism in Section 2.4.

After an introduction to proper scoring rules, I present Miller et al.’s classical

peer prediction mechanism, the peer prediction method, in Section 2.5. Sec-

tion 2.6 provides a discussion of mechanisms in the classical peer prediction

model, and Section 2.7 concludes the chapter with a brief discussion of the

shortcomings and challenges of classical peer prediction.

2.1 Model

There is a group of n ≥ 2 rational, risk-neutral and self-interested agents. A

world state is determined by random variable T that can adopt values in the

set {1, . . . , l}. When interacting with the world, each agent i observes a signal

Si, which is a random variable with values {1, . . . ,m}. The signal represents

an agent’s experience or opinion. The objective in peer prediction is to elicit
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an agent’s signal in an incentive compatible way, i.e. to compute payments such

that agents maximize their expected payment by reporting their signal to the

mechanism (center) truthfully.

In the classic set-up, all agents share a common belief model in regard to the

state of the world and the distribution of signals conditioned on world states.

That is, every agent i has the same belief Pr(T = t) about the world state before

observing a signal, and the same conditional belief Pr(S = s | T = t) for how

signals are generated for each possible state. (I will use random variable S as a

generic signal and s as an instantiation of S.) I will assume that Pr(T = t) > 0

for all t ∈ {1, . . . , l} as any state with probability zero can be eliminated without

changing the model’s behavior. It is crucial that this belief model is the same

for all agents and, moreover, that it is known by the mechanism.

When an agent observes a signal, she updates her state and signal beliefs

according to the belief model. We adopt shorthand

p(sj |si) = Pr(Sj = sj | Si = si) (2.1)

for agent i’s signal posterior belief that a second agent j (henceforth agent i’s

peer agent) receives signal sj given agent i’s signal si.

The signal posterior can be calculated as

p(sj |si) = Pr(Sj = sj | Si = si) =

l∑
t=1

Pr(Sj = sj | T = t) Pr(T = t | Si = si).

(2.2)

Applying Bayes’ rule to the second part of the summation in Equation 2.2 yields:

Pr(T = t | Si = si) =
Pr(Si = si | T = t) Pr(T = t)

Pr(Si = si)
. (2.3)

The denominator in Equation 2.3 is the signal prior belief and can be computed

as

Pr(Si = si) =

l∑
t=1

Pr(Si = si | T = t) Pr(T = t). (2.4)

Similar to the signal posteriors, we denote the signal prior for signal si by

p(si) = Pr(Si = si). (2.5)

Note that in this classic set-up, agents are differentiated only by the signal they

receive. In particular, it holds that Pr(Sj = s′|Si = s) = Pr(Si = s′|Sj = s) for

all s, s′ ∈ {1, . . . ,m}.
To describe belief models, I use vector and matrix representations that allow

a compact representation. In a vector, row number k corresponds to the belief
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for state k or signal k. Matrices represent conditional probabilities and are read

as row given column from left to right and top to bottom. That is, a belief

model is given by:

Pr(T ) =

 Pr(T = 1)

· · ·
Pr(T = l)



Pr(S|T ) =


Pr(S = 1|T = 1) . . . Pr(S = 1|T = l)

· · ·
. . .

...

Pr(S = m|T = 1) . . . Pr(S = m|T = l)

 .

This results in signal prior

p(·) = Pr(S|T )× Pr(T ) =


l∑
t=1

Pr(S = 1|T = t) · Pr(T = t)

· · ·
l∑
t=1

Pr(S = m|T = t) · Pr(T = t)


and, using Equations 2.2 and 2.3, in signal posterior matrix

p(·|·) =


p(1|1) . . . p(1|m)

· · ·
. . .

...

p(m|1) . . . p(m|m)

 .

Furthermore, for the signal prior and the signal posteriors it holds that

p(s) =

m∑
k=1

p(s|k) · p(k) (2.6)

and thus 
p(1|1) . . . p(1|m)

· · ·
. . .

...

p(m|1) . . . p(m|m)

×
 p(1)

· · ·
p(m)

 =

 p(1)

· · ·
p(m)

 .

Another way of saying this is that the signal prior is an eigenvector of the signal

posterior matrix with eigenvalue 1.

A crucial assumption for the existence of strictly incentive compatible peer

prediction mechanisms is stochastic relevance [Johnson et al., 1990].
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Definition 1. Random variable Si is stochastically relevant for random variable

Sj if and only if the distribution of Sj conditional on Si is different for all possible

realizations of Si.

That is, stochastic relevance holds if and only if p(·|s) 6= p(·|s′) for all s′ 6= s,

i.e. if all columns in the signal posterior matrix are different. Miller et al. [2005]

show that small belief perturbations make stochastically irrelevant belief com-

binations stochastically relevant. While it is standard in the peer prediction

literature to assume that different world states t induce different signal distri-

butions, i.e. Pr(S = s | T = t′) 6= Pr(S = s | T = t) for all t′, t ∈ {1, . . . , l} with

t′ 6= t, this is not sufficient for stochastic relevance.

Going forward, it is assumed that p(s) > 0 for all s ∈ {1, . . . ,m}. This is

without loss of generality because, if there is a signal s for which p(s) = 0, we

can just remove the signal from the model.

2.2 Example

In this section, I present an example of a peer prediction setting that I will

use throughout the thesis. It is motivated by a challenge in online advertising.

Display ads (also called “banner ads”) are displayed next to a website’s primary

content. They are often sold through an intermediary (a so-called ad exchange)

between the advertiser and the content provider [e.g. Goldstein et al., 2012].

For reasons of brand reputation, advertisers care about the website their ads

are placed on. Premium brands typically do not want to advertise on websites

with offensive content, such as nudity or violence. While ad exchanges allow

advertisers to specify the types of websites they want, content providers dis-

playing nudity or violence have no incentive to reveal this to the ad exchange

because this would reduce competition for their ad slots, and thus also reduce

revenue. Moreover, these content providers can also hide the offensive nature of

their content from algorithms by avoiding certain keywords.

Instead of exclusively relying on self reports or keyword-based algorithms,

ad exchanges can turn to crowdsourcing platforms, such as Amazon Mechan-

ical Turk, and ask crowd workers to report whether a given website contains

offensive content.1 Reporting accurate information requires workers to invest

effort because they need to go through the website and compare its content with

the detailed definition of what is considered offensive. This is time-consuming.

When workers are paid the same amount for all reports, however, their incen-

tive is to go through them as quickly as possible without investing due effort.

1For example, see the methodology used by Integral Ad Science at http://integralads.

com/our-technology/rating-methodology and a blog post on the same topic at http://www.
behind-the-enemy-lines.com/2013/06/facebook-implements-brand-safety-doing.html.
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Peer prediction mechanisms can address this challenge of incentivizing workers

to invest effort by providing payments that depend not only on the report of the

worker herself but also on the report of another worker investigating the same

website.

Example 1. An ad exchange presents two workers with the same website and

asks each of them whether the website does contain violence. The website is in

one of only two possible states, T = 1 (“no violence”) and T = 2 (“violence”).

Similarly, the signals S = 1 and S = 2 correspond to “no violence observed”

and “violence observed,” respectively. Furthermore, let the common belief model

be given by

Pr(T = 2) = 0.3

Pr(S = 2 | T = 2) = 0.6

Pr(S = 2 | T = 1) = 0.1

The values for Pr(T = 1) = 1 − Pr(T = 2), Pr(S = 1 | T = 2) = 1 − Pr(S =

2 | T = 2), and Pr(S = 1 | T = 1) = 1 − Pr(S = 2 | T = 1) follow directly

because there are only two states and two signals.

Given this belief model, the signal prior that an agent will observe violence

(signal 2) is

Pr(S = 2) = Pr(S = 2 | T = 2) Pr(T = 2)+Pr(S = 2 | T = 1) Pr(T = 1) = 0.25.

By viewing the website, the worker learns something about its state. For exam-

ple, following signal Si = 2 (“violence observed”), worker i updates her belief

that the website does in fact contain violence to

Pr(T = 2|Si = 2) =
Pr(Si = 2|T = 2) Pr(T = 2)

Pr(Si = 2)
= 0.72

The analogous update following Si = 1 (“no violence observed”) is Pr(T =

2|Si = 1) = 0.16. Even after observing a signal, the belief that the website

contains violence is neither 0% nor 100% because of noise in the worker’s signal

and the inevitably incomplete definition of what constitutes violence (a large

knife, for example, may or may not be interpreted as a weapon).

Given this updated belief regarding the state of the website, the worker revises

her belief that her peer worker j, who is looking at the same website, observed

violence. For example, given Si = 2 (“violence observed”), worker i’s signal
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posterior that worker j also observed violence is:

p(2|2) = Pr(Sj = 2 | T = 1) Pr(T = 1 | Si = 2)

+ Pr(Sj = 2 | T = 2) Pr(T = 2 | Si = 2)

= 0.46

The analogous update following Si = 1 is p(2|1) = 0.18.

Observe that p(2|2) < p(1|2), so that, even after observing violence, worker i

still believes that it is more likely that her peer worker j did not observe violence.

This can, for example, be the case when worker i observes an obstructed knife

which, she believes, worker j will not see. In fact, these difficult cases are also

the most interesting instances of human computation tasks, because easier cases

can likely be solved using computer vision algorithms.

2.3 Game-Theoretic Concepts

Before describing peer prediction mechanisms, I first introduce some basic game-

theoretic concepts. I will write index −i to denote all agents except for agent i.

For example, S−i denotes the vector of the n− 1 signals received by all agents

but agent i. Note that, as before, S and s are not vectors but a generic signal

and its instantiation, respectively.

Definition 2. A pure strategy σi : {1, . . . ,m} → {1, . . . ,m} for agent i describes

her signal report for every possible signal observation.

Peer prediction mechanisms pay participants a score, and it is assumed that

agent i’s utility ui is linear in this score.

Definition 3. The utility ui
(
σi(si), σ−i(s−i)

)
of agent i depends on the vector

of reported signals.

The notation of ui is overloaded in cases where the score of agent i depends only

on the reports of a subset of agents. In that case, I will give only the strategies

of the agents in this subset. For example, when ui depends only on the reports

of agents i and j, I will write ui
(
σi(si), σj(sj)

)
.

The equilibrium concept adopted for the analysis of peer prediction mecha-

nisms is that of a Bayes-Nash equilibrium:2

2One could instead refer to this as a correlated equilibrium, since each agent observes a
correlated signal from nature, and because the agents’ utilities only depend on the reports of
agents. I opt for the more standard Bayes-Nash equilibrium terminology.
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Definition 4. Strategy profile (σ∗1 , . . . , σ
∗
n) is a Bayes-Nash equilibrium (BNE)

of a peer prediction mechanism with n agents if

ES−i

[
ui
(
σ∗i (si), σ

∗
−i(S−i)

) ∣∣ Si = si

]
≥ ES−i

[
ui
(
σi(si), σ

∗
−i(S−i)

) ∣∣ Si = si

]
for all i ∈ {1, . . . , n}, all si ∈ {1, . . . ,m}, and all σi 6= σ∗i . It is a strict BNE if

the inequality is strict.

Each agent maximizes her expected score by following strategy σ∗i given her

own signal and given that the other agents play according to strategies σ∗−i.

Definition 5. In the truthful strategy, strategy σi(si) = si for each si ∈
{1, . . . ,m}.

Definition 6. A mechanism is Bayes-Nash incentive compatible (BNIC) if it is

a BNE for all agents i ∈ {1, . . . , n} to play the truthful strategy. A mechanism

is strictly BNIC if this is a strict BNE.

We will sometimes refer to (strictly) BNIC mechanisms as (strictly) truthful

mechanisms.

So far, we have assumed that agents already observed their signals when

participating in the mechanism. However, peer prediction mechanisms are es-

pecially useful for incentivizing effort, i.e. the costly acquisition of signals. For

an example of such a setting, see Section 2.2. Let each agent i incur cost C for

obtaining her signal Si. If no effort is invested, the agent’s belief about another

agent j’s signal is her signal prior.

Definition 7. A strictly BNIC peer prediction mechanism implements effort

cost C if and only if for every agent i ∈ {1, . . . , n}, the expected utility—given

that all other agents invest effort and report truthfully—is higher when agent i

invests effort than when she invests no effort, i.e. it holds that

ESi,S−i

[
ui(Si, S−i)

]
− C > max

ŝi∈{1,...,m}
ES−i

[
ui(ŝi, S−i)

]
where ŝi is agent i’s signal report that maximizes her expected utility according

to the signal prior.

Theorem 2.1. If a mechanism M is strictly BNIC, then M also incentivizes

effort cost C for some C > 0.

Proof. All that needs to be shown is that the strict inequality in Definition 7

holds for C = 0 because if strictness holds, there is always some ε > 0 that

can be subtracted from the left-hand side, so that the inequality still holds.

Intuitively, it needs to be shown that an agent faced with a strictly truthful
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mechanism is strictly better off obtaining information when it comes for free.

Let

ŝ = arg max
ŝi∈{1,...,m}

ES−i

[
ui(ŝi, S−i)

]
be the signal report maximizing agent i’s expected utility without investing

effort and using only the signal prior. One then obtains

ES−i

[
ui(ŝ, S−i)

]
=
∑
s−i

Pr(S−i = s−i) · ui(ŝ, s−i)

=
∑
s−i

∑
si

Pr(S−i = s−i ∧ Si = si) · ui(ŝ, s−i)

=
∑
si

Pr(Si = si) ·
∑
s−i

Pr(S−i = s−i|Si = si) · ui(ŝ, s−i)

<
∑
si

Pr(Si = si) ·
∑
s−i

Pr(S−i = s−i|Si = si) · ui(si, s−i)

=ESi

[
ES−i

[
ui(si, S−i)

∣∣ Si = si

]]
=ESi,S−i

[
ui(Si, S−i)

]
where the strict inequality follows from the strict truthfulness of M.

Theorem 2.1 is important because it allows us to focus on the design of strictly

truthful mechanisms. Observe that strict incentives for truthfulness are crucial

for this result. This is why weakly truthful mechanisms, such as paying every

agent a fixed amount that is independent of the agent’s report, are not sufficient.

2.4 Output Agreement

The simplest mechanism in the peer prediction space is simple output agree-

ment, where two agents report their signals and are paid a fixed amount if

and only if their reports agree. I introduce and analyze this mechanism in this

section.

2.4.1 Mechanism

Simple output agreement is defined as:

1. Each agent i is asked for her signal report xi ∈ {1, . . . ,m}.

18



2. For each agent i, choose peer agent j = i+ 1 (modulo n) and pay agent i:

ui(xi, xj) =

{
τ if xi = xj

0 if xi 6= xj

where τ > 0 and xj is the signal report by peer agent j.

For example, given two agents, an instance of a simple output agreement mech-

anism is to pay $1 to each agent when both agents report the same signal, and

$0 otherwise.

2.4.2 Incentive Analysis

Theorem 2.2. Simple output agreement is strictly BNIC if and only if p(s|s) >
p(s′|s) for all signals s, s′ ∈ {1, . . . ,m} with s′ 6= s.

Proof. Since agent i’s utility only depends on her own report and the report of

her peer agent j, it is sufficient to consider only these two agents. For all signals

s, s′ ∈ {1, . . . ,m} with s′ 6= s, we have:

ESj

[
ui(s, Sj)

∣∣ Si = s
]
> ESj

[
ui(s

′, Sj)
∣∣ Si = s

]
⇔ p(s|s) · τ > p(s′|s) · τ ⇔ p(s|s) > p(s′|s)

This means that, since it only matters that the signal reports agree (but

not on which signal), agent i’s unique best response is to report the signal that

is most likely to be agent j’s signal. In particular, simple output agreement is

not truthful in settings where people can hold minority opinions or experiences.

For example, when scored using simple output agreement and asked whether

Chicago is the capital of Illinois, a rational agent knowing that Chicago is not

the capital will still report that it is if she believes that the majority of other

agents believes that Chicago is the capital.

Note that multiple equilibria are unavoidable in strictly truthful peer predic-

tion mechanisms [Jurca and Faltings, 2005, 2009; Waggoner and Chen, 2013].

For example, in simple output agreement, all agents reporting signal 1 is also

an equilibrium.

Example 2. Consider again the belief model from Example 1 from page 15,

where p(2|2) = 0.46 < 0.54 = p(1|2). Suppose simple output agreement was

applied, and agent i observed signal Si = 2. Assuming that agent j truthfully

reported her signal, agent i, in trying to match agent j’s report, would not be

truthful, because her expected utility for lying and reporting 1 would be 0.54τ ,

whereas her expected utility for reporting 2 would only be 0.46τ . Furthermore,
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since p(1|1) = 0.82 > 0.18 = p(2|1) in that example, agent i would maximize

her expected utility by always reporting signal xi = 1, independent of her true

signal.

2.5 The Peer Prediction Method

In this section, I introduce the classical peer prediction method developed by

Miller, Resnick, and Zeckhauser [2005]. The advantage of this mechanism when

compared to simple output agreement is that it also works for belief models

where agents believe to have a minority opinion. Since the classical peer pre-

diction method relies on proper scoring rules, I introduce them first.

2.5.1 Proper Scoring Rules

Proper scoring rules can be used to incentivize a rational agent to truthfully

report her private, probabilistic belief about the likelihood of a future event.

Let D denote the set of probability distributions over a set of outcomes,

where the outcomes are clear from context. Let b ∈ D be the agents probabilistic

belief about each outcome. The timing is then as follows: first, the agent is asked

for her belief report y ∈ D. Second, an event ω ∈ Ω materializes (observed by

the mechanism) and, third, the agent receives payment R(y, ω).

Definition 8 (Scoring Rule). Given possible outcomes Ω = {1, . . . ,m}, and a

report y ∈ D in regard to the probability distribution over Ω, a scoring rule

R(y, ω) ∈ R ∪ ±∞ assigns a score based on report y and the outcome ω that

occurs.

Definition 9 (Strictly Proper Scoring Rule). A scoring rule is proper if an

agent maximizes her expected score by truthfully reporting her belief b ∈ D,

and is strictly proper if the truthful report is the only report that maximizes

the agent’s expected score.

An example of a strictly proper scoring rule is the logarithmic scoring rule Rlog

Rlog(y, ω) = ln(y(ω)). (2.7)

for natural logarithm ln.

Proposition 2.3. [Good, 1952] The logarithmic scoring rule Rlog is strictly

proper.

A positive-affine transformation of a proper scoring rule is still proper.
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Another example of a proper scoring rule is the quadratic scoring rule that

I discuss in more detail in Section 3.4. For an in-depth treatment of proper

scoring rules in general, I refer to the article by Gneiting and Raftery [2007].

2.5.2 Mechanism

The classical peer prediction method is defined as:

1. Each agent i is asked for her signal report xi ∈ {1, . . . ,m}.

2. For each agent i, choose peer agent j = i+ 1 (modulo n), and use knowl-

edge of p(·|·) to pay agent i

ui(xi, xj) = R
(
p(sj |xi), xj

)
,

where R is a proper scoring rule and xj the signal report by agent j.

Because the belief model is known by the mechanism, p(sj |xi) can be computed

for any xi. Knowing p(sj |xi), the score R
(
p(sj |xi), xj

)
can be computed by the

mechanism for all xi, xj ∈ {1, . . . ,m} as well.

2.5.3 Incentive Analysis

Theorem 2.4. [Miller et al., 2005] The classical peer prediction method is

strictly BNIC for any strictly proper scoring rule R, given that the common

belief model satisfies stochastic relevance.

Proof. Since agent i’s utility only depends on her own report and the report of

her peer agent j, it is sufficient to consider only these two agents. For all signals

s, s′ ∈ {1, . . . ,m} with s′ 6= s, we have:

ESj

[
ui(s, Sj)

∣∣ Si = s
]
> ESj

[
ui(s

′, Sj)
∣∣ Si = s

]
⇔

m∑
sj=1

p(sj |s) ·R
(
p(sj |s), sj

)
>

m∑
sj=1

p(sj |s) ·R
(
p(sj |s′), sj

)
⇔ p(·|s) 6= p(·|s′),

which is stochastic relevance. Note that the left hand side of the second term

is precisely the expected utility of agent i if she reported her true probabilistic

belief p(·|s) about Sj to a strictly proper scoring rule R. The right hand side is

the expected utility of agent i if she reported belief p(·|s′) to a strictly proper

scoring rule. If these two beliefs are different, then it follows directly from strict

properness of R that the left hand side is larger.
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The intuition is that since the classical peer prediction method knows the

belief model of the agents, it also knows the m possible beliefs an agent may

have following each of the possible signal observations. The method utilizes

this by asking each agent to only report her signal, which the mechanism first

transforms into the correct belief report, and which is then applied to a strictly

proper scoring rule.

Definition 10. A peer prediction mechanism satisfies ex post individual ratio-

nality (ex post IR) if all payments are non-negative for all reports.

Proposition 2.5. Miller et al. [2005] The classical peer prediction method can

be made ex post IR for any proper scoring rule R given fully mixed signal pos-

teriors, i.e. p(s|s′) > 0 for all s, s′ ∈ {1, . . . ,m}.

In the classical peer prediction method, there is a finite set of signals that can

be reported and thus a finite set of possible signal posteriors. The mechanism

can compute these signal posteriors (because the belief model is known) and

thus the scores that can arise for a given scoring rule. One can thus add a

constant to every payment, such that the minimum payment plus this constant

is non-negative for any possible combination of signal reports. If not all signal

posteriors are fully mixed, a proper scoring rule that has bounded ex post score

for belief reports of 0%, such as the quadratic scoring rule that I introduce in

Section 3.4, needs to be used.

Example 3. Consider again the numbers from Example 1 on p. 15 with m = 2

possible signals, where the signal posteriors are given by p(2|2) = 0.46 and

p(2|1) = 0.18. Assume that agent 1 observes signal Si = 1, so that her belief

about the signal observed by agent 2 is her signal posterior(
p(1|1)

p(2|1)

)
=

(
0.82

0.18

)
.

Using the logarithmic rule Rlog and assuming agent 2 reports truthfully, agent

1’s expected utility reporting truthfully as well is

ES2

[
u1
(
x1 = 1, S2)

) ∣∣ Si = 1
]

= p(1|1) · u1(1, 1) + p(2|1) · u1(1, 2)

= 0.82 · ln(0.82) + 0.18 · ln(0.18)

= − 0.47
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If agent 1 misreports her true signal, i.e. x1 = 2, her expected utility is

ES2

[
u1
(
x1 = 2, S2)

) ∣∣ Si = 1
]

= p(1|1) · u1(2, 1) + p(2|1) · u1(2, 2)

= 0.82 · ln(0.54) + 0.18 · ln(0.46)

= − 0.65.

That is, given agent 2 reports truthfully and agent 1 observes S1 = 1, agent 1’s

unique best response is to report truthfully as well. The situation is analogous

following S1 = 2, and since agent 2 has the same belief model as agent 1, both

agents reporting truthfully is a Bayes-Nash equilibrium.

To ensure ex post individual rationality, the mechanism can use a scaled

version of the logarithmic rule R′log, with an added constant corresponding to

the absolute value of the lowest possible negative payment, such that

R′log =Rlog +
∣∣min

(
ln(0.46), ln(0.54), ln(0.18), ln(0.82)

)∣∣
=Rlog + | ln(0.18)| = Rlog + 1.71.

2.6 Extensions

Several extensions to the classical peer prediction method have been proposed.

Here, I only discuss the extensions using the classical peer prediction method’s

common knowledge model, and refer to Chapters 3 to 7 and their related work

sections for discussions of extensions that relax the common knowledge assump-

tions.

Jurca and Faltings [2006] formulate the peer prediction method as the solu-

tion to a linear program with the objective of minimizing the method’s expected

payment subject to strict truthfulness. Jurca and Faltings also show how to

avoid collusive equilibria [2009]. In my own work, I extend the method to set-

tings where ground truth changes over time, which is common in computational

settings, such as users reporting on the speed of server clusters [Witkowski,

2009]. In another line of work, I develop a peer prediction mechanism for buyer

feedback on eBay-like online auction sites [Witkowski, 2010] with the interesting

aspect that the seller is a strategic player, so that the experience of a buyer is

no longer purely stochastic but strategically chosen by the seller.

2.7 Conclusion

In this chapter, I have introduced the classical peer prediction method. Its

strength, when compared to other peer prediction mechanisms such as simple

output agreement, is that it barely restricts the belief model for which it can
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provide strict truthfulness. All that is needed is stochastic relevance, i.e. that

the signal posteriors following different signals are different.

The classical peer prediction method has two major shortcomings. First,

it critically relies on the assumption of all participants sharing the same belief

model, and second, it also assumes this belief model to be known to the mecha-

nism. These assumptions are not satisfied in practice. In the remainder of this

thesis, the focus will thus be on peer prediction mechanisms that relax these

assumptions.

Note that there are other challenges in peer prediction. First, in addition

to the truthful equilibrium, every truthful peer prediction mechanism also has

other, non-truthful equilibria [Jurca and Faltings, 2005, 2009; Waggoner and

Chen, 2013]. Second, the classical peer prediction method relies on payments,

which is not always feasible in online environments. Third, the assumption that

the signal observed by one participant is indistinguishable from the signal ob-

served by another participant seems most natural in settings where experiences

are in some sense objective. Imagine, for example, a travel website that elicits

from users whether their flights were delayed. In this situation, the assumption

that users’ experiences are drawn from the same distribution seems appropriate

as long as it is properly defined what constitutes a delay. In other settings,

however, signals are likely to be influenced by user characteristics, such as dif-

ferences in taste. As an example, consider a reputation system eliciting user

feedback about the “quality” of books. Here it seems likely that different read-

ers have different tastes. As the authors of the classical peer prediction method

point out, the method can in principle incorporate such user differences through

their explicit modeling. The problem with this approach is that it further adds

onto the common knowledge that needs to be assumed since this would require

different belief models for different types of users, and the assumption that the

mechanism knows these, their distribution, and each user’s type. This seems

unrealistic in practice. Since these challenges not only affect the classical peer

prediction method but peer prediction in general, I refer to Chapter 8 for a more

detailed discussion.
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Chapter 3

The Shadowing Method

Instead of assuming that the entire belief model is common knowledge as in the

classical peer prediction method, the Shadowing Method only needs to know the

signal prior. To motivate knowledge of the signal prior but not the full model,

consider eliciting reports on how noisy a restaurant is, where the platform knows

the fraction of times similar restaurants tend to be noisy, or eliciting reports on

whether or not a website contains offensive content where the platform knows the

fraction of times that similar websites tend to have offensive content. Another

setting is where the prediction from a trained classifier has low confidence, e.g.,

perhaps the prediction is that the site contains offensive content with probability

0.6. This can form the signal prior for the Shadowing Method.

Moreover, the Shadowing Method proves useful as a building block for peer

prediction mechanisms that do not assume knowledge about either the signal

prior or the signal posteriors. The question when using the Shadowing Method

as a building block for these knowledge-free mechanisms is where the signal prior

comes from, and the mechanisms of Chapters 4 to 6 each provide a different

answer to this question.

Before delving into the Shadowing Method, Section 3.3 presents the 1/prior

(read: “one over prior”) mechanism [Jurca and Faltings, 2008, 2011] which works

under the same knowledge assumptions but requires different conditions to hold

for the belief model in order to be truthful. From a technical point of view, the

1/prior mechanism can be seen as a generalization of simple output agreement

(Section 2.4), in that the agents are only paid if their signal reports agree. The

1/prior mechanism is more general than simple output agreement because the

amounts paid for agreement depend on which signal the agents agree upon.

The Shadowing Method (Sections 3.5 and 3.6), on the other hand, is in the

spirit of the classical peer prediction method (Section 2.5) in that both methods

follow the same overall procedure of taking a signal report, transforming this
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report into a belief report, and then scoring this transformed belief report using

a scoring rule. However, since the Shadowing Method only knows the signal

prior but not the signal posteriors following each possible signal observation,

the technicalities of the Shadowing Method are more intricate than those of the

classical peer prediction method.

The Shadowing Method solves two interconnected challenges. It first needs

to compute a belief that is in some sense “similar” to an agent’s true signal

posterior belief, and it then needs to be careful about the scoring of this belief.

As we will see in Section 3.5, the Shadowing Method perturbs the signal prior

using the agent’s signal report in a particular way, and then uses the quadratic

scoring rule to score this report. Interestingly, because the perturbed signal

prior is not guaranteed to perfectly match the true signal posterior of an agent,

the method relies on a scoring rule that is more than just strictly proper, which

is in contrast to the classical peer prediction method which works with any

strictly proper scoring rule. The reason is that strict properness does not specify

an agent’s optimal report when the possible reports are only a subset of all

distributions and when the agent’s true belief is not in that subset. In its current

form, the Shadowing Method thus critically relies on the quadratic scoring rule,

which has the property that the “closer” a belief report is to the true belief, the

higher the agent’s expected score.

The remainder of this chapter is organized as follows. In Section 3.1, I

briefly discuss related work. In Section 3.2, I explain the difference of the model

used in this chapter as compared to the standard model of Chapter 2. In

Section 3.3, I then introduce and analyze the 1/prior mechanism due to Jurca

and Faltings [2008, 2011]. After introducing the quadratic scoring rule and its

properties in Section 3.4, I then present the Shadowing Method for two signals

in Section 3.5. In Section 3.6, I then show two different ways of generalizing

this binary Shadowing Method to three or more signals, i.e. m ≥ 3. I compare

the 1/prior mechanism with the Shadowing Method in Section 3.7 and conclude

the chapter with Section 3.8.

3.1 Related Work

In addition to the related work on peer prediction mechanisms introduced in

Chapters 2 to 5, there is additional related work particularly relevant to the

mechanisms presented in this chapter.

In Section 3.6.2, I present a Multi-Signal Shadowing Method that is based

on a reduction from the Binary Shadowing Method. The idea is conceptually

similar to the work by Matheson and Winkler [1976]. They describe a general

method for the design of proper scoring rules for continuous probability dis-
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tributions that first partitions the real line into two intervals, and then uses a

binary proper scoring rule to score the prediction for the real space by mapping

it into this binary space. Their work differs from the multi-signal to binary-

signal reduction presented here in two aspects. First, instead of belief reports,

the Shadowing Method takes signal reports. Second, the random partitioning

used for the Binary Shadowing Method reduction takes a particular form, in

that each partition consists of a singleton in one group and all other signals in

the other group.

3.2 Model

The model of this chapter is the variation of the standard model (Section 2.1),

where the belief model is common knowledge amongst all agents, but the mech-

anism only needs to know the signal prior.

3.3 1/prior Mechanism

The 1/prior mechanism is due to Jurca and Faltings [2008, 2011], who introduce

it as building block of a mechanism for opinion polls. My presentation of the

1/prior mechanism is slightly different in that I introduce it as a “correction” of

simple output agreement (see Section 2.4). Recall that simple output agreement

refers to paying an agent only if her report agrees with that of her peer, and

nothing otherwise. For example, simple output agreement could pay $1 to each

agent when both agents report the same signal, and $0 else. Theorem 2.2 says

that simple output agreement is strictly truthful only if, for any possible signal

observation, agent i’s observed signal is also the most likely signal for her peer

agent j, i.e.

p(s|s) > p(s′|s) for all s, s′ ∈ {1, . . . ,m} with s′ 6= s.

But what if one generalizes the notion of output agreement and allows the

mechanism to pay different amounts for agreeing on different signals? Intu-

itively, such a biased output agreement mechanism could reward agreement on

unlikely signals more than agreement on likely signals. The 1/prior mechanism

uses the signal prior for this purpose.

3.3.1 Mechanism

The 1/prior mechanism is defined as:

1. Each agent i is asked for her signal report xi ∈ {1, . . . ,m}.
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2. For each agent i, choose peer agent j = i+ 1 (modulo n) and pay agent i:

ui(xi, xj) =

{
τ · 1

p(xi)
if xi = xj

0 if xi 6= xj

where τ > 0, p(xi) is the signal prior for signal xi, and xj is the signal

report by peer agent j.

3.3.2 Incentive Analysis

Theorem 3.1. [Jurca and Faltings, 2011] The 1/prior mechanism is strictly

BNIC if and only if p(s|s) > p(s|s′) for all signals s, s′ ∈ {1, . . . ,m} with s′ 6= s.

Proof. Since agent i’s utility only depends on her own report and the report of

her peer agent j, it is sufficient to consider only these two agents. For all signals

s, s′ ∈ {1, . . . ,m} with s′ 6= s, we have:

ESj

[
ui(s, Sj)

∣∣ Si = s
]
> ESj

[
ui(s

′, Sj)
∣∣ Si = s

]
⇔ p(s|s) · τ

p(s)
> p(s′|s) · τ

p(s′)
⇔ p(s|s)

p(s)
>
p(s′|s)
p(s′)

⇔ p(s|s) > p(s|s′)

3.4 Quadratic Scoring Rule

In contrast to the classical peer prediction method, it is no longer sufficient

for the Shadowing Method that the used scoring rule is strictly proper. An

important part of the Shadowing Method is the quadratic scoring rule [Brier,

1950], which I give in normalized form to yield scores in the interval [0, 1]:

Rq(y, ω) = y(ω)− 0.5

m∑
k=1

y(k)2 + 0.5 (3.1)

When the set of possible reports is restricted, properness by itself does not

imply that the agent reports the report closest to her true belief. But the

quadratic scoring rule Rq does have this property, as I will show.

Definition 11 captures the loss in expected score that an agent incurs by

reporting a vector y which may or may not be her true belief b.

Definition 11 (Expected Loss). Let G(y|b) denote the expected score of a

scoring rule R given belief b ∈ D and report y ∈ Rm. The expected loss L(y|b)
of scoring rule R is defined as the amount by which the expected score is less
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than that for a truthful report:

L(y|b) = G(b|b)−G(y|b).

Observe that we do not require y ∈ D. In particular, the elements of y do

not need to sum up to 1, and single elements may be negative or larger than 1.

We will need this for the mechanisms in Chapter 5.

This representation of scoring rules as loss functions is due to Savage [1971].

Theorem 3.2 (Quadratic Loss). [Savage, 1971] The quadratic scoring rule Rq

has quadratic expected loss Lq(y|b) = 0.5 ·
m∑
k=1

(
b(k)− y(k)

)2
.

Proof. The proof follows Selten [1998, p. 47–48].

For Gq(y|b) we have:

Gq(y|b) =

m∑
k=1

b(k)

(
y(k)− 0.5

m∑
o=1

b(o)2 + 0.5

)

=

m∑
k=1

b(k)y(k)− 0.5

m∑
o=1

y(o)2 + 0.5

=

m∑
k=1

b(k)y(k)− 0.5

m∑
o=1

(
y(o)− b(o)

)2
+ 0.5

m∑
o=1

b(o)2 − 0.5

m∑
o=1

2y(o)b(o) + 0.5

=0.5

m∑
k=1

b(k)2 − 0.5

m∑
k=1

(
y(k)− b(k)

)2
+ 0.5

=0.5

(
m∑
k=1

b(k)2 −
m∑
k=1

(
y(k)− b(k)

)2
+ 1

)

For Lq(y|b) we then have:

Lq(y|b) =Gq(b|b)−Gq(y|b)

=0.5

(
m∑
k=1

b(k)2 + 1

)
− 0.5

(
m∑
k=1

b(k)2 −
m∑
k=1

(
y(k)− b(k)

)2
+ 1

)

=0.5

m∑
k=1

(
b(k)− y(k)

)2
Corollary 3.3 states that when using the quadratic scoring rule, an agent

faced with a restricted set of possible belief reports maximizes her expected score

by reporting the belief report with minimal Euclidean distance to her true belief.

In the words of Friedman [1983], the quadratic scoring rule is effective with
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respect to the Euclidean distance. Corollary 3.3 follows because maximizing

expected score is equivalent to minimizing expected loss.

Corollary 3.3. Let b ∈ D be an agent’s true belief about a future event. If

the mechanism scores the agent’s belief report according to the quadratic scoring

rule Rq but restricts the set of allowed reports to Y ⊆ Rm, a rational agent will

report y ∈ Y with minimal
∑m
k=1

(
y(k)− b(k)

)2
.

Corollary 3.4 follows because Lq(y|b) > 0 if and only if y 6= b.

Corollary 3.4 (Strict Properness). [Brier, 1950] The quadratic scoring rule

Rq is strictly proper.

3.5 Binary Shadowing Method

The Shadowing Method first takes the known signal prior and, using the agent’s

signal report, perturbs it into a “shadow posterior,” i.e. a belief that is “close” to

the agent’s true (but unknown) signal posterior. In a second step, this shadow

posterior is used as the belief report that is scored using the quadratic scoring

rule.

As is usual in peer prediction, the event that is to be predicted is peer agent

j’s signal report. The Shadowing Method would coincide with the classical peer

prediction method presented in Section 2.5 if the mechanism could guarantee

that the computed shadow posterior is exactly the agent’s true signal posterior.

However, since the true signal posterior is no longer assumed to be something

the mechanism can compute from a signal report, the mechanism must instead

compute a shadow posterior that is close to the signal posterior.

There are two key elements that make the Shadowing Method strictly truth-

ful. First, it has to guarantee that the shadow posterior that is computed based

on the true signal is always closer to the true signal posterior than any of the

other possible shadow posteriors following dishonest signal reports. Second, the

Shadowing Method needs to score the shadow posterior using a scoring rule that

is not only strictly proper but satisfies the more demanding property that the

closer a belief report is to the true belief, the higher the expected score.

3.5.1 Mechanism

The Binary Shadowing Method is defined as:

1. Each agent i is asked for her signal report xi ∈ {1, 2}.
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0 p(2) 1p(2|1) p(2|2)

δ δ

Figure 3.1: Illustration of the Binary Shadowing Method, where p(2) ∈
(
p(2|1), p(2|2)

)
.

Note that p(2|1) is closer to p′(2|1) = p(2) − δ than to p′(2|2) = p(2) + δ, and that
p(2|2) is closer to p′(2|2) = p(2) + δ than to p′(2|1) = p(2)− δ.

2. Perturb signal prior p(·) using xi resulting in “shadow posterior” report

p′(·|xi):

p′(·|xi) =



(
p(1) + δ

p(2)− δ

)
if xi = 1

(
p(1)− δ
p(2) + δ

)
if xi = 2,

(3.2)

where δ = min
(
p(1), p(2)

)
.

3. For each agent i, choose peer agent j = i+ 1 (modulo n), and pay agent i:

ui(xi, xj) = Rq
(
p′(·|xi), xj

)
.

where Rq is the quadratic scoring rule, and xj is the signal report by peer

agent j.

3.5.2 Incentive Analysis

Theorem 3.5. The Binary Shadowing Method is strictly BNIC if and only if

p(s|s) > p(s) for all s ∈ {1, 2}.

Proof. Suppose agent i’s signal is Si = 2, so that her signal posterior is p(·|2).

The argument is analogous for signal posterior p(·|1) following Si = 1. The proof

is via reasoning about the expected loss Lq
(
p′(·|xi)

∣∣p(·|2)
)

between an agent’s

signal posterior and the shadow posteriors following xi = 1 and xi = 2, respec-

tively. Since there are only two signals, i.e. m = 2, minimizing
∑m
s=1

(
p(s|2) −

p′(s|xi)
)2

coincides with minimizing
∣∣p(2|2) − p′(2|xi)

∣∣, because whenever the

latter is minimal, so is
∣∣p(1|2) − p′(1|xi)

∣∣. It is thus sufficient to reason about

the distance between p′(2|xi) and p(2|2), and the Binary Shadowing Method is

strictly truthful if and only if
∣∣p(2) + δ − p(2|2)

∣∣ < ∣∣p(2) − δ − p(2|2)
∣∣. Noting

that δ > 0 because p(1), p(2) > 0, there are two cases (also compare Figure 3.1):

• p(2|2) > p(2). But now δ > 0 and p(2) − p(2|2) < 0, and so
∣∣p(2) + δ −

p(2|2)
∣∣ < ∣∣p(2)− δ − p(2|2)

∣∣.
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• p(2|2) ≤ p(2). But now δ > 0 and p(2) − p(2|2) ≥ 0, and so
∣∣p(2) + δ −

p(2|2)
∣∣ ≥ ∣∣p(2)− δ − p(2|2)

∣∣.
Corollary 3.6. The Binary Shadowing Method is strictly BNIC if and only if

p(2|2) > p(2) > p(2|1).

Proof. If p(s|s) > p(s) for all s ∈ {1, 2}, it holds that p(2|2) > p(2) in particular.

Similarly, it holds that p(1|1) > p(1) ⇔ 1 − p(2|1) > 1 − p(2) ⇔ p(2) >

p(2|1).

Theorem 3.5 means that the Binary Shadowing Method is strictly truthful

if the belief that peer agent j observes signal s increases when agent i observes

signal s. Another way of saying this is that the Binary Shadowing Method is

strictly truthful if signal observations between agents are positively correlated.

The proof does not rely on the particular choice of δ but only requires δ > 0.

The Binary Shadowing Method is robust against inaccuracies of the signal

prior p(·). In fact, any vector y satisfying p(s|s) > y(s) for all s ∈ {1, 2} can

be used in place of the signal prior and the Binary Shadowing Method remains

strictly truthful. Moreover, while for the sake of this thesis I use the Shadowing

Method exclusively for peer prediction, it can also be used as a proper scoring

rule for signals, i.e. with any observable future event ω that does not have to be

another agent’s signal report.

In Section 3.7.1, we will see that for binary signals, the truthfulness condi-

tions of the classical peer prediction method, the 1/prior mechanism, and the

Shadowing Method are equivalent.

3.6 Multi-Signal Shadowing Method

There are two ways to generalize the binary Shadowing Method tom ≥ 3 signals.

The first is a direct generalization, the second reduces the m signal problem to

the binary problem. They are equivalent in the sense that they require the same

truthfulness condition.

3.6.1 Direct Generalization

Mechanism

The Multi-Signal Shadowing Method (direct generalization) is defined as:

1. Each agent i is asked for her signal report xi ∈ {1, . . . ,m}.
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0 p(s) 1p(s|s)

δ
2 δ

0 p(s′) 1p(s′|s)

δ
2 δ

Figure 3.2: Illustration of the Multi-Signal Shadowing Method with m = 3, depicting
only two signals s and s′ with s′ 6= s. Observe that following Si = s, the belief for both
s and s′ increases from signal prior to signal posterior. Nevertheless, agent i would
maximize her expected score (minimize her expected loss) by reporting xi = s instead
of xi = s′ because the increase is larger for signal s, i.e. p(s|s)− p(s) > p(s|s′)− p(s′).

2. Perturb the (m-valued) signal prior p(·) using xi resulting in an (m-valued)

“shadow posterior” report (also compare Figure 3.2)

p′(·|xi) =


p(1)− δ

m−1
. . .

p(xi) + δ

. . .

p(m)− δ
m−1

 ,

where δ = min
(

min
s∈{1,...,m}

p(s) · (m − 1), 1 − max
s∈{1,...,m}

p(s)
)

, so that the

entries in p′(·|xi) are in between 0 and 1.

3. For each agent i, choose peer agent j = i+ 1 (modulo n), and pay agent i:

ui(xi, xj) = Rq
(
p′(·|xi), xj

)
.

where Rq is the quadratic scoring rule, and xj is the signal report by peer

agent j.

Observe that with this choice of δ, the Multi-Signal Shadowing Method coincides

with the binary method for m = 2.

Incentive Analysis

Theorem 3.7. The Multi-Signal Shadowing Method (direct generalization) is

strictly BNIC if and only if p(s|s)−p(s) > p(s′|s)−p(s′) for all s, s′ ∈ {1, . . . ,m}
with s′ 6= s.

Proof. Let agent i observe signal Si = si. Compare the truthful report xi = si
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to the report of some other signal xi = s′i. The shadow posteriors following

these two reports differ only in rows si and s′i. Using Rq’s quadratic loss, strict

truthfulness is thus equivalent to:

ESj

[
ui(si, Sj)

]
> ESj

[
ui(s

′
i, Sj)

]
⇔ Lq

(
p′(·|si)

∣∣ p(·|si)) < Lq
(
p′(·|s′i)

∣∣ p(·|si))
⇔

m∑
s=1

(
p′(s|si)− p(s|si)

)2
<

m∑
s=1

(
p′(s|s′i)− p(s|si)

)2
⇔

(
p(si) + δ − p(si|si)

)2
+
(
p(s′i)−

δ

m− 1
− p(s′i|si)

)2
<
(
p(si)−

δ

m− 1
− p(si|si)

)2
+
(
p(s′i) + δ − p(s′i|si)

)2
⇔ p(si|si)− p(si) > p(s′i|si)− p(s′i)

Because the quadratic loss is not restricted to reports that are valid prob-

ability distributions (Theorem 3.2), Theorem 3.7 holds for any δ > 0, even

if it results in a shadow posterior that is not a valid distribution. Moreover,

Theorem 3.7 also holds for any δ > 0 if p′(xi|xi) = p(xi) + δ (as in the above

mechanism description) but where all other entries x′i 6= xi stay the same as in

the signal prior, i.e. p′(x′i|xi) = p(x′i). An advantage of choosing δ > 0 such

that p′(·|xi) is a valid distribution is that the scaling of Rq ensures that ex post

payments are in between 0 and 1. For values of δ > 0 that result in p′(·|xi) that

are not valid distributions, Rq will need to be re-scaled appropriately.

Intuitively, the Shadowing Method works by analyzing the belief change

from signal prior to signal posterior. More specifically, it assumes that when an

agent observes a signal, her belief for another agent observing the same signal

increases. With only two possible signal, i.e. m = 2, this means that the belief

for the signal value that has not been observed has to decrease. For three or

more possible signals, however, it can be the case that the beliefs for two or more

signals increase, i.e. that the belief for the observed signal is not the only belief

that increases. See Figure 3.2 for an illustration. The Multi-Signal Shadowing

Method requires that the belief increase for the observed signal is larger than

the belief increase for any other signal.

3.6.2 Reduction to Binary Shadowing Method

Mechanism

The Multi-Signal Shadowing Method (binary method reduction) is defined as:

1. Each agent i is asked for her signal report xi ∈ {1, . . . ,m}.
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2. Choose a signal k ∈ {1, . . . ,m} uniformly at random, and map the signal

set {1, . . . ,m} to a binary partition {1,2} by setting

1 := {1, . . . ,m}\k

2 := {k},

with induced binary signal prior:

p(·|k) =

(
p(1|k)

p(2|k)

)
=

(
1− p(k)

p(k)

)
,

where, with Sj = sj , signal 1 occurs when sj ∈ 1 and signal 2 when

sj ∈ 2.

3. Proceed with the induced binary signal prior as in the binary Shadowing

Method: perturb p(·|k) using xi resulting in binary “shadow posterior”

report p′(·|xi, k):

p′(·|xi, k) =



(
p(1|k) + δ

p(2|k)− δ

)
=

(
1− p(k) + δ

p(k)− δ

)
if xi 6= k

(
p(1|k)− δ
p(2|k) + δ

)
=

(
1− p(k)− δ
p(k) + δ

)
if xi = k,

(3.3)

where δ = min
(
p(1), . . . , p(m)

)
.

4. For each agent i, choose peer agent j = i+ 1 (modulo n), and pay agent i:

ui(xi, xj) = Rq
(
p′(·|xi, k), xj

)
.

where Rq is the quadratic scoring rule, and xj is the signal report by peer

agent j.

While this is a randomized mechanism, it can be transformed into a determin-

istic mechanism by averaging over all possible k’s on behalf of the agent. The

resulting payment of the deterministic mechanism is

ui(xi, xj) =

m∑
k=1

1

m
Rq
(
p′(·|xi, k), xj

)
.

A very similar idea of de-randomization has been proposed by Matheson and

Winkler [1976, p. 1090] in the context of designing proper scoring rules for con-

tinuous variables that build upon proper scoring rules for binary variables.
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Incentive Analysis

Theorem 3.8. The Multi-Signal Shadowing Method (binary method reduction)

is strictly BNIC if and only if p(s|s) − p(s) > p(s′|s) − p(s′) for all s, s′ ∈
{1, . . . ,m} with s′ 6= s.

Proof. WLOG, let agent i observe signal Si = s. Furthermore, let

p(·|s, k) =

(
p(1|s, k)

p(2|s, k)

)
=

(
1− p(k|s)
p(k|s)

)

denote agent i’s induced (binary) signal posterior, and let

Lq
(
p′(·|xi, k)

∣∣p(·|s, k)
)

=
(
p′(1|xi, k)− p(1|s, k)

)2
+
(
p′(2|xi, k)− p(2|s, k)

)2
denote the expected loss of being scored using induced (binary) shadow posterior

p′(·|xi, k) instead of the true induced (binary) signal posterior p(·|s, k), and

given that the mechanism chose the random partition associated with signal k.

Compare the truthful report xi = s to the report of some other signal xi = s′.

The scores of these two reports differ only if k = s or k = s′, and since k is

chosen uniformly, these two cases are equally likely. We thus have:

ESj ,k

[
ui(s, Sj)

]
> ESj ,k

[
ui(s

′, Sj)
]

⇔ Lq
(
p′(·|s, k = s)

∣∣p(·|s, k = s)
)

+ Lq
(
p′(·|s, k = s′)

∣∣p(·|s, k = s′)
)

< Lq
(
p′(·|s′, k = s)

∣∣p(·|s, k = s)
)

+ Lq
(
p′(·|s′, k = s′)

∣∣p(·|s, k = s′)
)

⇔
(
p′(1|s, k = s)− p(1|s, k = s)

)2
+
(
p′(2|s, k = s)− p(2|s, k = s)

)2
+
(
p′(1|s, k = s′)− p(1|s, k = s′)

)2
+
(
p′(2|s, k = s′)− p(2|s, k = s′)

)2
<

(
p′(1|s′, k = s)− p(1|s, k = s)

)2
+
(
p′(2|s′, k = s)− p(2|s, k = s)

)2
+
(
p′(1|s′, k = s′)− p(1|s, k = s′)

)2
+
(
p′(2|s′, k = s′)− p(2|s, k = s′)

)2
⇔

(
1− p(s)− δ −

(
1− p(s|s)

))2
+
(
p(s) + δ − p(s|s)

)2
+
(

1− p(s′) + δ −
(
1− p(s′|s)

))2
+
(
p(s′)− δ − p(s′|s)

)2
<

(
1− p(s) + δ −

(
1− p(s|s)

))2
+
(
p(s)− δ − p(s|s)

)2
+
(

1− p(s′)− δ −
(
1− p(s′|s)

))2
+
(
p(s′) + δ − p(s′|s)

)2
⇔ δ

(
p(s)− p(s′)− p(s|s) + p(s′|s)

)
< 0

⇔ p(s|s)− p(s) > p(s′|s)− p(s′)
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Mechanism Condition required for strict truthfulness
Classical Peer Prediction p(·|s) 6= p(·|s′)
1/prior p(s|s) > p(s|s′)
Shadowing Method p(s|s)− p(s) > p(s′|s)− p(s′)

Table 3.1: The conditions are for all s, s′ ∈ {1, . . . ,m} with s′ 6= s.

3.7 Comparison of Mechanisms

To ensure strict truthfulness, peer prediction mechanisms require certain truth-

fulness conditions that restrict the allowed belief models in some way. For

example, the classical peer prediction method requires stochastic relevance, i.e.

that there is a one to one mapping from signals to signal posteriors. Table 3.1

provides a summary of conditions for the mechanisms we have discussed. This

section is devoted to analyzing their relationship with one another. Section 3.7.1

provides a comparison of the conditions required with a binary signal set. Sec-

tion 3.7.2 discusses the relationship between the conditions with three or more

possible signals.

3.7.1 Binary Signals

Lemma 3.9. With binary signals, and given the world state model as described

in Section 2.1, stochastic relevance implies p(s|s) > p(s) for all s ∈ {1, 2}.

Proof. I show that p(2|2) > p(2) given stochastic relevance and the world state

model. The case for p(1|1) > p(1) is analogous. The proof proceeds in three

steps:

First, associate every state with one of two groups H and L. Associate states

t ∈ {1, . . . , l} for which Pr(S = 2|T = t) > p(2) = Pr(S = 2) with group H,

and states t ∈ {1, . . . , l} for which Pr(S = 2|T = t) ≤ p(2) with group L. That

is, the states in group H are those that put more weight on signal 2 than the

signal prior, and the states in group L are those that put less or equal weight

on signal 2 than the signal prior.

Second, both H and L are non-empty, i.e. there are states t, t′ ∈ {1, . . . , l},
such that Pr(S = 2|T = t) > Pr(S = 2) and Pr(S = 2|T = t′) ≤ Pr(S = 2).

This is the case because:

1. From the definition of the signal posterior (Equation 2.2), we know that

for all s ∈ {1, 2}:

p(2|s) =

l∑
t=1

Pr(Sj = 2 | T = t) · Pr(T = t | Si = s).
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Stochastic relevance means that p(2|2) 6= p(2|1), so that Pr(S = 2|T =

t) 6= Pr(S = 2|T = t′) for some states t, t′ ∈ {1, . . . , l}.

2. It cannot be that Pr(S = 2|T = t) ≤ Pr(S = 2) for all t ∈ {1, . . . , l} or

Pr(S = 2|T = t) > Pr(S = 2) for all t ∈ {1, . . . , l} because (Equation 2.4):

p(2) = Pr(S = 2) =

l∑
t=1

Pr(S = 2|T = t) · Pr(T = t).

That is, the signal prior is the average of signal conditionals Pr(S = 2|T =

t) weighted by the state belief Pr(T = t). The equality case Pr(S = 2|T =

t) = Pr(S = 2) for all t is excluded since that would imply p(2|2) =

p(2) and by p(2) = p(2|1)p(1) + p(2|2)p(2) also p(2|1) = p(2), and a

contradiction to stochastic relevance.

Moreover, both groups have positive probability because the world state model

from Section 2.1 demands that Pr(T = t) > 0 for all t ∈ {1, . . . , l}.
Third, the probability of states in group H increases given observation S = 2.

To see this, we need to know for which t ∈ {1, . . . , l} is Pr(T = t|S = 2) >

Pr(T = t) and obtain:

Pr(T = t|S = 2) >Pr(T = t)

⇔ Pr(S = 2|T = t) · Pr(T = t)

Pr(S = 2)
>Pr(T = t)

⇔ Pr(S = 2|T = t) >Pr(S = 2).

That is, exactly those states in group H become more likely after signal 2. The

statement follows because states in group H have more weight on signal 2 than

the signal prior p(2) and become more likely after S = 2.

Theorem 3.10. With binary signals, the classical peer prediction method, the

1/prior mechanism, and the Shadowing Method are strictly truthful in the same

settings.

Proof. It needs to be shown that the following conditions are equivalent for all

s′, s ∈ {1, 2} with s′ 6= s:

• p(·|s) 6= p(·|s′) (stochastic relevance).

• p(s|s) > p(s|s′).

• p(s|s) > p(s).
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Lemma 3.9 shows that p(·|s) 6= p(·|s′) and p(s|s) > p(s) are equivalent. More-

over,

p(s|s′) =
p(s′|s) p(s)

p(s′)
=

(
1− p(s|s)

)
p(s)

1− p(s)
,

and so p(s|s) > p(s|s′) ⇔ p(s|s)
(
1 − p(s)

)
> p(s)

(
1 − p(s|s)

)
⇔ p(s|s) >

p(s).

3.7.2 More than Two Signals

With only two signals, a belief increase in signal s ∈ {1, 2} means that the belief

for signal s′ 6= s decreases. For three or more possible signals, however, it can

be the case that, following signal observation s, the beliefs for several signals

increase. The Multi-Signal Shadowing Method requires that the belief increase

for the observed signal is larger than the belief increase for any other signal:

p(s|s)− p(s) > p(s′|s)− p(s′)

for all s, s′ ∈ {1, . . . ,m} with s′ 6= s.
(3.4)

The condition of the 1/prior mechanism can also be written in terms of a belief

change from signal prior to signal posterior using Bayes’ law:

p(s|s) > p(s|s′)⇔ p(s|s)
p(s)

>
p(s′|s)
p(s′)

for all s, s′ ∈ {1, . . . ,m} with s′ 6= s.

(3.5)

This condition also means that the belief increase for the observed signal is

larger than the belief increase for any other signal. The difference between

the two conditions is what “largest” means: the absolute change (Shadowing

Method) or the relative change (1/prior mechanism). These two conditions

are incomparable, i.e. there are settings where the first condition holds but the

second doesn’t, and vice versa.

Theorem 3.11. With more than two signals, the conditions required by the

1/prior mechanism and the Shadowing Method are incomparable.

Proof. The proof is by example. An example of beliefs, where the Shadowing

Method is strictly truthful and the 1/prior is not, is the following with m = 3

39



signals:

Pr(T ) =

 0.25

0.5

0.25



Pr(S|T ) =

 0.15 0.5 0.6

0.05 0.3 0.35

0.35 0.2 0.05

 .

This results in signal prior

p(·) = Pr(S|T )× Pr(T ) =

 0.475

0.3625

0.2


and signal posterior matrix

p(·|·) =

 0.50428571 0.40344828 0.353125

0.33428571 0.38103448 0.390625

0.16142857 0.21551724 0.25625


which satisfies p(s|s) − p(s) > p(s′|s) − p(s′) but not p(s|s) > p(s|s′) for all

s, s′ ∈ {1, . . . ,m} with s′ 6= s since p(2|2) = 0.38103448 6> 0.390625 = p(2|3).

Similarly, an example of beliefs, where the 1/prior mechanism is strictly

truthful but where the Shadowing Method is not is the following with m = 3

signals:

Pr(T ) =

 0.52951336

0.22410641

0.24638023



Pr(S|T ) =

 0.44778266 0.74312272 0.07829395

0.34278219 0.20756903 0.74654266

0.20943515 0.04930825 0.1751634

 .

This results in signal prior

p =

 0.42293554

0.41195865

0.1651058


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and signal posterior matrix

p(·|·) =

 0.54722581 0.31616071 0.37096916

0.30795506 0.50778717 0.43927101

0.14481914 0.17605212 0.18975984

 ,

which satisfies p(s|s) > p(s|s′) but not p(s|s) − p(s) > p(s′|s) − p(s′) for all

s, s′ ∈ {1, . . . ,m} with s′ 6= s since p(3|3) − p(3) = 0.18975984 − 0.1651058 =

0.02465404 6> 0.02731236 = 0.43927101− 0.41195865 = p(2|3)− p(2).

In contrast to binary settings, the condition required by the classical peer

prediction method is weaker than the conditions of both the 1/prior mechanism

and the Shadowing Method.

Theorem 3.12. The conditions required by the 1/prior mechanism and the

Shadowing Method are strictly stronger than the condition required by the clas-

sical peer prediction method.

Proof. It needs to be shown that any setting satisfying either the condition of

the 1/prior mechanism or the condition of the Shadowing Method, also satisfies

stochastic relevance. I show the equivalent statement that whenever stochastic

relevance does not hold, neither does the condition of the 1/prior mechanism nor

that of the Shadowing Method. If stochastic relevance does not hold, it must be

that p(·|s) = p(·|s′) for some s, s′ ∈ {1, . . . ,m} with s′ 6= s. From that, it follows

that p(s|s) = p(s|s′), so that the 1/prior condition is violated. Furthermore, it

follows that p(s′|s′) = p(s′|s). Now assume that p(s|s)− p(s) > p(s′|s)− p(s′),
but then p(s′|s′) − p(s′) = p(s′|s) − p(s′) < p(s|s) − p(s) = p(s|s′) − p(s).

Moreover, the containment is strict because both example settings in the proof

of Theorem 3.11 satisfy stochastic relevance.

3.8 Conclusion

The truthfulness condition of the 1/prior mechanism and the truthfulness con-

dition of the Shadowing Method are incomparable, in that there exist belief

settings, where the 1/prior mechanism is strictly truthful but the Shadowing

Method is not, and vice versa. There are, however, compelling reasons for

choosing the Shadowing Method over the 1/prior mechanism. In particular, the

Shadowing Method allows the designer to bound the range of the (ex post) pay-

ments without needing to know the signal prior. This becomes important when

using the methods as building blocks for other mechanisms. This difference is

exemplified in Chapter 4, where both the Shadowing Method and the 1/prior
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mechanism are used to design Bayesian Truth Serum mechanisms, which work

without the mechanism knowing anything about the belief model.

An interesting direction for future work is to study the properties of Shad-

owing Methods based on metrics other than the Euclidean metric. To achieve

strict truthfulness, this would need to be paired with other scoring rules that are

“effective” with respect to these metrics. A natural candidate is the spherical

rule that is known to be effective with respect to the renormalized Euclidean

metric [Friedman, 1983].
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Chapter 4

The Robust Bayesian Truth

Serum

The classical peer prediction method (Chapter 2) is truthful for any finite num-

ber of agents n ≥ 2 but relies on a common belief model, shared by all agents and

the mechanism. The Shadowing Method (Chapter 3) relaxes this assumption

in that the agents share a common belief model but the mechanism only needs

to know the signal prior. The Bayesian Truth Serum (BTS) by Prelec [2004]

further relaxes the common knowledge required by the mechanism. While BTS

still assumes that the agents share a common belief model, this model need not

be known by the mechanism—not even the signal prior.

In addition to the signal report, BTS also asks each agent for a prediction

report, which reflects the agent’s belief about the distribution of signals in the

population. An agent’s payment depends on both reports, with a signal compo-

nent that rewards reports that are “surprisingly common,” i.e., more common

than collectively predicted, and a prediction component that rewards accurate

predictions of the reports made by others.

In addition to requiring an additional report, a significant drawback of BTS

when compared to the mechanisms presented in Chapters 2 and 3 is that it

only aligns incentives for a large enough number of agents, where this number

depends on the belief model, which is assumed unknown to the mechanism. In

addition, BTS may leave a participant with a negative payment, and is not

numerically robust for all inputs.

In this chapter, I present a Robust Bayesian Truth Serum (RBTS) that is

strictly truthful for any number of agents n ≥ 3 (for more than two signals)

and any number of agents n ≥ 2 (for binary signals). RBTS uses the Shadow-

ing Method from Chapter 3 as a building block and is the first peer prediction
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mechanism that does not rely on knowledge of the common belief model to

provide strict incentive compatibility for any number of agents n ≥ 3. RBTS

takes the same reports as BTS, and an agent’s payment continues to consist of

one component that depends on an agent’s signal report and a second compo-

nent that depends on an agent’s prediction report. In contrast to the original

BTS, RBTS is ex post individually rational (so that no agent makes a negative

payment in any outcome) and numerically robust (well defined for all possi-

ble reports). Moreover, RBTS seems conceptually simpler than BTS, and the

incentive analysis is more straightforward.

I also present the 1/posterior BTS [Radanovic and Faltings, 2013], which was

published after RBTS, and which is strictly truthful for any n ≥ 2 and multiple

signals. When first published, RBTS was only defined for binary signals but

in this thesis it is extended to multiple signals. I compare the truthfulness

conditions of 1/posterior BTS and RBTS in Section 4.7 and show that they are

identical for binary-signal settings and incomparable for more than two signals.

While RBTS still requires n ≥ 3 agents for more than two signals, it has the

important property that the designer can set an upper and a lower bound on

the ex post payments. In contrast, the 1/posterior BTS may end up having to

pay agents effectively unbounded amounts.

4.1 Related Work

In addition to the classical peer prediction method, the Shadowing Method, and

the original BTS, there is other related work.

Jurca and Faltings [2007] extend the original peer prediction method to allow

agents to have small deviations from a common belief model, that is known to

the mechanism. They establish a trade-off between the expected payment of the

mechanism and the robustness to deviations from the model. In comparison,

BTS schemes do not assume any knowledge about the common belief model on

behalf of the mechanism.

Jurca and Faltings [2008] assume a common belief model known to the agents

but unknown to the mechanism in a on-line polling setting, where the current

empirical frequency of signal reports is published and updated as agents ar-

rive. While their mechanism only requires a signal report (and not a prediction

report), it is not incentive compatible. Rather, the authors show that—when

agents are strategic—the signal reports converge towards the true distribution

of signals in the population. Moreover, one of their main criticisms of BTS

is that it needs to withhold all information reports until the end of the poll.

This criticism does not apply to RBTS, which easily adapts to online settings

by sequentially scoring groups of three agents, and subsequently releasing their
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reports (which can be published as empirical frequencies). See Chapter 6 for a

more detailed discussion of this work.

A setting similar to on-line polling is studied by Lambert and Shoham [2008],

and in this case without requiring a common belief model to agents. However,

their mechanism is only weakly incentive compatible, i.e., in the equilibrium,

agents are indifferent between being truthful and misreporting. For this reason

it does not extend to settings in which providing accurate information is costly

or when agents have some other outside incentive for making false reports.

4.2 Model

The model adopted in this chapter is the variation of the standard model (Sec-

tion 2.1), where the belief model is common knowledge amongst all agents,

but the mechanism does not need to know it. Moreover, it is assumed that

the signal posteriors are fully mixed, i.e. p(s|s′) > 0 for all s, s′ ∈ {1, . . . ,m}.
In terms of basic model parameters, this condition is, for example, satisfied if

Pr(S = s|T = t) > 0 for all s ∈ {1, . . . ,m} and t ∈ {1, . . . , l}.

4.3 Bayesian Truth Serum (BTS)

In this section, I explain the original Bayesian Truth Serum (BTS) by Pr-

elec [2004]. Prelec presents two versions of BTS, one for an infinite number

of agents n→∞ and one for finite n with n ≥ 3. Given the focus of my work, I

present the latter version. While I present the binary version of this mechanism,

BTS is also defined for an arbitrary number of signals.

4.3.1 Mechanism

The original Bayesian Truth Serum (BTS) with binary signals and finite pop-

ulations is defined as:

1. Each agent i is asked for two reports:

• Signal report: Let xi ∈ {1, 2} be agent i’s reported signal.

• Prediction report: Let yi ∈ D be agent i’s reported signal poste-

rior.

2. Let xk(s) be the function that returns 1 if xk = s and 0 otherwise. Then,

for both possible signals and for each agent j 6= i, calculate the empirical

frequency1 of all agents’ signal reports except those of agents i and j:

1Prelec adopts Laplacian smoothing to avoid zero values.
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x̄−ij(1) =
1

n

(∑
k 6=i,j

xk(1)

)
+ 1

 , x̄−ij(2) = 1− x̄−ij(1)

3. For every agent j 6= i, calculate the geometric mean of all prediction

reports except those from i and j, on both signals,

ȳ−ij(s) =

 ∏
k 6=i,j

yk(s)

 1
n−2

4. Pay agent i:

ui(xi, yi, x−i, y−i) =
∑
j 6=i

(
xi(1) ln

(
x̄−ij(1)

ȳ−ij(1)

)
+ xi(2) ln

(
x̄−ij(2)

ȳ−ij(2)

))
︸ ︷︷ ︸

signal score

+
∑
j 6=i

(
x̄−ij(1) ln

(
yi(1)

x̄−ij(1)

)
+ x̄−ij(2) ln

(
yi(2)

x̄−ij(2)

))
︸ ︷︷ ︸

prediction score

For the incentive analysis, the equation for ui can be simplified by replacing

the summations over j 6= i with the signal and prediction scores computed using

just one, randomly selected, j 6= i.

4.3.2 Analysis

First note that the game-theoretic concepts introduced in Section 2.3, including

strategies and equilibrium concepts, generalize to mechanisms with both signal

and belief reports in the natural way.

Theorem 4.1. Prelec [2004] The original Bayesian Truth Serum is strictly

Bayes-Nash incentive compatible for n → ∞ given the belief model satisfies

stochastic relevance.

The intuition for this result is the following. As Prelec points out, the

prediction score is the relative entropy [Kullback and Leibler, 1951] between

the empirical distribution of signals and the prediction of that distribution. In

particular, the prediction score is maximized when the prediction of the signal

distribution exactly matches the empirical frequency of signals. As we will see

later in this chapter, another way to achieve strict truthfulness for the prediction

report is to score it with a strictly proper scoring rule (Section 2.5.1) applied to

the signal report of a single, randomly selected peer agent.
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To get an intuition for the signal score, first note that xi selects whether the

left or the right part of the signal score term is selected. Now assume agent i

observed signal Si = s. This is a piece of information that she knows but that

others do not know, and so she believes that the empirical frequency of signal

s will be high relative to the collective prediction for signal s. To describe this

intuition, Prelec says that agent i expects that signal s will be “surprisingly

common” [Prelec, 2004, p. 462].

Prelec also suggests, but without offering a proof, that the result holds for

suitably large, finite n with the required population size depending on agents’

belief model. In any case, a challenge with this claim is that the number of agents

required depends on the model, which is assumed to be unknown to the designer.

Another problem is that the BTS need not satisfy interim individual rationality

for small groups, meaning that an agent’s expected payment conditioned on

knowledge of her own signal may be negative.

Theorem 4.2. The original Bayesian Truth Serum is not Bayes-Nash incentive

compatible or interim IR for n = 3 even if the belief model satisfies stochastic

relevance.

This limitation of BTS can be understood from Prelec’s treatment of BTS.

Generally, the number of agents required for BTS to be Bayes-Nash incentive

compatible depends on the belief model and is hard to characterize. Still, BTS

has been discussed in various places without noting this important caveat [e.g.

Jurca and Faltings, 2008; Chen and Pennock, 2010]. For this reason, I provide

a concrete example. The example is not unique, and does not rely on n = 3.

Example 4 (BTS and n = 3). Consider three agents sharing the belief model

from Example 1 on p. 15 with m = 2 possible signals, where the signal posteriors

are given by p(2|2) = 0.46 and p(2|1) = 0.18. Note that whenever needed, I will

use rounded numbers.

Consider agent i = 1, and assume agents 2 and 3 are truthful. Assume that

S1 = 1, so that agent 1’s truthful reports are x1 = 1 and

y1 =

(
y1(1)

y1(2)

)
=

(
p(1|1)

p(2|1)

)
=

(
0.82

0.18

)
.

The expected score for the terms that corresponds to agent j = 2 when agent 1

reports truthfully is:

E

[
ln

(
X̄−12(1)

Ȳ−12(1)

)
+ X̄−12(1) ln

(
0.82

X̄−12(1)

)
+ X̄−12(2) ln

(
0.18

X̄−12(2)

) ∣∣∣S1 = 1

]
,
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where the expectation is taken with respect to the random variables X̄−12(1),

X̄−12(2) = 1 − X̄−12(1), and Ȳ−12(1). With probability p(1|1) = 0.82, agent 1

believes that agent 3 (“agent −ij”) received signal S3 = 1, so that

X̄−12(1) =
1

3
(1 + 1) =

2

3
and Ȳ−12(1) = p(1|1) = 0.82,

and with probability p(2|1) = 0.18 that S3 = 2, so that

X̄−12(1) =
1

3
(0 + 1) =

1

3
and Ȳ−12(1) = p(1|2) = 0.54.

Given this, we have expected signal score

E

[
ln

(
X̄−12(1)

Ȳ−12(1)

) ∣∣∣S1 = 1

]
= 0.82 ln

(
2/3

0.82

)
+ 0.18 ln

(
1/3

0.54

)
= −0.257

and expected prediction score

E

[
X̄−12(1) ln

(
0.82

X̄−12(1)

)
+ X̄−12(2) ln

(
0.18

X̄−12(2)

) ∣∣∣S1 = 1

]
= 0.82

(
2

3
ln

(
0.82

2/3

)
+

1

3
ln

(
0.18

1/3

))
+ 0.18

(
1

3
ln

(
0.82

1/3

)
+

2

3
ln

(
0.18

2/3

))
=− 0.158

giving an expected score of −0.257 − 0.158 = −0.415 for j = 2. Considering

also the score due to j = 3, the total expected score when agent 1 is truthful is

−0.415− 0.415 = −0.83. BTS fails interim IR.

Imagine now that agent 1 misreports her signal, i.e. x1 = 2, while still

reporting her prediction report truthfully, i.e. y1 = p(·|1). The expected signal

score component for the j = 2 terms would then become

E

[
ln

(
X̄−12(2)

Ȳ−12(2)

) ∣∣∣S1 = 1

]
= 0.82 ln

(
1/3

0.18

)
+ 0.18 ln

(
2/3

0.46

)
= 0.572

which combines with the prediction score to give 0.414, and thus, considering

also j = 3, this yields a total expected score of 0.828. Agent 1 can do better by

making a misreport.

Example 5 (BTS and n→∞). Consider the same belief model as in Example 4

but now a large number of agents. In the limit, and with respect to the beliefs

of agent 1 following S1 = 1, random variables X−ij(1), X−ij(2), Y −ij(1) and

48



Ȳ−ij(2) take on their respective values with probability 1:

E
[
X−1j(1)

∣∣∣S1 = 1
]

= lim
n→∞

1

n

(
(n− 2)p(1|1) + 1

)
= p(1|1) = 0.82

E
[
X−1j(2)

∣∣∣S1 = 1
]

= 1−X−ij(1) = p(2|1) = 0.18

E
[
Y −1j(1)

∣∣∣S1 = 1
]

= lim
n→∞

((
p(1|1)(n−2)·p(1|1)

)(
p(1|2)(n−2)·p(2|1)

))1/(n−2)

= p(1|1)p(1|1) · p(1|2)p(2|1) = 0.820.82 · 0.540.18 = 0.76

E
[
Ȳ−1j(2)

∣∣∣S1 = 1
]

= p(2|1)p(1|1) · p(2|2)p(2|1) = 0.180.82 · 0.460.18 = 0.213

If agent 1 reports truthfully, i.e. x1 = 1 and y1 = p(·|1), her expected signal

score is

E

[
ln

(
X̄−1j(1)

Ȳ−1j(1)

) ∣∣∣S1 = 1

]
= ln

(
0.82

0.76

)
= 0.076

and her expected prediction score is

E

[
X̄−1j(1) ln

(
0.82

X̄−1j(1)

)
+ X̄−1j(2) ln

(
0.18

X̄−1j(2)

) ∣∣∣S1 = 1

]
= 0.82 ln

(
0.82

0.82

)
+ 0.18 ln

(
0.18

0.18

)
= 0,

i.e. 0.076 in total. A misreport of x1 = 2 gives expected signal score (and thus

total score) of

E

[
ln

(
X̄−1j(2)

Ȳ−1j(2)

) ∣∣∣S1 = 1

]
= ln

(
0.18

0.213

)
= −0.168.

BTS is Bayes-Nash incentive compatible in the large n limit in the example.

Having demonstrated the failure of incentive alignment and interim IR for

small n in BTS, I also make the following observation in regard to its numerical

robustness:

Proposition 4.3. The score in the original Bayesian Truth Serum is unbound-

edly negative for prediction reports yi with yi(s) = 0 for any s ∈ {1, 2}.

4.4 1/posterior Bayesian Truth Serum

The 1/posterior BTS mechanism [Radanovic and Faltings, 2013] uses the tech-

nique from the 1/prior mechanism (Section 3.3). It improves upon the original

BTS mechanism in that it requires only n ≥ 2 agents for strict truthfulness.
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4.4.1 Mechanism

The 1/posterior Bayesian Truth Serum is defined as:

1. Each agent i is asked for two reports:

• Signal report: Let xi ∈ {1, . . . ,m} be agent i’s reported signal.

• Prediction report: Let yi ∈ D be agent i’s reported signal poste-

rior.

2. For each agent i, choose peer agent j = i+ 1 (modulo n), and pay agent i:

ui(xi, xj , yj) =

{
τ · 1

yj(xi)
if xi = xj

0 else
,

where τ > 0, xj is the signal report by peer agent j, and yj is the prediction

report of peer agent j.

4.4.2 Incentive Analysis

Theorem 4.4. [Radanovic and Faltings, 2013] The 1/posterior Bayesian Truth

Serum is strictly BNIC if and only if p(s|s) > p(s|s′) for all signals s, s′ ∈
{1, . . . ,m} with s′ 6= s.

Proof. Since agent i’s utility only depends on her own report and the report of

her peer agent j, it is sufficient to consider only these two agents. For all signals

s, s′ ∈ {1, . . . ,m} with s′ 6= s, we have

ESj

[
ui
(
s, Sj , p(·|Sj)

) ∣∣ Si = s
]
> ESj

[
ui
(
s′, Sj , p(·|Sj)

) ∣∣ Si = s
]

⇔ p(s|s) · τ

p(s|s)
> p(s′|s) · τ

p(s′|s′)
⇔ 1 >

p(s′|s)
p(s′|s′)

⇔ p(s′|s′) > p(s′|s),

which, since it needs to hold for all s, s′ ∈ {1, . . . ,m} with s′ 6= s, is equivalent

to p(s|s) > p(s|s′).

4.5 Robust Bayesian Truth Serum (RBTS)

The Robust Bayesian Truth Serum (RBTS) improves upon the original Bayesian

Truth Serum (BTS) in that it is strictly truthful for any number of agents n ≥ 3.

RBTS uses the Shadowing Method from Chapter 3 as a building block. Since

the Shadowing Method relies on the mechanism knowing the signal prior, the

question is where this signal prior is coming from. As we will see, the signal

posterior of a third agent k can play this role.
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0 yk(2) = p(2|sk) 1p(2|1, sk) p(2|2, sk)

δ δ

Figure 4.1: An illustration of RBTS with two signals and Sk = sk. Only the beliefs
for signal 2 are presented (which imply the beliefs for signal 1). Note that yk(2) is
always strictly in between agent i’s two possible second-order posteriors p(2|1, sk) and
p(2|2, sk).

4.5.1 Mechanism

The Robust Bayesian Truth Serum (RBTS) is defined as:

1. Each agent i is asked for two reports:

• Signal report: Let xi ∈ {1, . . . ,m} be agent i’s reported signal.

• Prediction report: Let yi ∈ D be agent i’s reported signal poste-

rior.

2. For each agent i, select a reference agent k = i+2 (modulo n) and calculate

p′(·|xi, yk) =


yk(1)− δ

m−1
. . .

yk(xi) + δ

. . .

yk(m)− δ
m−1

 ,

where δ = min
(

min
s∈{1,...,m}

yk(s) · (m − 1), 1 − max
s∈{1,...,m}

yk(s)
)

, so that the

entries in p′(·|xi, yk) are in between 0 and 1.

3. For each agent i, choose peer agent j = i+ 1 (modulo n), and pay agent i:

ui(xi, xj , yk) = Rq
(
p′(·|xi, yk), xj

)︸ ︷︷ ︸
signal score

+ Rq
(
yi, xj

)︸ ︷︷ ︸
prediction score

.

where Rq is the quadratic scoring rule, xj is the signal report by peer

agent j, and yk is the prediction report of reference agent k.

4.5.2 Incentive Analysis

The intuition is the following (also compare Figure 4.1): agent i has the same

belief model as the other agents. Now imagine that before observing her own

signal, the mechanism tells agent i the signal observation Sk = sk of a third
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agent k. Before the actual game starts, agent i would then update her belief

about the world states from Pr(T ) to Pr(T |Sk = sk) given this signal sk. At this

point, i.e. before she observes her own signal, she then holds the same beliefs as

agent k because both agents started with the same belief model and updated

their beliefs using the same signal observation. In particular, agent k’s signal

posterior is then agent i’s signal prior.

The mechanism cannot tell agent i the signal of agent k before agent i

observes her own signal since one agent would have to start reporting, and that

agent would not have a predecessor from whom she could see the signal. Instead,

the mechanism ensures that, for any Sk = sk, agent i would want to continue

reporting her true signal if the mechanism showed sk to agent i in hindsight.

That is, the effect is the same as if the mechanism could show agent k’s signal

to agent i, because agent k’s signal posterior coincides with agent i’s “lifted”

signal prior for all possible of agent k’s signals. And so, while agent i does not

know this lifted signal prior, we can score her with the Shadowing Method using

the signal posterior report of agent k as her signal prior.

Analogously to p(·) and p(·|·), let p(sj |si, sk) = Pr(Sj = sj |Si = si, Sk =

sk) be the second-order signal posterior given signals Si = si and Sk = sk.

Recall that the identities of agents do not play a role, so that, for example,

p(·|1, 2) = p(·|2, 1). Note that the Shadowing Method (Section 3.6) generalizes

in the natural way if agent i, before coming to the mechanism, already observed

a sequence of other signals. In particular, the Shadowing Method is strictly

truthful if agent i already observed signal s′′ before coming to the mechanism

and if p(s|s, s′′) − p(s, s′′) > p(s′|s, s′′) − p(s′, s′′) for all s, s′, s′′ ∈ {1, . . . ,m}
with s′ 6= s.

Theorem 4.5. The Robust Bayesian Truth Serum is strictly BNIC for any

n ≥ 3 if p(s|s, s′′)− p(s|s′′) > p(s′|s, s′′)− p(s′|s′′) for all s, s′, s′′ ∈ {1, . . . ,m}
with s′ 6= s.

Proof. Fix some i, peer j and reference k, and assume agents j and k report

truthfully. It needs to be shown that it is the unique best response for agent i

to report truthfully. The best response conditions for xi and yi can be analyzed

for each report type separately, because yi affects only the prediction score,

and xi affects only the information score. Noting that strict incentives for the

prediction report yi follow directly from the use of the strictly proper quadratic

scoring rule (Corollary 3.4), we focus on xi.

Let Sk = sk and so yk = p(·|sk). Conditioned on agent i’s own signal

Si = si and this additional signal information, agent i’s second-order signal

posterior is p(·|si, sk). By Theorem 3.7 it is sufficient that p(si|si, sk)−p(si|sk) >

p(s′|si, sk)− p(s′|sk) for all si, sk, s
′ ∈ {1, . . . ,m} with s′ 6= si.
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4.6 The 2-Agent RBTS

In this section, I present an implementation of RBTS that uses only two agents

instead of three. Instead of shadowing from the prediction report of a third

agent, it shadows from the prediction report of the peer agent while still using

the peer agent’s signal report as the event that is to be predicted. This double

use of the peer agent requires a more complex incentive analysis. In contrast

to the regular RBTS from Section 4.5, I only analyze the 2-Agent RBTS for

binary signals. A generalization of the analysis to three or more signals is left

for future work.

4.6.1 Mechanism

The 2-Agent Robust Bayesian Truth Serum (RBTS) is defined as:

1. Each agent i is asked for two reports:

• Signal report: Let xi ∈ {1, 2} be agent i’s reported signal.

• Prediction report: Let yi ∈ D be agent i’s reported signal poste-

rior.

2. For each agent i, choose peer agent j = i + 1 (modulo n), and calculate

shadow posterior

p′(·|xi, yj) =



(
yj(1) + δ

yj(2)− δ

)
if xi = 1

(
yj(1)− δ
yj(2) + δ

)
if xi = 2,

where δ = min
(
yj(1), yj(2)

)
.

3. For each agent i, pay agent i:

ui(xi, xj , yj) = Rq
(
p′(·|xi, yj), xj

)︸ ︷︷ ︸
signal score

+ Rq
(
yi, xj

)︸ ︷︷ ︸
prediction score

.

where Rq is the quadratic scoring rule, xj is the signal report by peer

agent j, and yj is the prediction report of peer agent j.

4.6.2 Incentive Analysis

Theorem 4.6. The 2-Agent RBTS is strictly BNIC if p(s|s) > p(s|s′) for all

s, s′ ∈ {1, 2} with s′ 6= s.
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Proof. WLOG, let agent i observe signal Si = s. Compare the truthful report

xi = s to the report of some other signal xi = s′ 6= s. The particular thing

about the analysis of the 2-agent RBTS is that peer agent j is used for both

the belief report that is shadowed from as well as for the signal agent i is scored

against. When building an expectation, agent i would want to report “all the

way” to the vector that reflects the certainty about sj (in case Sj = sj , her

belief about the event Sj = sj is 1). Let 1sj denote the vector that has entry 1

in row sj and 0 in the other row, so that 1sj (s) = 1 if sj = s and 0 otherwise.

With agent j truthful, we can write p′(·|·, sj) instead of p′(·|·, yj) and agent

i’s shadow posterior (for arbitrary s, s′, sj ∈ {1, 2}) is

p′(s|s′, sj) =

{
p(s|sj) + δ if s′ = s

p(s|sj)− δ else.

Using Rq’s quadratic loss, strict truthfulness is thus equivalent to (Lq still takes

the report and the belief):

ESj

[
ui
(
s, Sj , p(·|Sj)

)]
> ESj

[
ui
(
s′, Sj , p(·|Sj)

)]
⇔

2∑
sj=1

p(sj |s) · Lq
(
p′(·|s, sj)

∣∣1sj)︸ ︷︷ ︸
Expected loss reporting xi=s ifSj=sj , weighted with probability thatSj=sj

<

2∑
sj=1

p(sj |s) · Lq
(
p′(·|s′, sj)

∣∣1sj)︸ ︷︷ ︸
Expected loss reporting xi=s′ ifSj=sj , weighted with probability thatSj=sj

(4.1)

Note that the loss is between reporting the shadow posterior and report-

ing 1sj , and not between the shadow posterior and the second-order posterior

p(·|si, sj)! This is because signal sj is also the signal agent i is scored against.

Shadow posteriors p′(sj |s, s′′) and p′(sj |s′, s′′) differ only in rows s and s′,

so we can simplify the Lq part:

m∑
sj=1

p(sj |s) · Lq
(
p′(·|s, sj)

∣∣1sj) < m∑
sj=1

p(sj |s) · Lq
(
p′(·|s′, sj)

∣∣1sj)
⇔

m∑
sj=1

p(sj |s) ·
((
p′(s|s, sj)− 1sj (s)

)2
+
(
p′(s′|s, sj)− 1sj (s′)

)2)
<

m∑
sj=1

p(sj |s) ·
((
p′(s|s′, sj)− 1sj (s)

)2
+
(
p′(s′|s′, sj)− 1sj (s′)

)2)
(4.2)

To break down 1sj and simplify this equation with regard to the summation, I

distinguish two cases:

1. Sj = s, which occurs with probability p(s|s).
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Reporting xi = s (left side of inequality):

p(s|s) ·
((
p′(s|s, s)− 1s(s)

)2
+
(
p′(s′|s, s)− 1s(s

′)
)2)

=p(s|s) ·
((

1− p′(s|s, s)
)2

+ p′(s′|s, s)2
)

Reporting xi = s′ (right side of inequality):

p(s|s) ·
((
p′(s|s′, s)− 1s(s)

)2
+
(
p′(s′|s′, s)− 1s(s

′)
)2)

=p(s|s) ·
((

1− p′(s|s′, s)
)2

+ p′(s′|s′, s)2
)

2. Sj = s′, which occurs with probability p(s′|s) = 1− p(s|s):

Reporting xi = s:

p(s′|s) ·
((
p′(s|s, s′)− 1s′(s)

)2
+
(
p′(s′|s, s′)− 1s′(s

′)
)2)

=p(s′|s) ·
(
p′(s|s, s′)2 +

(
1− p′(s′|s, s′)

)2)

Reporting xi = s′:

p(s′|s) ·
((
p′(s|s′, s′)− 1s′(s)

)2
+
(
p′(s′|s′, s′)− 1s′(s

′)
)2)

=p(s′|s) ·
(
p′(s|s′, s′)2 +

(
1− p′(s′|s′, s′)

)2)

Putting this together, we obtain (with s′ 6= s):

2∑
sj=1

p(sj |s) · Lq
(
p′(·|s)

∣∣1sj) < 2∑
sj=1

p(sj |s) · Lq
(
p′(·|s′)

∣∣1sj)
⇔ p(s|s) ·

((
1− p′(s|s, s)

)2
+ p′(s′|s, s)2

)
+
(
1− p(s|s)

)
·
(
p′(s|s, s′)2 +

(
1− p′(s′|s, s′)

)2)
< p(s|s) ·

((
1− p′(s|s′, s)

)2
+ p′(s′|s′, s)2

)
+
(
1− p(s|s)

)
·
(
p′(s|s′, s′)2 +

(
1− p′(s′|s′, s′)

)2)
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⇔ p(s|s) ·
((

1−
(
p(s|s) + δ

))2
+
(
p(s′|s)− δ

)2)
+
(
1− p(s|s)

)
·
((
p(s|s′) + δ

)2
+
(

1−
(
p(s′|s′)− δ

))2)
< p(s|s) ·

((
1−

(
p(s|s)− δ

))2
+
(
p(s′|s) + δ

)2)
+
(
1− p(s|s)

)
·
((
p(s|s′)− δ

)2
+
(

1−
(
p(s′|s′) + δ

))2)
⇔︸︷︷︸
δ>0

p(s|s) > p(s|s′)

4.7 Comparison of Mechanisms

Analogous to the 1/prior mechanism and the Shadowing Method in Chapter 3,

the 1/posterior BTS and the Robust Bayesian Truth Serum (RBTS) require

different conditions for strict truthfulness (compare Theorem 4.4 and Theo-

rem 4.5). Therefore, as in Section 3.7, the first question is how these conditions

compare to each other. As we will see, the conditions for strict truthfulness

are identical for binary signals and incomparable for more than two signals.

The truthfulness conditions are not the only property where the mechanisms

differ. In particular, depending on which version of RBTS is used, it requires

2 or 3 agents, whereas the 1/posterior BTS always requires only 2 agents. A

perhaps more important distinction is that the ex post payments of RBTS are

bounded whereas the ex post payments computed by the 1/posterior BTS can

be arbitrarily large.

4.7.1 Truthfulness Conditions

Theorem 4.7. With binary signals, the conditions for strict truthfulness re-

quired by the 1/posterior BTS and the 2-Agent Robust Bayesian Truth Serum

are identical.

Proof. The statement follows directly from Theorems 4.4 and 4.6.

Theorem 4.8. With more than two signals, the conditions for strict truthful-

ness required by the 1/posterior BTS and the Robust Bayesian Truth Serum

(RBTS) are incomparable.

Proof. The proof is by example. An example of beliefs, where RBTS is strictly
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truthful and the 1/posterior BTS is not, is the following with m = 3 signals:

Pr(T ) =

 0.1

0.8

0.1



Pr(S|T ) =

 0.5 0.2 0.35

0.3 0.75 0.25

0.2 0.05 0.4

 .

This results in signal prior

p(·) = Pr(S|T )× Pr(T ) =

 0.245

0.655

0.1


and signal posterior matrix

p(·|·) =

 0.28265306 0.21946565 0.32

0.58673469 0.71030534 0.46

0.13061224 0.07022901 0.22

 .

The second-order signal posterior matrices are

p(·|·, Sk = 1) =

 0.33483755 0.24043478 0.359375

0.49909747 0.6726087 0.390625

0.16606498 0.08695652 0.25



p(·|·, Sk = 2) =

 0.24043478 0.20781838 0.27173913

0.6726087 0.73457818 0.5826087

0.08695652 0.05760344 0.14565217



p(·|·, Sk = 3) =

 0.359375 0.27173913 0.36363636

0.390625 0.5826087 0.30454545

0.25 0.14565217 0.33181818

 .

First note that the signal posterior matrix does not satisfy p(s|s) > p(s|s′) for

all s, s′ ∈ {1, . . . ,m} with s′ 6= s since p(1|1) = 0.28265306 6> 0.32 = p(1|3).

Comparing the signal posterior matrix with the second-order signal posterior

matrix, one can verify that p(s|s, s′′) − p(s|s′′) > p(s′|s, s′′) − p(s′|s′′) for all

s, s′, s′′ ∈ {1, . . . ,m} with s′ 6= s.

Similarly, an example of beliefs, where the 1/posterior BTS is strictly truth-
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ful but RBTS is not is the following with m = 3 signals:

Pr(T ) =

 0.55

0.2

0.25



Pr(S|T ) =

 0.45 0.75 0.1

0.35 0.2 0.75

0.2 0.05 0.15

 .

This results in signal prior

p =

 0.4225

0.42

0.1575


and signal posterior matrix

p(·|·) =

 0.53579882 0.32232143 0.38571429

0.3204142 0.51428571 0.43571429

0.14378698 0.16339286 0.17857143


which satisfies p(s|s) > p(s|s′).

The second-order signal posterior matrices are:

p(·|·, Sk = 1) =

 0.59522363 0.46800554 0.4654321

0.279873 0.37216066 0.35617284

0.12490337 0.1598338 0.17839506



p(·|·, Sk = 2) =

 0.46800554 0.23324653 0.31530055

0.37216066 0.60486111 0.50956284

0.1598338 0.16189236 0.17513661



p(·|·, Sk = 3) =

 0.4654321 0.31530055 0.38533333

0.35617284 0.50956284 0.42733333

0.17839506 0.17513661 0.18733333

 .

This model does not satisfy the RBTS condition p(s|s, s′′)−p(s|s′′) > p(s′|s, s′′)−
p(s′|s′′) for all s, s′, s′′ ∈ {1, . . . ,m} with s′ 6= s because 0.0346080794799 =

0.178395061728 − 0.143786982249 = p(3|3, 1) − p(3|1) <= p(2|3, 1) − p(2|1) =

0.356172839506− 0.320414201183 = 0.0357586383227.
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4.7.2 Other Properties

Theorem 4.8 states that the conditions required for strict truthfulness of the

1/posterior BTS and RBTS are incomparable. However, the truthfulness con-

ditions are not the only difference between the two mechanisms. For example,

the number of required agents is n ≥ 3 for multi-signal RBTS and only n ≥ 2

for multi-signal 1/posterior BTS (both require n ≥ 2 for binary signals). This

is not a major difference since one would expect the designer to ask for three

or more reports for information aggregation purposes anyways in these complex

settings, where minority opinions may be correct.

A more important difference between the two mechanisms stems from the

fact that—in contrast to the mechanisms of Chapter 3, where the known sig-

nal prior is used to score agent i—the beliefs yj (in 1/posterior BTS) or yk

(in RBTS) are reported by agents. This has implications on the mechanisms’

payments in the worst case. In particular, Theorems 4.9 and 4.10 show that

while the ex post payments using 1/posterior BTS are unbounded, i.e. can get

arbitrarily large, the ex post payments using RBTS are bounded. Moreover,

in RBTS, this upper bound can be set to any value chosen by the designer.

Bounded ex post payments are crucial in practice because the designer can set

an upper bound on its willingness to pay. For example, the designer may want

to cap payments for a single report at $0.50. With 1/posterior BTS, there is no

such cap and the designer could end up having to pay any high amount (it is

unbounded, so the worst case is an infinite amount). Furthermore, unbounded

ex post payments may also increase a mechanism’s susceptibility to collusion

since the agents’ profit from coordinating reports would be infinite.

Theorem 4.9. The ex post scores in the 1/posterior BTS can be unbounded.

Proof. Imagine there are m = 2 signals and agents i and j report:

xi = xj = 1

yi = yj =

(
ε

1− ε

)

Then, the ex post score to each agent is 1
ε which goes to infinity for ε→ 0.

Theorem 4.10. The ex post scores in the Robust Bayesian Truth Serum are

in [0, 2] for any reports from agents including yi(s) = 0 for any s ∈ {1, . . . ,m},
and thus RBTS is ex post individually rational and numerically robust.

Proof. The quadratic scoring rule Rq(y, ω) is well-defined for any input y ∈ D
and ω ∈ {0, . . . ,m}, and generates scores on [0, 1]. The inputs to Rq for com-

puting the information score are y := p′(·|xi, yk) ∈ D and ω := xj ∈ {0, . . . ,m}.

59



The inputs for computing the prediction score are y := yi ∈ D and ω := xj ∈
{0, . . . ,m}.

This has a nice implication: for a designer with a budget B > 0, a straight-

forward extension of RBTS is to multiply Rq with a positive scalar α > 0 to

implement a mechanism that conforms with any budget constraint, since the

total ex post cost is upper-bounded by 2αn.

A simple randomized extension of multi-signal RBTS achieves constant ex

post budget of B > 0 for groups of n ≥ 4 by randomly excluding an agent

from the population, running RBTS with budget B > 0 on the remaining n− 1

agents, and redistributing whatever remains from B to the excluded agent.

This extension to RBTS remains strictly incentive compatible when the agents

do not know which of them is the excluded agent. While multiple equilibria

cannot be avoided in peer prediction settings without trusted reports [Jurca and

Faltings, 2005; Waggoner and Chen, 2013], this randomized extension ensures

that the agents’ scores in the truthful equilibrium cannot be less than in any

other equilibrium. Moreover, by sacrificing ex post individual rationality, the

same technique can be used to implement a mechanism with B = 0.

In contrast to BTS, RBTS easily adapts to online polling settings, where

the mechanism publishes partial information about reports as agents arrive.

Since RBTS achieves incentive compatibility for any group with n ≥ 3 agents,

the mechanism can sequentially score groups of three, and subsequently release

their reports. The 1/posterior BTS also has this property.

4.8 Conclusion

In this chapter, I introduced Bayesian Truth Serum mechanisms that take the

same inputs as the original Bayesian Truth Serum but achieve strict Bayes-

Nash incentive compatibility for small populations. My Robust Bayesian Truth

Serum (RBTS) is strictly truthful for every number of agents n ≥ 3, the 2-Agent

RBTS is strictly truthful for every number of agents n ≥ 2, but restricted to

binary signals.

I believe RBTS can have practical impact, providing a more principled ap-

proach to incentivize small groups of workers on crowdsourcing platforms such

as Amazon Mechanical Turk, where the original Bayesian Truth Serum has

already been shown to be useful for quality control [Shaw et al., 2011].

There are two interesting directions for future work. The first is to gener-

alize the analysis of the 2-Agent RBTS to more than two signals. The second

is to extend the analysis to different agent types, reflecting how different parts

of the population evaluate the same experience. For example, elderly couples
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and college students may have different understandings of what constitutes a

good hotel. In fact, booking.com2 already recognizes this and lets users sort

hotel reviews according to different reviewer types, such as “mature couples”

and “solo travelers.” When adapting RBTS to this model, the format of the sig-

nal and the prediction report could stay the same. The prediction report could

also continue to be scored as is. What would need to change is the incentive

analysis of the signal report, incorporating the distribution over reviewer types

and their respective signal posteriors. It will be interesting to see under which

conditions the current RBTS design continues to be truthful in this model. Sim-

pler approaches that penalize disagreement of the prediction reports amongst

agents who report the same signal do not seem amenable to these heterogeneous

settings.

2http://www.booking.com
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Chapter 5

Subjective-Prior Peer

Prediction

The classical peer prediction method (Chapter 2) is strictly truthful but re-

lies on a common belief model, shared by all agents and the mechanism. The

Shadowing Method (Chapter 3) relaxes this assumption, in that the agents

share a common belief model but the mechanism only needs to know the signal

prior. Bayesian Truth Serum mechanisms (Chapter 4) further relax the common

knowledge required by the mechanism in that the commonly-held belief model

need not be known by the mechanism. However, all mechanisms we have seen so

far still assume that the belief model is shared among all agents. For example,

while Bayesian Truth Serum mechanisms do not require the mechanism to know

the belief model, all agents still need to share the same model.

To support these assumptions, the authors of the classical peer prediction

method (Chapter 2) suggest that, in the context of feedback about a product

or service, the rating history can be leveraged in order to allow the mechanism

to estimate the belief model. This, however, leaves open the question as to how

the rating history itself was built: either people reported truthfully without

an incentive-compatible mechanism in place (and there is no design problem)

or people reported dishonestly, in which case the mechanism cannot use these

reports to learn the correct belief model. Beyond this difficulty, there remains

the concern that every user must share the same belief model, something that

seems unreasonable in practice.

Relaxing this assumption of a common belief model is the focus of this chap-

ter, and I introduce two mechanisms that provide strict incentives for truthful

reports in equilibrium while allowing participants to have subjective and private

models. Both mechanisms ask a user for two reports: one before she observes
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her signal and one afterwards. The ability to enforce this temporal separation is

critical but seems reasonable in many applications. For example, a travel site

could ask a user for her opinion about a hotel at the time of booking and then

again after her stay.

I first introduce the basic subjective-prior peer-prediction mechanism (BSPP),

that requires an agent to report two belief reports about the signal that another

agent will receive, one before and one after receiving her own signal. BSPP is

strictly incentive compatible, and infers the agent’s signal from the change in

her belief reports. Building on this, I introduce and analyze the equilibrium of

a mechanism in which an agent’s first belief report is followed by only a signal

report. In this candidate mechanism, truthful reporting of the signal, but not

of the belief, is an equilibrium. Computing an agent’s optimal belief misre-

port, I then construct the strictly incentive compatible shadow subjective-prior

peer-prediction mechanism (SSPP) via an application of the revelation princi-

ple [Gibbard, 1973; Green and Laffont, 1977; Myerson, 1979, 1981], simulating

this misreport on behalf of an agent. Moreover, I present a special case of SSPP

that has a very simple and intuitive form.

The main technical innovation is to apply the Shadowing Method (Chap-

ter 3) to an agent’s own prediction report, which requires a more complex anal-

ysis because it introduces sequential reasoning on behalf of the agent. More

specifically, since the signal report of an agent will be scored using the Shadow-

ing Method applied to her own prediction report, when reporting her prediction

report, she not only considers her prediction score but already incorporates the

implications on her signal score.

The only knowledge SSPP requires about the agents’ belief models is that

the effect an agent’s signal has on her signal posterior is bounded away from

zero. This technical requirement in regard to the minimal informativeness of

signals given the agents’ beliefs is not required for the strict incentives of BSPP,

in which the second report is a belief report rather than a signal report.

In moving from a common knowledge setting to one with private and sub-

jective belief models, an important consideration is the amount of additional

information that must be elicited from a participant over and above a signal

report. Indeed, in the original paper of the classical peer prediction method,

Miller et al. [2005] had suggested the possibility of incentive compatible peer

prediction with subjective and private belief models. In a brief treatment, they

proposed an approach in which, in addition to her own signal, a user also re-

ports her belief on the world state and her belief on the probability of receiving

each possible signal, conditioned on each possible state. In comparison, both

BSPP and SSPP are considerably simpler with respect to the reporting costs,

and thus likely more practical. In fact, my analysis suggests a trade-off between
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the robustness of incentive properties and the reporting requirements, given

that SSPP but not BSPP requires the technical requirement on the minimal

informativeness of signals.

A limitation of both BSPP and SSPP relative to the original peer predic-

tion method is that in its current form, its application is restricted to domains

with binary signals. However, many interesting applications of peer prediction

mechanisms are to settings with binary signals. For example, blogs and online

forums allow users to vote whether a post was helpful or not. Similarly, so-

cial networking websites, such as Facebook and Google+, allow users to “like”

or “+1” other users’ comments. Hotel booking websites, such as Expedia and

Hotwire, ask customers after their stay whether they “would recommend this

hotel to a friend,” and the report as to whether a given website contains offen-

sive content, is binary, too. I leave the extension to multiple signals for future

work.

The remainder of this chapter is organized as follows. After referencing

related work specific to the subjective model used in this chapter in Section 5.1,

I explain the difference of the model used in this chapter as compared to the

standard model in Section 5.2. In Section 5.3, I then introduce and analyze the

basic subjective-prior peer prediction mechanism (BSPP), which asks for two

belief reports. In Section 5.4, I introduce the candidate shadow subjective-prior

peer prediction mechanism (Candidate SSPP), a first attempt at a subjective-

prior mechanism that requires only a belief and a signal report. While Compact

SSPP’s belief report is not truthful, its incentive analysis leads to the design of

the shadow subjective-prior peer prediction mechanism (SSPP) that I introduce

in Section 5.5. An observation in SSPP’s payment rule leads to its compact,

intuitive form (Compact SSPP), which I describe in Section 5.5.2. I conclude

the chapter with a discussion of considerations when applying these mechanisms

and interesting directions for future work in Section 5.6.

5.1 Related Work

In addition to the related work on peer prediction mechanisms introduced in

Chapters 2 to 4, there is additional related work particular to this chapter.

Various notions of subjective, self-confirming and conjectural equilibria ap-

pear in the game theory literature, although normally studied in repeated con-

texts [e.g. Kalai and Lehrer, 1993; Battigali et al., 1992]. The most related

concept to the solution concept used in this chapter is that of Rubinstein and

Wolinsky [1984], who propose rationalizable conjectural equilibria in the context

of a one-shot game, but without my notion of ex post robustness and strict un-

certainty about the other agents’ belief types. In addition, they require agent
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observations in regard to the play of others and consistency of beliefs relative

to these observations. I model a single interaction between an agent and a peer

prediction mechanism, and the agent is unable to make any observations about

the actions of her peer agent (against which she is scored.)

5.2 Model

The model of this chapter is the binary-signal variation of the standard model

(Section 2.1), where each agent has her own subjective belief model, which is

unknown to the mechanism.

Definition 12. The subjective belief model of agent i is referred to as agent

i’s belief type θi ∈ Θ, and denoted with a subscript indicating the agent, i.e.

Pri(T ) and Pri(S|T ).

Analogously, the shorthand notation for subjective signal prior and subjec-

tive signal posteriors resulting from the agent’s belief type also takes a subscript

indicating the agent, i.e. pi(·) and pi(·|·). In this chapter, I consider only bi-

nary signals, i.e. m = 2, and I will refer to signal 1 as the low signal and to

signal 2 as the high signal. Note that with binary signals, pi(2) and pi(2|·)
fully capture agent i’s subjective beliefs about her peer agent’s signal, because

pi(1) = 1− pi(2) and pi(1|s) = 1− pi(2|s) for any s ∈ {1, 2}.

5.3 Basic Subjective-Prior Peer Prediction Mech-

anism (BSPP)

In handling private and subjective belief models, in place of the usual Bayes-

Nash equilibrium analysis of peer prediction mechanisms, I analyze the sub-

jective equilibrium of a mechanism. Informally, this requires that each agent

best-responds to the strategy of every other agent given her own subjective be-

lief model, and given strict uncertainty about the belief models of other agents.

Put differently, agents form subjective beliefs about the signals received by other

agents but are not required to have beliefs about the subjective beliefs of other

agents.

There are two problems in extending the classical peer prediction method

to incorporate subjective belief models. First, it is no longer sufficient for the

mechanism to only ask for signal reports because it would not be able to infer

signal posteriors. This could be solved by eliciting signal posteriors, but then

we would run into a second problem: without the belief model being common

knowledge, eliciting only the signal posterior does not enable the mechanism to
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infer the agent’s signal. In addition to the signal being the only objective piece

of information, eliciting the signal is crucial because it is used as the event that

another agent shall predict.

Example 6. Consider the numbers from Example 1 in Section 2.2, i.e. m = 2,

Pr(T = 2) = 0.3, Pr(S = 2 | T = 2) = 0.6, and Pr(S = 2 | T = 1) = 0.1.

Assume the mechanism asked for signal posteriors and agent i observed Si = 2.

Even if she truthfully reported

yi =

(
p(1|2)

p(2|2)

)
=

(
0.54

0.46

)
,

the mechanism could not infer agent i’s signal without knowledge of her subjec-

tive belief model because the same signal posterior could also stem from a low

signal, i.e. Si = 1, in a setting with Pr(T = 2) = 0.853 and the same conditional

signal beliefs.

As a possible solution for settings with private and subjective belief models,

the authors of the classical peer prediction method (Chapter 2) briefly discuss

the possibility of a direct-revelation approach where the agents are asked to

report both the entire belief model (Pri(T ) and Pri(S|T )) and the signal it-

self. In fact, this approach is not strictly truthful if all information is reported

simultaneously.

Example 7. Consider again the numbers from Example 1 in Section 2.2: if

agent i observes a high signal, i.e. Si = 2, a truthful report of Pr(T = 2) = 0.3,

Pr(S = 2 | T = 2) = 0.6, and Pr(S = 2 | T = 1) = 0.1, in addition to the

truthful signal report xi = 2, yields the same payment as a misreport of a low

signal, i.e. xi = 1, with beliefs Pr(T = 2) = 0.853, Pr(S = 2 | T = 2) = 0.6 and

Pr(S = 2 | T = 1) = 0.1, because the induced signal posteriors of these models

are the same (compare Example 6).

Of course, if strict truthfulness is not required, the naive mechanism that asks

only for a signal report and pays each agent a constant amount independent of

the reported signal is a much simpler, weakly truthful solution.

While the authors of the classical peer prediction method do not mention

this, their direct-revelation approach can be made strictly truthful by temporal

separation. The mechanism must ensure that the agent reports her subjective

probabilistic model before receiving her signal. Nevertheless, this direct ap-

proach appears impractical because of its high reporting costs. Observe that in

the case of two states and two signals, an agent has to report three probabilities

and a signal. These reporting costs grow with the number of states, so that with

three states and two signals, it would already require each agent to report five
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Belief Model
common subjective

public Classical Peer Prediction (Classical Peer Prediction)
private Bayesian Truth Serums this chapter

Table 5.1: Overview of belief models assumed by different peer prediction mechanisms.

probabilities and a signal. Therefore, a different approach is required for set-

tings with subjective belief models, in order to design a mechanism that is both

strictly incentive compatible, and feasible with respect to the agents’ reporting

costs.

I deviate from the classical peer prediction method in two aspects. First,

every agent has her own subjective belief type in regard to the world state and

the way in which signals are generated given each state. Second, this belief

type is private to an agent and not known by other agents or the mechanism.

The difficulty comes from the second relaxation: if the mechanism knew each

agent’s subjective beliefs, it could still compute the possible posterior beliefs

for the other agent’s signal and the classical peer prediction method could be

applied.

Bayesian Truth Serum mechanisms (Chapter 4) provide a solution when all

agents share a common belief model, but where this model is not known by

the mechanism. In addition to the signal report, these mechanisms ask agents

to report their posterior signal beliefs and score agents on the basis of both of

these reports. Table 5.1 provides a summary of the different settings. In the

remainder of this thesis, I will use “subjective” to mean private and subjective.

In what follows I provide a first proposal, the basic subjective-prior peer-

prediction mechanism (BSPP), for the setting of private and subjective belief

models.

5.3.1 Mechanism

The basic subjective-prior mechanism (BSPP) is defined as:

1. Ask agent i for her signal prior report yi ∈ D.

2. Agent i observes signal Si = si.

3. Ask agent i for her signal posterior report zi ∈ D, enforcing zi 6= yi.

4. Infer agent i’s implicit signal report xi by applying

xi =

{
2, if zi(2) > yi(2)

1, if zi(1) > yi(1)
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5. For each agent i, choose peer agent j = i+ 1 (modulo n) and pay agent i:

ui
(
yi, zi, xj

)
= R

(
yi, xj

)
+R

(
zi, xj

)
,

where R is a strictly proper scoring rule, and xj is the inferred signal

report of peer agent j.

As we will see, the true signal prior and the true signal posterior cannot

be the same given stochastic relevance, so that zi 6= yi is not restrictive for a

truthful agent.1

5.3.2 Incentive Analysis

The equilibrium concept used in this chapter does not require agent i to form

beliefs about the belief types of other agents.

Definition 13. Agent i’s strategy σi in the BSPP mechanism consists of two

components. Component σi(θi) takes one argument with σi : Θ→ [0, 1], defin-

ing agent i’s first report for every possible belief type, and component σi(θi, si)

takes two arguments with σi : Θ × {1, 2} → [0, 1], defining agent i’s report for

every possible belief type and every possible signal observation Si = si.

Definition 14. Strategy profile (σ∗1 , . . . , σ
∗
n) is an ex post subjective equilibrium

of the BSPP mechanism with n agents if

ESi,Sj

[
ui
(
σ∗i (θi), σ

∗
i (θi, Si), Sj

)]
+ ESj

[
ui
(
σ∗i (θi), σ

∗
i (θi, si), Sj

)
| Si = si

]
≥ ESi,Sj

[
ui
(
σi(θi), σi(θi, Si), Sj

)]
+ ESj

[
ui
(
σi(θi), σi(θi, si), Sj

)
| Si = si

]
for all i ∈ {1, . . . , n}, j = i + 1 (modulo n), all si ∈ {1, 2}, and all σi 6= σ∗i .

It is a strict ex post subjective equilibrium if the inequality is strict.

In this equilibrium concept, each agent i is best-responding to the strategy

of every other agent given knowledge of her own type (i.e., her own subjective

belief model) and given common knowledge of rationality. The equilibrium is

subjective because it allows for each agent to have a distinct belief type, and

ex post because it allows for strict uncertainty in regard to the types of other

agents. Ex post subjective equilibrium is strictly more general than Bayes-Nash

equilibrium (BNE) because it coincides with BNE when all agents have the

1To keep the user interface simple, a practical deployment might allow the two reports
from an agent to be equal and still pay the agent as described. In this case, the method
would skip agent i’s role as peer agent for agent i− 1 (modulo n). In the extreme case, where
there is some agent i for which all other agents j 6= i report zj = zj , a practical deployment
could score i against a random signal. It bears emphasis that these details do not affect the
equilibrium analysis, but are all robustness issues in regard to a practical deployment.
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same belief type. Since agent i’s best response still depends on peer agent j’s

report, ex post subjective equilibrium is less general than dominant strategy

implementation. The solution concept used in this chapter is thus strictly in

between these two well-known solution concepts.

We are interested in ex post subjective incentive compatible mechanisms,

where all agents i play the truthful strategy σ1
i (θi) = pi(2) and σ2

i (θi, si) =

pi(2|si) is an equilibrium. That is, every agent reports her true signal prior

pi(2) = Pri(Si = 2) and then her true signal posterior pi(2|si) = Pri(Sj =

2 | Si = si). A mechanism is strictly incentive compatible when the equilibrium

is strict.

It is critical for the incentive properties of BSPP that Step 1 happens before

the agent observes signal Si and Step 3 happens after the agent has observed

signal Si. This is the property of temporal separation. In establishing incentive

compatibility, we need Lemma 5.1.

Lemma 5.1. Stochastic relevance of θi implies pi(2|2) > pi(2) and pi(2|1) <

pi(2).

Proof. The statement follows directly from Corollary 3.6 and Theorem 3.9.

In words, agent i’s belief that another agent receives signal 2 strictly increases

from her signal prior in the event that she observes signal 2. Analogously, her

belief that another agent receives signal 2 strictly decreases relative to her signal

prior if she observes signal 1.

Theorem 5.2. BSPP is strictly ex post subjective incentive compatible if stochas-

tic relevance holds for every agent’s belief type and given temporal separation.

Proof. Assume peer agent j is truthful. First, for agent j’s inferred signal report

it holds that xj = sj with Sj = sj . To see this, verify that by Lemma 5.1 it

holds that zj(2) = pj(2|sj) > pj(2) = yj(2) if and only if sj = 2, and that

zj(2) = pj(2|sj) < pj(2) = yj(2) if and only if sj = 1. It follows that agent i

has strict incentives to report yi and zi truthfully, with respect to her subjective

belief type because her score is the sum of two proper scoring rules applied to

xj and recognizing that the inference in regard to xi does not affect agent i’s

score.

5.3.3 Individual Rationality

In contrast to the classical peer prediction method (Chapter 2), the particular

choice of scoring rule matters as to whether BSPP provides individual ratio-

nality. In particular, the logarithmic scoring rule Rlog (Section 2.5.1) cannot
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provide individual rationality for BSPP. This is because an agent’s signal poste-

rior pi(2|si) can take values arbitrarily close to 0, and thus there is no suitable

constant the mechanism could add to always make the score non-negative.

Instead, we can adopt a strictly proper scoring rule that guarantees non-

negative values for every possible report, so that there is no need for adding a

lower bound. An example for such a rule is the quadratic scoring rule Rq, which

was introduced in Section 3.4. For binary events, i.e. Ω = {1, 2}, the normalized

quadratic scoring rule simplifies to:

Rq(y, ω) = y(ω)− 0.5
(
y(ω)2 +

(
1− y(ω)

)2)
+ 0.5

= 2y(ω)− y(ω)2,
(5.1)

which, written out for ω = 1, 2 and with the agent only reporting her belief for

a high signal y(2), results in:

Rq
(
y(2), ω = 2

)
= 2y(2)− y(2)2

Rq
(
y(2), ω = 1

)
= 1− y(2)2.

(5.2)

Example 8. Consider again the ad exchange example from Section 2.2 with

numbers m = 2, Pri(T = 2) = 0.3, Pri(S = 2 | T = 2) = 0.6, and Pri(S =

2 | T = 1) = 0.1. The procedure using BSPP together with the quadratic scoring

rule Rq is then as follows:

1. Worker i accepts the task that was posted on Amazon Mechanical Turk

by the ad exchange. She is asked for her signal prior report of observing

violence, and she truthfully reports

yi(2) = 0.25.

2. A website that may or may not contain violent content is shown to worker i

and, after looking at it carefully, she is asked to report her signal posterior

of some other agent observing violence on that same website. She did not

observe violence, i.e. Si = 1, and so she updates her signal posterior to

pi(2|1) = 0.18 and truthfully reports

zi(2) = 0.18.

3. Another worker j 6= i also follows Steps 1 and 2, with potentially different

beliefs and experiences.

4. Worker i is scored against worker j’s implicitly reported signal xj. Assum-
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ing agent j also did not observe violent content on the website and reported

both signal prior and signal posterior truthfully, so that the implicit signal

report is xj = 1, agent i is paid

Rq(0.25, 1) +Rq(0.18, 1) = 2− 0.252 − 0.182 = 1.905.

5.4 Candidate Shadow Subjective-Prior Mecha-

nism (Candidate SSPP)

In this section, I modify the BSPP mechanism so that an agent’s second report is

a signal report rather than a belief report. I first introduce a candidate shadow

peer-prediction mechanism, in which the equilibrium provides strict incentives

for truthful signal reports but not for truthful belief reports. Section 5.4.2 pro-

vides an analysis of this mechanism, identifying the optimal deviation from the

true prior belief report. By making an appeal to the revelation principle from

mechanism design theory [Gibbard, 1973; Green and Laffont, 1977; Myerson,

1979, 1981], I then construct the shadow subjective-prior peer-prediction mech-

anism (Section 5.5), which is strictly incentive compatible for both reports.

5.4.1 Mechanism

The candidate shadow subjective-prior mechanism (Candidate SSPP) is defined

as:

1. (Stage 1) Ask agent i for her signal prior report yi ∈ D.

2. Agent i observes signal Si = si.

3. (Stage 2) Ask agent i for her signal report xi ∈ {1, 2}, and calculate

shadow posterior

p′(·|xi, yi) =



(
yi(1) + δ

yi(2)− δ

)
if xi = 1

(
yi(1)− δ
yi(2) + δ

)
if xi = 2,

where δ > 0 is a parameter of the mechanism.

4. For each agent i, choose peer agent j = i+ 1 (modulo n) and pay agent i:

ui
(
yi, xi, xj

)
= Rq

(
yi, xj

)
+Rq

(
p′
(
·|xi, yi

)
, xj

)
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where Rq is the binary quadratic scoring rule (Equation 5.2), and xj is

the signal report of peer agent j.

The shadow posterior p′
(
·|xi, yi

)
in Candidate SSPP might have entries that

fall outside [0, 1] but this is not a problem because the properties we need with

respect to the expected loss of the quadratic scoring rule are still well-defined

(see Definition 11, Theorem 3.2, and Corollary 3.3.).

5.4.2 Incentive Analysis

The subjective equilibrium concept and strict ex post subjective incentive com-

patibility extend in the natural way from Section 5.3.2. As in BSPP, each agent

is best-responding to the strategy of every other agent given knowledge of her

own belief type, and with strict uncertainty on the belief types of other agents.

The only difference to the concepts used there is that an agent’s second report

is now a signal and not a belief.

From a game-theoretic point of view, the key difference between BSPP and

Candidate SSPP is that in Candidate SSPP there is an interdependency between

an agent’s first and second report. Agent i’s first report yi has an influence on

the payment that she will receive for her second report xi through its effect

on p′
(
·|xi, yi

)
. This requires a careful incentive analysis involving two steps.

In Lemma 5.3, we first establish the optimal signal report given an already

reported, fixed signal prior. There are two cases (the third is symmetric): if the

reported signal prior is in between the two possible posteriors, then it is optimal

for the agent to report her signal truthfully. If the reported signal prior is lower

than both possible signal posteriors, then always reporting signal 2, independent

of the observed signal is optimal. (In the symmetric case where the reported

signal prior is higher than both possible posteriors, always reporting signal 1

is optimal.) Proposition 5.4 then compares the expected utility of these two

cases, and derives the condition that needs to hold such that a signal report in

between the two possible posteriors followed by the truthful report of the signal

has higher expected utility than reporting a signal prior that is lower than both

possible posteriors followed by signal report 2 (or the symmetric case).

Lemma 5.3 is a slight generalization of Theorem 3.5 (p. 31), in that the three

different cases are spelled out.

Lemma 5.3. In Candidate SSPP, given signal prior report yi and realized signal

Si = si, agent i’s optimal signal report xi (assuming peer agent j is truthful)

depends on her prior signal belief report yi as follows:

1. If yi(2) < pi(2|si), then she has a strict preference to report xi = 2.
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2. If yi(2) = pi(2|si), then she is indifferent between xi ∈ {1, 2}.

3. If yi(2) > pi(2|si), then she has a strict preference to report xi = 1.

In particular, if pi(2|1) < yi(2) < pi(2|2), then the truthful report xi := si is

optimal.

Proof. Fix belief report yi and true signal si, and assume peer agent j’s signal

report is truthful. From Corollary 3.3 it follows that agent i should report xi

that leads to a shadow posterior p′
(
2|xi, yi

)
with minimal distance to agent i’s

true posterior pi(2|si) = Pri(Sj = 2 | Si = si). Consider two cases:

1. If yi(2) < pi(2|si) then yi(2) − pi(2|si) < 0, and |yi(2) + δ − pi(2|si)| <
|yi(2) − δ − pi(2|si)| and xi = 2 is strictly optimal. The case of yi(2) >

pi(2|si) is symmetric.

2. If yi(2) = pi(2|si) then the distance is the same for either report, and so

indifference.

This completes the proof.

Lemma 5.3 gives a hint as to what we are looking for—conditions on δ and

an agent’s subjective belief model, such that pi(2|1) < yi(2) < pi(2|2), and the

agent’s signal report is strictly truthful.

Proposition 5.4. In Candidate SSPP, if mechanism parameter 0 < δ ≤
2
(
pi(2|2) − pi(2|1)

)
, agent i’s strict best response to a truthful signal report

by peer agent j is to make signal prior report yi(2) = pi(2) · (1 − δ) + δ
2 (with

yi(1) = 1− yi(2)) and truthful signal report xi = si.

Proof. First of all, let us constrain agent i’s strategy to reporting the true signal

xi = si. Given this, the expected score for reporting yi(2) in stage 1 is:

Utruesignal

(
yi(2)

)
= pi(2)

(
2yi(2)− yi(2)2

)
+ (1− pi(2))

(
1− yi(2)2

)
+ pi(2)

(
2(yi(2) + δ)− (yi(2) + δ)2

)
+ (1− pi(2))

(
1− (yi(2)− δ)2

)
.

Taking the derivative with respect to yi(2), and setting to zero, we obtain

∂Utruesignal

(
yi(2)

)
∂yi(2)

= 2
(
pi(2)− yi(2)− 2δpi(2) + δ + pi(2)− yi(2)

)
= 0

⇔ yi(2) = pi(2) +
δ
(
1− 2pi(2)

)
2

= pi(2) · (1− δ) +
δ

2
,

and a maximum by checking second-order conditions.
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It is reassuring to confirm that for δ ≤ 2
(
pi(2|2)−pi(2|1)

)
, we have pi(2|1) <

yi(2) < pi(2|2), and thus not only a feasible report, i.e. in the [0, 1] bound,

but also consistency with Lemma 5.3: first, observe that for pi(2) = 0.5, it

holds that yi(2) = 0.5 for any δ, so that yi(2) is in bounds. Second, observe

that for pi(2) > 0.5, it holds that yi(2) < pi(2), and for pi(2) < 0.5, it holds

that yi(2) > pi(2). Because of symmetry, it is then sufficient to show that

yi(2) < pi(2|2) for pi(2) < 0.5, and thus pi(2|1) < pi(2) < yi(2) < pi(2|2). We

have,

yi(2) = pi(2) +
δ(1− 2pi(2))

2
≤ pi(2) +

2
(
pi(2|2)− pi(2|1)

)(
1− 2pi(2)

)
2

= pi(2) +
(
pi(2|2)− pi(2|1)

)(
1− 2pi(2)

)
= pi(2) + pi(2|2)− 2pi(2)pi(2|2)− pi(2|1) + 2pi(2)pi(2|1)

= pi(2)− pi(2)pi(2|2)− pi(2|1) + pi(2)pi(2|1) + pi(2|2)

+ pi(2)pi(2|1)− pi(2)pi(2|2)

= pi(2|2) + pi(2)pi(2|1)− pi(2)pi(2|2) < pi(2|2).

For the final equality, we need that pi(2) = pi(2)pi(2|2) +
(
1 − pi(2)

)
pi(2|1)

and thus pi(2)− pi(2)pi(2|2)− pi(2|1) + pi(2)pi(2|1) = 0, and the strict inequal-

ity follows from pi(2) > 0 and pi(2|2) > pi(2|1), which holds when stochastic

relevance holds (Lemma 5.1).

What other strategy might be better for the agent? We know from Lemma 5.3

that the only other case to consider is yi(2) ≤ pi(2|1) (or symmetrically, yi(2) ≥
pi(2|2)), where the optimal signal report is xi = 2, independent of realized sig-

nal si. Given this, let us now constrain agent i’s strategy to always reporting

2. Given this, the expected score for reporting yi(2) in stage 1 is

Ualwayshigh

(
yi(2)

)
= pi(2)

(
2yi(2)− yi(2)2

)
+
(
1− pi(2)

)(
1− yi(2)2

)
+ pi(2)

(
2
(
yi(2) + δ

)
−
(
yi(2) + δ

)2)
+
(
1− pi(2)

)(
1− (yi(2) + δ)2

)
.

Taking the derivative with respect to yi(2), and setting to zero, we obtain

∂Ualwayshigh

(
yi(2)

)
∂yi(2)

= 2
(
pi(2)−yi(2)−δ+pi(2)−yi(2)

)
= 0⇔ yi(2) = pi(2)− δ

2
,

and a maximum by checking the second-order conditions. However, Candidate

SSPP insists on yi ∈ D, and thus yi(2) ∈ [0, 1]. For δ > 2pi(2) this is not

feasible. Therefore, the expected utility given yi(2) = pi(2) − δ/2 is an upper
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bound on the actual utility available when playing the “always-high” strategy

in stage 2.

Continuing, we establish that the expected loss, relative to being able to

report yi(2) = pi(2) in stage 1 and p′(2|si) = pi(2|si) in stage 2 is greater under

the “always-high” strategy than the “true signal” strategy. The expected loss

for the “true signal” strategy is:

Ltruesignal =

(
δ
(
1− 2pi(2)

)
2

)2

+ pi(2)

(
pi(2|2)−

[
pi(2) · (1− δ) +

δ

2
+ δ
])2

+
(
1− pi(2)

)(
pi(2|1)−

[
pi(2) · (1− δ) +

δ

2
− δ
])2

For the always high strategy, the expected loss is:

Lalwayshigh ≥
(
δ

2

)2

+ pi(2)

(
pi(2|2)−

[
pi(2)− δ

2
+ δ
])2

+
(
1− pi(2)

)(
pi(2|1)−

[
pi(2)− δ

2
+ δ
])2

This is a lower bound on loss, because the optimal yi(2) in this case may be out

of the [0, 1] bound and thus the agent’s utility is upper-bounded by assuming

yi(2) = pi(2)− δ/2 is feasible. Combining, we have:

Lalwayshigh − Ltruesignal ≥
(
δ

2

)2

−

(
δ
(
1− 2pi(2)

)
2

)2

+ pi(2)

( (
pi(2|2)−

[
pi(2) +

δ

2

])2

−
(
pi(2|2)−

[
pi(2) · (1− δ) +

3δ

2

])2
)

+
(
1− pi(2)

)( (
pi(2|1)−

[
pi(2) +

δ

2

])2

−
(
pi(2|1)−

[
pi(2) · (1− δ)− δ

2

])2
)

=δ2pi(2) ·
(
1− pi(2)

)
+ δ
(
1− pi(2)

)
pi(2)

((
−δ + pi(2|2)− pi(2)

)
+ δ
(
pi(2)− 1

)
+ pi(2|2)− pi(2)

)
− δ
(
1− pi(2)

)(
1 + pi(2)

)(
pi(2|1)− pi(2) + δpi(2)

+ pi(2|1)− pi(2)
)

76



= 2δ
(
1− pi(2)

)(
pi(2)− pi(2|1)− δpi(2)

+ pi(2|2)pi(2)− pi(2|1)pi(2)
)
.

Since 2δ
(
1− pi(2)

)
> 0, we have

Lalwayshigh − Ltruesignal > 0

⇔ pi(2)− pi(2|1)− δpi(2) + pi(2|2)pi(2)− pi(2|1)pi(2) ≥ 0

⇔
(
pi(2)− pi(2|1)

)
+ pi(2)

(
pi(2|2)− pi(2|1)

)
≥ pi(2)δ

⇔ pi(2)
(
pi(2|2)− pi(2|1)

)
+ pi(2)

(
pi(2|2)− pi(2|1)

)
≥ pi(2)δ

⇔ δ ≤ 2
(
pi(2|2)− pi(2|1)

)
.

This establishes that a prior signal belief report yi(2) = pi(2) +
δ
(
1−2pi(2)

)
2 and

the truthful signal report constitute a strict best response to a truthful signal

report by agent j.

We immediately have the following:

Theorem 5.5. In a strict ex post subjective equilibrium of Candidate SSPP,

and given temporal separation, every agent i reports her signal truthfully if mech-

anism parameter 0 < δ ≤ 2
(
pi(2|2) − pi(2|1)

)
for all i ∈ {1, . . . , n} and given

stochastic relevance.

This provides partial incentive compatibility: an agent has strict incentives

to report her true signal in stage 2 but should deviate to yi(2) = pi(2) +
δ(1−2pi(2))

2 (with yi(1) = 1 − yi(2)) in stage 1. The only informational re-

quirement on the mechanism is that it must pick a δ small enough, depend-

ing on knowledge of a valid ε > 0 such that ε ≤ pi(2|2) − pi(2|1) for all

i ∈ {1, . . . , n} (with δ ≤ 2ε being sufficient). Certainly, stochastic relevance

implies pi(2|1) < pi(2) < pi(2|2) for all belief types. What is required in addi-

tion is knowledge of this minimal “degree of informativeness” of a signal, valid

for every belief type in the population.

5.5 Shadow Subjective-Prior Mechanism (SSPP)

We can now apply the revelation principle and achieve strict incentive compat-

ibility in regard to both the belief report and the signal report. The crucial

observation is that the optimal misreport yi(2) = pi(2) +
δ
(
1−2pi(2)

)
2 (with

yi(1) = 1 − yi(2)) depends only on the agent’s signal prior pi and parameter δ

of the mechanism. It does not depend on any other aspect of the agent’s belief

type. For this reason, the mechanism can simply compute yi directly on behalf

of the agents on the basis of pi.
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5.5.1 Mechanism

The shadow subjective-prior mechanism (SSPP) is defined as:

1. (Stage 1) Ask agent i for her signal prior report yi ∈ D.

2. Agent i observes signal Si = si.

3. (Stage 2) Ask agent i for her signal report xi ∈ {1, 2}, and calculate

shadow posterior

p′(·|xi, yi) =



yi(1)− δ
(
1−2yi(2)

)
2 + δ

yi(2) +
δ
(
1−2yi(2)

)
2 − δ

 if xi = 1

yi(1)− δ
(
1−2yi(2)

)
2 − δ

yi(2) +
δ
(
1−2yi(2)

)
2 + δ

 if xi = 2,

where δ > 0 is a parameter of the mechanism.

4. For each agent i, choose peer agent j = i+ 1 (modulo n) and pay agent i:

ui
(
yi, xi, xj

)
= Rq

(
yi(2) +

δ
(
1− 2yi(2)

)
2

, xj

)
+Rq

(
p′
(
·|xi, yi

)
, xj

)
where Rq is the binary quadratic scoring rule (Equation 5.2), and xj is

the signal report of peer agent j.

Observe that, for δ = 1, the transformed signal prior report yi(2)+
δ
(
1−2yi(2)

)
2

becomes 1
2 which does not depend on yi(2). This would mean that while agent

i still cannot do better than reporting yi = pi, the signal prior report would not

be strictly incentivized. Excluding this case, the following theorem then follows

immediately from Proposition 5.4 and the equilibrium analysis of Candidate

SSPP:

Theorem 5.6. SSPP is strictly ex post subjective incentive compatible given

temporal separation, if mechanism parameter δ 6= 1 and 0 < δ ≤ 2
(
pi(2|2) −

pi(2|1)
)

for all i ∈ {1, . . . , n}.

5.5.2 Compact SSPP

In SSPP, the signal prior report yi affects both parts of agent i’s score while

the signal report xi only affects the second part. This raises the question as

to whether the second part alone could suffice for strict truth-telling incen-

tives. That is, whether Candidate SSPP’s payment rule can be shortened to

Rq

(
p′
(
·|xi, yi

)
, xj

)
.
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In fact, this is possible. First observe that Lemma 5.3 still holds since this

analysis pertained only to the score for the signal report. Given this, the outline

of the analysis follows as before. We can derive (a) the optimal report yi(2) given

that the agent reports her true signal si, and (b) the optimal report yi(2) given

that the agent always reports signal 2 (or symmetrically, always reports signal

1.) Ignoring the symmetric case of “always low”, this yields:

1. If xi = 2 (independent of si), the optimal belief report is yi(2) = pi(2)−δ.

2. If xi = si, the optimal belief report is yi(2) = pi(2) · (1− 2δ) + δ.

Considering the expected loss relative to being able to make perfect reports

pi(2|1) or pi(2|2) in stage 2 (depending on the observed signal), and requiring

that the loss from reporting the true signal and yi(2) = pi(2) · (1 − 2δ) + δ is

strictly less than that of always reporting signal 2 and yi(2) = pi(2) − δ, the

constraint on parameter δ is 0 < δ ≤ pi(2|2)−pi(2|1).2 Given this, and adopting

the revelation principle as before, we obtain the compact version of SSPP.

The compact shadow subjective-prior mechanism (Compact SSPP) is defined

as:

1. (Stage 1) Ask agent i for her signal prior report yi ∈ D.

2. Agent i observes signal Si = si.

3. (Stage 2) Ask agent i for her signal report xi ∈ {1, 2}, choose peer agent

j = i+ 1 (modulo n) and pay agent i:

ui
(
xi, yi, xj

)
= Rq

(
(1− 2δ) · yi(2) + 2δ(xi − 1), xj

)
, (5.3)

where δ > 0 is a parameter of the mechanism, Rq is the binary quadratic

scoring rule (Equation 5.2), and xj is the signal report of peer agent j.

Analogous to SSPP, the transformed signal prior report in Compact SSPP is

independent of yi(2) if δ = 1
2 , so that, in that case, the signal prior report yi(2)

would only be weakly truthful. I thus exclude δ = 1
2 in the following theorem,

which I state without proof:

Theorem 5.7. Compact SSPP is strictly ex post subjective incentive compatible

given temporal separation if parameter δ 6= 1
2 and 0 < δ ≤ pi(2|2) − pi(2|1) for

all i ∈ {1, . . . , n}.
2For 0 < δ ≤ pi(2|2)− pi(2|1), one can again confirm that yi(2) = pi(2) · (1− 2δ) + δ is a

feasible report. As in the analysis of SSPP, it is irrelevant that yi(2) = pi(2)− δ may not be
in the [0, 1] range since requiring a report inside the range can only further reduce an agent’s
utility.
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The payment rule of Compact SSPP has a nice intuitive interpretation. It

can be written as Rq
(
(1 − η) · yi(2) + η(xi − 1), xj

)
with η = 2δ. Observe

that the expected value of xi − 1 is pi(2). Therefore, given that agent i is

truthful, the expected belief report that is applied to the quadratic scoring rule

is E
[
(1−η)·yi(2)+η(xi−1)

]
= pi(2). This makes sense given that the quadratic

scoring rule is strictly proper, and pi(2) is agent i’s best prediction for the signal

report xj at stage 1 given that agent j is truthful. The role of η > 0 is to put

some weight on the signal report, so that the agent has an incentive to use the

signal report in obtaining better accuracy in regard to her signal posteriors.

On the other hand, if η gets too large relative to the effect of an agent’s signal

on her signal posterior, then the agent prefers not to adjust her shadow posterior

through reporting a signal in a way that depends on the observed signal. Instead,

in this situation where the two possible signal posteriors are relatively close to

each other, she will set E
[
(1− η) · yi(2) + η(xi − 1)

]
= pi(2) by choosing xi = 2

(always) and yi(2) = pi(2)−η
1−η = pi(2)−2δ

1−2δ . By applying this to the transformation

due to the direct-revelation approach, one rediscovers the optimal misreport of

Candidate SSPP given a high signal report pi(2)−2δ
1−2δ (1− 2δ) + δ = pi(2)− δ.

An interesting special case is choosing δ = 0.5, which is a valid parameta-

rization for weakly truthful signal prior incentives when 0.5 ≤ pi(2|2) − pi(2|1)

and thus pi(2|2) > 0.5 and pi(2|1) < 0.5. In this case, the effect of belief report

yi(2) disappears and the shadow belief report that is adopted in the scoring

rule is 1 if the signal report is 2 and 0 if the signal report is 1. This coincides

with simple output agreement (Section 2.4), where agent i obtains a payment

of 1 if her signal report agrees with that of agent j and 0 otherwise. It makes

sense that this would retain strict incentives in regard to the signal report in

this case, since pi(2|2) > 0.5 and pi(2|1) < 0.5, and so shadow posteriors 1 and

0 are minimizing the distances to pi(2|2) and pi(2|1), respectively.

5.5.3 Individual Rationality

In the BSPP mechanism from Section 5.3, which utilizes two belief reports, using

the normalized quadratic scoring rule Rq giving scores between 0 and 1 ensures

ex post individual rationality. For the SSPP mechanisms from Sections 5.4

to 5.5.2, it is no longer obvious that this still holds because there could be

out-of-bound shadow posterior reports (outside of [0, 1]), so that the ex post

scores may be negative. For Compact SSPP and δ > 0.5, this can indeed be the

case3 but since δ > 0.5 implies pi(2|2) > 0.5 and pi(2|1) < 0.5, simple output

3The lowest possible score is attained through the lowest possible (1 − 2δ) · yi(2) + 2δxi
and xj = 2, or through the highest possible (1 − 2δ) · yi(2) + 2δxi and xj = 1. For δ > 0.5,
(1−2δ) ·yi(2)+2δxi is minimized by reporting yi = 1 and xi = 1, and maximized by reporting
yi = 0 and xi = 2. Applied to Rq together with xj = 1 and xj = 1, respectively, one obtains
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agreement is already strictly truthful without requiring an additional report, so

that only δ < 0.5 is meaningful in Compact SSPP.

For δ ≤ 0.5, Compact SSPP’s score is already in between 0 and 1. To

see this, consider the range of possible values for (1 − 2δ) · yi(2) + 2δxi: the

signal report xi is either 1 or 2, and so this becomes either (1 − 2δ) · yi(2)

or (1 − 2δ) · yi(2) + 2δ, with the latter being strictly larger than the former.

For δ ≤ 0.5, then (1 − 2δ) · yi(2) ≥ 0 and (1 − 2δ) · yi(2) + 2δ ≤ 1 for all

yi(2) ∈ [0, 1]. Moreover, 0 and 1 is obtained by reporting
(
yi(2) = 0, xi = 1

)
and

(
yi(2) = 1, xi = 2

)
, respectively, so that for δ ≤ 0.5, Compact SSPP attains

scores between 0 and 1.

Example 9. As in Example 8 for BSPP, consider again the ad exchange exam-

ple from Section 2.2 with numbers m = 2, Pri(T = 2) = 0.3, Pri(S = 2 | T =

2) = 0.6, and Pri(S = 2 | T = 1) = 0.1. The procedure using Compact SSPP

with δ = 0.1, such that δ ≤ pi(2|2)− pi(2|1) = 0.28 and δ ≤ 0.5 (for individual

rationality) is:

1. Worker i accepts the task that was posted on Amazon Mechanical Turk

by the ad exchange. She is asked for her signal prior report of observing

violence, and she truthfully reports

yi(2) = 0.25.

2. A website that may or may not contain violent content is shown to worker

i and, after looking at it carefully, she is asked to report if she observed

violence on the website. She did not observe violence, i.e. Si = 1, and so

she updates her signal posterior to pi(2|1) = 0.18, and truthfully reports

xi = 1.

3. Another worker j 6= i also follows Steps 1 and 2, with potentially different

beliefs and experiences.

4. Worker i is scored against worker j’s reported signal xj. Assuming agent

j also did not observe violent content on the website and reported this

truthfully, i.e. xj = 1, agent i is paid

Rq
(
0.8 · 0.25 + 0.2 · 0, 1

)
= Rq

(
0.2, 1

)
= 0.96

the lowest possible score as 2(1− 2δ)− (1− 2δ)2 = 1− (2δ)2 = 1− 4δ2. Therefore, by adding
|1− 4δ2| = 4δ2 − 1 to every agent’s score, Compact SSPP can be made individually rational
in the δ > 0.5 case.
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5.6 Conclusion

In this chapter, I presented two incentive compatible mechanisms for the elicita-

tion of truthful user feedback that escape the strong common knowledge assump-

tions of the peer prediction mechanisms from Chapters 2 to 4. I believe that

this development is of significant practical importance. The compact shadow

subjective-prior mechanism (Compact SSPP) from Section 5.5.2 provides a par-

ticularly simple intuitive interpretation, is easy to analyze, and aligns incentives

with truthful reporting of the signal prior and the signal. To the best of my

knowledge, in terms of belief structure, the setting I study is the most general

that has been studied in the context of peer prediction mechanisms. The theo-

retical analysis adopts a solution concept that is weaker than dominant strategy

equilibrium but stronger than Bayes-Nash equilibrium.

Discussion: Application

I offer some remarks in regard to considerations when making use of SSPP

mechanisms in practical applications.

Information aggregation

In the classical peer prediction method, the mechanism uses the common belief

model to compute the signal posteriors and publish this information. In our set-

ting with private and subjective belief models, the only objective information,

i.e. the only information stemming from the world, are the signals. The mech-

anism can therefore simply publish the percentage of positive signal reports,

allowing each agent to incorporate this information into her own subjective be-

lief model. In fact, this is common practice. Hotwire,4 for example, publishes

the percentage of customers who have reported that they were satisfied with

their stay at a given hotel. Another example is eBay,5 which publishes the

percentage of positive reports for a given seller.

User interface (UI)

The SSPP mechanisms require users to make reports about probabilistic beliefs.

While it would be difficult to design a UI that makes reporting full distributions

user friendly, I believe there are UIs that can achieve this for the binary setting,

in which only a single probability is required. A suitable user interface “hides”

the probabilities from users by adopting a point scale from 0 to 10. These

points would directly correspond to probabilities, and allow users to interact

4http://www.hotwire.com
5http://www.ebay.com
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with the system in a way they are familiar with from other online rating sites

(albeit introducing a forced approximation to their reports). Of course, the

right choice of UI depends on the application, and probability reports may

sometimes be feasible. For example, when booking a hotel on Hotwire, the

following question seems reasonably easy to answer: “What is your prediction

that another customer will recommend this hotel to a friend?”

The shadow subjective-prior mechanisms (SSPP and Compact SSPP) have

the same type of reports as Bayesian Truth Serum mechanisms (Chapter 4): a

prediction report about the experiences of other agents and a signal report. In

a study with inexpert human raters on Amazon Mechanical Turk, it has been

shown that human agents can indeed report such information successfully [Shaw

et al., 2011]. In fact, in this experimental comparison of different incentive

schemes, the (original) Bayesian Truth Serum (Section 4.3) elicited the responses

with highest quality among all tested schemes.

Future Work

An interesting direction for future work is to generalize the mechanisms of this

chapter to multiple signals. For the BSPP mechanism, this will be a simple

application of the multi-signal Shadowing Method (Section 3.6). For the more

complex shadowing subjective-prior mechanisms, instead of re-doing the anal-

ysis for multiple signals from candidate mechanism (Section 5.4) to compact

mechanism (Section 5.5.2), it will be interesting whether one can generalize the

simple form of Compact SSPP directly.

Another interesting direction for future work is see whether other domains of

mechanism design allow for ex post subjective incentive compatible mechanisms.

A natural first candidate would be mechanisms with correlated types, e.g. a

private and subjective version of the full surplus extraction result in the style

of Crémer and McLean [1985, 1988].
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Chapter 6

Minimal-Reporting

Subjective-Prior Peer

Prediction

The classical peer prediction method (Chapter 2) is a strictly truthful peer

prediction mechanism but it assumes all agents share the same belief model

and that the mechanism knows this model. Bayesian Truth Serum mechanisms

(Chapter 4) relax the latter requirement that the mechanism knows the com-

mon belief model at the cost of “non-minimality,” i.e., users need to report

both their signals and a belief about the signals of others. Subjective Peer Pre-

diction mechanisms (Chapter 5) further relax the assumption on the common

knowledge, in that agents can have subjective beliefs with regard to the belief

model, which the mechanism does not need to know. However, neither the basic

subjective-prior mechanism (BSPP, Section 5.3) nor the shadow subjective-prior

mechanisms (SSPP and Compact SSPP, Section 5.5) are minimal. BSPP re-

quires two belief reports, and SSPP requires a belief and a signal report, the

same type of reports as Bayesian Truth Serum mechanisms. Other methods,

such as the Shadowing Method (Chapter 3), insist on minimality but still require

knowledge of the signal prior. This suggests a trade-off between the robustness

of incentive properties and the reporting requirements. In this chapter, I fur-

ther explore this trade-off and develop the theoretical foundation for learning

the signal prior in combination with minimal peer-prediction methods.

The main difference between this chapter’s model and the model from Chap-

ter 5 (which already incorporates subjective belief models) is that agents report

on several different items or tasks. For example, guests may report whether they

would recommend each of multiple hotels to a friend. Similarly, following the
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example of Section 2.2, there could be multiple websites, with crowd workers

asked to report whether they contain offensive content.

I will refer to a particular hotel or website as an item. It is important to

note that just as in the peer prediction mechanisms of Chapters 2 to 5, any

single agent only needs to report on one item on which at least one other agent

submits a report. What is required on top of this is that there are other agents

reporting on other items as well. The reason for this additional requirement

is that, to score an agent, the mechanism will use the empirical distribution of

reported signals on items the agent has not seen or reported on as the “empiri-

cal signal prior,” to which the mechanism then applies the Shadowing Method

(Section 3.5).

The main result is a strictly truthful mechanism that allows agents to have

subjective belief models. All that is assumed to be common knowledge is a lower

bound on the extent of the belief change from signal prior to signal posterior.

The mechanism delays payments until the empirical distribution of signals is

accurate enough, and I provide a bound on the number of items required for

the mechanism to provide strict incentives for truthful reporting. Moreover, I

insist on minimality, i.e. agents are only asked to report their signals. This

mechanism is the first strictly truthful mechanism that combines minimality

with subjective belief models.

The remainder of this chapter is organized as follows. In Section 6.1, I discuss

related work particular to this chapter. In Section 6.2, I explain the difference of

this chapter’s model as compared to the subjective model used in the preceding

chapter (Section 5.2). In Section 6.3, I then introduce the Empirical Shadowing

Method, which allows agents to have subjective belief models as, and where the

signal prior required for the Shadowing Method (Chapter 3) is learned from

other agents’ signal reports. Section 6.4 shows how to use a form of Hoeffding’s

inequality to derive upper bounds on the required number of samples given

a lower bound on the extent of the belief change from signal prior to signal

posterior. I conclude with a discussion and interesting directions for future

work in Section 6.5.

6.1 Related Work

In addition to the related work on peer prediction mechanisms introduced in

Chapters 2 to 5, there is additional related work particularly relevant to the

mechanism presented in this chapter.

Jurca and Faltings [2008, 2011] suggest a mechanism for on-line opinion

polls, which is situated in the same setting with commonly-held belief model as

Bayesian Truth Serum mechanisms (Chapter 4). The mechanism is minimal,
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i.e. it requires only a signal report, and it publishes the empirical frequencies of

reports, which, in equilibrium, converge towards the true distribution of signals

in the population. A building block of their mechanism is the 1/prior mechanism

(Section 3.3).

The work in this chapter is different from the work by Jurca and Faltings

in several aspects. First, the on-line polling setting is orthogonal to the setting

of this chapter in that with opinion polls, there is one item with many reports

about that one item, whereas in this chapter, we have many items with few

reports for each item. Second, the opinion poll mechanism is not truthful, i.e.

agents cannot simply report their true signal. Instead, agents need to choose

their signal report depending on the current empirical frequency of past reports,

resulting in higher cognitive costs on behalf of the agents. The mechanism

presented in this chapter is truthful, resulting in low cognitive cost as agents can

simply report their true signal. Third, the opinion poll mechanism is restricted

to the common-prior model of Chapter 4, whereas the mechanism in this chapter

allows for subjective belief models.

Jurca and Faltings also prove an impossibility result in regard to achieving

strict truthfulness with minimal reporting and a belief model that is unknown to

the mechanism. It does not apply to the mechanism presented in this chapter

because I assume common knowledge of a lower bound on the extent of the

belief change from prior to posterior.

6.2 Model

The model of this chapter is a variation of the binary-signal model with private

and subjective belief models (Section 5.2), where there is not only one item

(e.g. one hotel, product, or task) that all agents experience, but g > 1 items,

each of which is experienced by at least two agents. To keep the presentation

simple, I associate each agent with a single item and assume that there are

two agents per item. Each agent i is indexed such that agent i belongs to

item i (modulo g). This is for presentational reasons only. For example, the

modification to allow each agent to experience multiple items just requires care

to only use items the agent did not experience when calculating the empirical

frequency with which to score that agent. Note that we cannot use any reports

from items the agent experienced (not even reports by other agents) because,

through her experience with that item, the agent learns something about the

instantiated state of the item, and, from the agent’s perspective, signals would

thus not be drawn according to the signal prior distribution anymore.

With regard to agent i’s subjective belief model, the assumption is that

signals of items that agent i has not experienced are sampled according to her
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subjective signal prior pi(·). Her subjective belief that an agent observes a high

signal from an item she has not experienced is thus pi(2). It is important to

emphasize that given this model, agent i observing a signal from her own item

changes her belief about the signals observed by other agents experiencing the

same item, whereas pi(2) remains agent i’s belief about the distribution of high

signals over all other items.

Furthermore, it is important to emphasize that an agent’s subjective belief

model reflects her beliefs about the behavior of an item, which affects all agents

in the same way. That is, as in all preceding chapters, agent i is blind to the

identity of an agent and does not distinguish between her belief that agent j

receives a high signal and her belief that some other agent k 6= j receives a high

signal. As in Chapter 5, one can thus adopt shorthand pi(2|si) = Pri(Sj =

2 | Si = si) for agent i’s signal posterior that any other agent j experiencing

the same item receives a high signal given agent i’s signal si.

Moreover, it is assumed that the signal posteriors are fully mixed, i.e. pi(s|s′) >
0 for all s, s′ ∈ {1, 2}. In terms of basic model parameters, this condition is,

for example, satisfied if Pri(S = s|T = t) > 0 for all s ∈ {1, 2}, t ∈ {1, . . . , l},
and i ∈ {1, . . . , n}. Lemma 6.1 follows immediately from combining Lemma 5.1

with the assumption of strictly mixed signal posteriors.

Lemma 6.1. Given stochastic relevance of θi, it holds that 1 > pi(2|2) >

pi(2) > pi(2|1) > 0.

The main requirement on the knowledge of the mechanism and the agents is

that there is a common-knowledge lower bound λ > 0 on the distance between

the signal prior pi(2) and the signal posteriors pi(2|1) and pi(2|2), respectively,

i.e.

λ ≤ min
(
pi(2)− pi(2|1), pi(2|2)− pi(2)

)
. (6.1)

This provides a lower bound on how much the belief of an agent changes

through observing a signal. It can be chosen to be arbitrarily small as long as it

is strictly positive. The main result is a statement about the trade-off between

a low belief change bound λ and a low number of required items, i.e. for any

bound λ, we will obtain a number g, such that if there are at least g items, the

mechanism is strictly truthful.

6.3 The Empirical Shadowing Method

We are now ready to define an approach that adopts the empirical distribu-

tion of signal reports in place of the mechanism’s assumed knowledge of the
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signal prior in the Shadowing Method (Section 3). This Empirical Shadowing

Method is minimal, i.e. it elicits reports consisting of only signals. Note that

the mechanism withholds payments until every agent has reported her signal.

The Empirical Shadowing Method is defined as:

1. Ask agent i for her signal report xi ∈ {1, 2}.

2. Let Ni be a set of agents, such that there is one agent associated with

every of the g items except the item associated with agent i. Compute

the empirical frequency (empirical mean) p̂i(2) of all g − 1 signal reports

of agents in Ni:

p̂i(2) =
∑
k∈Ni

xk
g − 1

.

3. Using this empirical frequency of high signals p̂i(2) and agent i’s signal

report xi, calculate shadow posterior

p′
(
2|xi, p̂i(2)

)
=

{
p̂i(2) + δ, if xi = 2

p̂i(2)− δ, if xi = 1
, (6.2)

where δ > 0 is a parameter of the mechanism.

4. For each agent i, choose a peer agent j that is experiencing the same item

as agent i, and pay agent i:

ui(xi, p̂i(2), xj) = Rq

(
p′
(
2|xi, p̂i(2)

)
, xj

)
where Rq is the quadratic scoring rule and xj is the signal report of peer

agent j.

6.4 Incentive Analysis

There are several ways of analyzing the incentives of the Empirical Shadowing

Method. I present a first approach based on establishing a lower bound on the

probability that the empirical frequency of high signals, p̂i(2), lies “in between”

agent i’s two possible signal posteriors pi(2|1) and pi(2|2), so that the Shadowing

Method is strictly truthful (Corollary 3.6).

Of course, with a finite number of items, there is always some probability

that p̂i(2) ≤ pi(2|1) or p̂i(2) ≥ pi(2|2), in which case the Shadowing Method is

not truthful. I derive a lower bound on the expected benefit of being truthful

given that p̂i(2) lies within the interval and an upper bound on the expected
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benefit from a misreport when p̂i(2) is outside the interval. Together with

an upper bound on the probability that the empirical frequency is outside the

interval, this provides a bound on the number of items required for the Empirical

Shadowing Method mechanism to have strict incentives for agents to be truthful.

I begin with two technical lemmas.

Lemma 6.2. Given stochastic relevance of θi, it holds that pi(2) − pi(2|1) ≤
pi(2|2)− pi(2)⇔ pi(2) ≤ 0.5.

Proof. Note that

pi(2|2) = 1− pi(1|2) = 1− pi(1)

pi(2)
pi(2|1) = 1− 1− pi(2)

pi(2)
pi(2|1)

= 1− pi(2|1)

pi(2)
+ pi(2|1).

So we have

pi(2)− pi(2|1) ≤ pi(2|2)− pi(2)

⇔ pi(2)− pi(2|1) ≤ 1− pi(2|1)

pi(2)
+ pi(2|1)− pi(2)

⇔ 2pi(2)− 2pi(2|1) +
pi(2|1)

pi(2)
− 1 ≤ 0

⇔ 2pi(2)2 − 2pi(2|1)pi(2) + pi(2|1)− pi(2) ≤ 0

⇔
(
2pi(2)− 1

)(
pi(2)− pi(2|1)︸ ︷︷ ︸
>0 (Lemma 6.1)

)
≤ 0

⇔ pi(2) ≤ 0.5.

This completes the proof.

Lemma 6.3. The smallest possible pi(2|2) given belief change bound λ and

stochastic relevance is:

p
i
(2|2) =

{
2
√
λ− λ, if pi(2) ≤ 0.5

0.5 + λ, if pi(2) ≥ 0.5,
(6.3)

A lower bound for pi(2|2) given belief change bound λ is 2
√
λ− λ.

Proof. I first prove the statement for pi(2) ≥ 0.5. From Lemma 6.2, we know

that λ ≤ pi(2|2) − pi(2) entails λ ≤ pi(2) − pi(2|1), so that it is sufficient to

minimize pi(2|2) subject to λ ≤ pi(2|2)− pi(2). Then pi(2|2) = pi(2) + λ which

is minimized for pi(2) = 0.5, so that p
i
(2|2) = 0.5 + λ if pi(2) ≥ 0.5.

For the case where pi(2) ≤ 0.5, we can restrict the analysis to λ ≤ pi(2) −
pi(2|1) because we know from Lemma 6.2 that for pi(2) ≤ 0.5, λ ≤ pi(2)−pi(2|1)
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entails λ ≤ pi(2|2)− pi(2). From the proof of Lemma 6.2 we also know that

pi(2|2) = 1− pi(2|1)

pi(2)
+ pi(2|1) = 1− pi(2|1)

(
1

pi(2)
− 1

)
(6.4)

Equivalent to minimizing pi(2|2) given λ ≤ pi(2) − pi(2|1) is thus maximizing

pi(2|1)
(

1
pi(2)

− 1
)

given λ ≤ pi(2) − pi(2|1). This is maximized for the largest

possible pi(2|1) and the smallest possible pi(2), so that a necessary condition

for a minimal pi(2|2) is pi(2|1) = pi(2)− λ. Using this in (6.4) we obtain:

p
i
(2|2) = 1−

(
pi(2)− λ
pi(2)

−
(
pi(2)− λ

))
=

λ

pi(2)
+ pi(2)− λ (6.5)

Taking the derivative and setting to 0 one obtains:

∂p
i
(2|2)(pi(2))

∂pi(2)
= 1− λ

pi(2)2
= 0 ⇔ pi(2) =

√
λ

Inserting this back into (6.5), one obtains the minimal pi(2|2) for pi(2) ≤ 0.5:

p
i
(2|2) =

λ√
λ

+
√
λ− λ = 2

√
λ− λ. (6.6)

Since 2
√
λ− λ ≤ 0.5 + λ for all 0 < λ < 0.5, this completes the proof.

The proof of Theorem 6.5 uses a form of Hoeffding’s inequality in order to be

able to make a statement about the number of items (samples) that are required

without knowledge of pi(2). (For the simple steps showing how to get from the

standard formulation to the formulation of Lemma 6.4, see, for example, p. 3 in

Domke [2010].)

Lemma 6.4. [Hoeffding, 1963] Let Z1, . . . , Zg ∈ [0, 1] be independent and iden-

tically distributed random variables. If

g ≥ 1

2ε2
ln

(
2

d

)
,

for ε > 0, 0 < d < 1, then Pr(
∣∣∣ 1g∑g

i=1 Zi − E[Z]
∣∣∣ ≤ ε) ≥ 1 − d. That is, with

probability at least 1 − d, the difference between the empirical mean 1
g

∑g
i=1 Zi

and the expected value E[Z] is at most ε.

Theorem 6.5. The Empirical Shadowing Method is strictly ex post subjective

incentive compatible given belief change bound λ and g − 1 samples with g ≥
1

2ε2 ln

(
2
(
1+2(λ−

√
λ)−ε

)
λ−ε

)
+ 2 and 0 < ε < λ.
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Figure 6.1: Illustration of Case 1 in the analysis of the Empirical Shadowing Method.
Observe that ε < λ, so that p̂i(2) = pi(2) + ε < pi(2|2). (Depending on parameter
δ > 0, it may or may not hold that p̂i(2) + δ < pi(2|2).)

Proof. Given that all other agents are truthful, I show that agent i’s unique best

response is to be truthful. To apply Hoeffding’s inequality, I introduce some

ε > 0, ε < λ and analyze two cases: the case where the empirical frequency is

no more than ε away from the signal prior pi(2), i.e. |p̂i(2)− pi(2)| ≤ ε, and the

case where the empirical frequency is further away than ε, i.e. |p̂i(2)−pi(2)| > ε.

(Case 1): |p̂i(2)− pi(2)| ≤ ε. (Also see Figure 6.1.)

From 0 < ε < λ ≤ min(pi(2) − pi(2|1), pi(2|2) − pi(2)) it follows that

pi(2|1) < p̂i(2) < pi(2|2), so that the shadowing method elicits signals truth-

fully. I proceed to quantify this positive expected benefit of reporting truthfully

using the difference in expected loss given Si = 2 (case Si = 1 is analogous).

Recall that the quadratic scoring rule has quadratic loss (Theorem 3.2):

∆Ui(xi = 2|Si = 2)

=Ui(xi = 2|Si = 2)− Ui(xi = 1|Si = 2)

=−
(
pi(2|2)− (p̂i(2) + δ)

)2
+
(
pi(2|2)− (p̂i(2)− δ)

)2
=
((
pi(2|2)−(p̂i(2)−δ)

)
+
(
pi(2|2)−(p̂i(2)+δ)

))
·
((
pi(2|2)−(p̂i(2)−δ)

)
−
(
pi(2|2)−(p̂i(2)+δ)

))
=
(
2pi(2|2)− 2p̂i(2)

)
2δ = 4δ

(
pi(2|2)− p̂i(2)

)
Using pi(2|2) ≥ pi(2) + λ and p̂i(2) ≤ pi(2) + ε, I derive lower bound

∆Ui(xi = 2|Si = 2) = 4δ
(
pi(2|2)−p̂i(2)

)
≥ 4δ

(
pi(2)+λ−(pi(2)+ε)

)
= 4δ (λ−ε)

on the gain in expected payment from reporting truthfully.

(Case 2): |p̂i(2)− pi(2)| > ε. (Also see Figure 6.2.)

In this case I derive an upper bound on the expected benefit from lying.
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Figure 6.2: Illustration of Case 2 in the analysis of the Empirical Shadowing Method.
Since p̂i(2) is sampled using a finite number of samples and since it is not restricted
to be within the ε bounds, it can happen that p̂i(2) = 1.

Consider again without loss of generality that Si = 2:

∆Ui(xi = 1|Si = 2) = −∆Ui(xi = 2|Si = 2) = 4δ
(
p̂i(2)− pi(2|2)

)
.

The maximal ∆Ui(xi = 1|Si = 2) is obtained for p̂i(2) maximal and pi(2|2)

minimal. Since |p̂i(2)−pi(2)| > ε, nothing prevents p̂i(2) = 1. From Lemma 6.3

we know that a lower bound of pi(2|2) given pi(2|2) − pi(2) ≥ λ and pi(2) −
pi(2|1) ≥ λ is 2

√
λ− λ, so that we can derive an upper bound for the expected

benefit from lying by setting p̂i(2) = 1 and pi(2|2) = 2
√
λ− λ, to obtain:

∆Ui(xi = 1|Si = 2) = 4δ
(
p̂i(2)− pi(2|2)

)
≤ 4δ

(
1− 2

√
λ+ λ

)
.

From Hoeffding’s inequality, we know that Case 1 occurs with probability

at least 1− d, so that the mechanism is truthful if

(1− d)4δ(λ− ε) > d4δ
(
1− 2

√
λ+ λ

)
⇔ (1− d)(λ− ε) > d

(
1− 2

√
λ+ λ

)
⇔ (λ− ε) > d

(
1 + 2(λ−

√
λ︸ ︷︷ ︸

≥−0.25

)− ε︸︷︷︸
<λ≤0.5

)
︸ ︷︷ ︸

>0

⇔ d <
λ− ε

1 + 2(λ−
√
λ)− ε

To determine the number of items from which signals need to be sampled, the

overall optimization problem becomes

min. g

s.t. ε < λ

d < λ−ε
1+2(λ−

√
λ)−ε

g − 1 ≥ 1
2ε2 ln( 2

d ).

The last line contains g − 1 instead of g because p̂i(2) was computed using
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samples from g−1 items. For any fixed ε, it is optimal to maximize d, since this

makes the right hand side of the final inequality as small as possible. Because

of this, the problem can be restated as

min. g

s.t. ε < λ

d = λ−ε
1+2(λ−

√
λ)−ε

g − 1 > 1
2ε2 ln( 2

d ),

where I have adopted equality for the second constraint and made the final

inequality strict. Now, substituting for d in the last inequality, we obtain:

min. 1
2ε2 ln

(
2
(
1+2(λ−

√
λ)−ε

)
λ−ε

)
+ 1

s.t. ε < λ

This completes the proof.

It is important to understand that the mechanism allows for subjective signal

priors because it uses only “objective” signal reports which stem from the true

item state to learn the signal prior. In particular, it does not elicit any beliefs

from the agents. Since the signal reports used for learning the signal prior are

not revealed to the agent, an agent forms a belief about this learned signal

prior using her own subjective belief model and it is therefore sufficient that the

derived bounds hold for any belief model that satisfies belief change bound λ.

Also note that for any given λ, the minimal number of required samples can

be computed numerically. For example, given bound λ = 0.05, the optimal ε is

ε = 0.046, giving a corresponding requirement of g−1 = 1351 samples. I believe

sample numbers in this range are reasonable for applications such as eliciting

votes on the quality of an image label or whether a website is inappropriate for

an advertiser. Note that these samples are from different items, so that this

requires that there are many images or websites and not that there are many

votes on any particular image or website.

6.5 Conclusion

In this chapter, I presented the first incentive compatible peer prediction mecha-

nism that combines subjective belief models with minimal reporting. This com-

bination is compelling because it provides robustness against strategic agents

with non-standard (and possibly wrong) beliefs without requiring truthful agents
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to deliberate about their beliefs. In the analysis of the Empirical Shadowing

Method, I derive an upper bound on the number of items one needs to sample

from. This mechanism could already be applied in applications such as crowd-

sourced image tagging, where requesters elicit information about many different

items.

In future work, I plan to tighten the current analysis in regard to the number

of samples required for strict incentives. The requirement that agent i has to

expect that the learned signal prior p̂i(2) is strictly in between the two possible

posteriors is too pessimistic. Similar to the reasoning in the 2-Agent RBTS

(Section 4.6) and the analysis of the Candidate shadow subjective-prior peer

prediction mechanism (Section 5.4.2), the agent needs to build a weighted ex-

pected loss, i.e. compute the expected loss for each possible p̂i(2) weighed with

the probability of that p̂i(2). Intuitively, if one instance of p̂i(2) is much lower

than pi(2) but another instance of p̂i(2) is much higher than pi(2), then these

may cancel each other out. Moreover, using this alternative approach, I expect

to obtain analytical bounds that are stated just in terms of λ and not ε and λ.

Other interesting directions for future work are to extend the analysis to set-

tings with multiple signals, and to design minimal and strictly truthful mecha-

nisms for the orthogonal setting, where the mechanism has access to many signal

reports from the same item (similar to the opinion poll setting introduced in

Section 6.1).

Finally, it is interesting to continue to integrate machine learning models

with peer prediction. One interesting area of application is peer grading in

massively open online courses (MOOCs), where students grade other students’

assignments. The machine learning work by Piech et al. [2013] learns each

grader’s quality and bias from Coursera1 data with some success but ignores

effort incentives for accurate grading. I believe that incorporating proper incen-

tives for effort will increase the performance of these algorithms.

1http://www.coursera.com
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Chapter 7

Effort Incentives with Fixed

Costs

In this chapter, I study simple output-agreement mechanisms (slightly general-

ized from Section 2.4) in a setting different to the one studied in Chapters 2 to 6.

The setting differs in three main aspects. First, instead of reporting on a single

item, e.g. whether they would recommend a given hotel to a friend, agents are

asked to report on the relative rank of two items, e.g. which of two hotels they

consider the better choice. Second, it is assumed that agents differ in quality,

which is defined as the probability that they can identify the correct, ground

truth, ranking. This quality is at least 50%. It follows from this setup that

simple output agreement is strictly truthful because after observing her signal,

an agent’s belief that her peer agent observed the same signal is larger than

50%. The third difference is that effort has a fixed cost, known to the mecha-

nism. While all strictly truthful peer prediction mechanisms incentivize some

cost of effort (Theorem 2.1), the particular cost that is incentivized depends on

an agent’s belief model and in particular how much the agent expects her belief

to change because of a signal. The original peer prediction method (Chapter 2)

can incorporate any fixed cost by scaling payments appropriately because the

agents’ belief model is common knowledge. The mechanisms from Chapters 3

to 6 relax the assumption that the mechanism knows the agents’ belief models,

and lose the ability to know how to appropriately scale payments.

The setting in this chapter is motivated by crowdsourcing human relevance

judgments of search engine results, which are user studies run by search engine

companies to test the performance of different ranking algorithms [e.g. Kazai

et al., 2013]. In the simplest version of these relevance judgments, a user is pre-

sented with two websites together with a search query, and is asked to report
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which of the two websites is better suited for the given query. These reports

are then used to determine whether a change in the search engine’s ranking

algorithm would improve the quality of the search results and, if so, by how

much. In another example, the two items are suggestions about things the New

York City Mayor’s Office could do to make New York a greener city.1 In this

wiki survey [Salganik and Levy, 2012], people were presented two different sug-

gestions and were asked to vote which of the two they found more convincing.

Note that depending on the choices presented to a user, she can be either very

knowledgeable or clueless (or anything in between) as to which will best im-

prove New York City’s environment. The same holds true for human relevance

judgments to improve search engine quality: depending on the query that is

presented, a worker may or may not know how to evaluate a website based on

that query.

It is important to point out the incentive problems in these settings. In the

New York example, the truthfulness of reports may be a concern. A New York

shop owner might agree that it makes the city cleaner charging customers 25

cents for each plastic bag they use, but she may also have a vested interest not

to vote for this cause because it is bad for business. Another incentive issue is

encouraging participants to invest costly effort in order to obtain information

since people need to first understand the issue and then form an opinion about

the presented options. In the human relevance judgments example, workers

probably do not have strong incentives for being untruthful about which website

they consider more appropriate for a given search term. It does, however, take

effort clicking on the websites, having a closer look at each, and then weighing

which of the two is better suited for a given query. Faced with a payment scheme

that does not address this issue properly (such as a fixed-price scheme that pays

a constant amount per reported ranking), workers would maximize their hourly

wage not by investing effort but by randomly clicking through each task quickly.

The key property of an effort-incentivizing peer prediction mechanism is that

the expected payment of an agent who invests effort is higher than the expected

payment of an uninformed agent (an agent not investing effort) by at least the

cost of effort. Without a lower bound on the extent that an agent’s signal belief

is expected to change following effort, there always exist stochastically relevant

belief models and an effort cost C > 0 for which an agent will choose not to

invest effort. Moreover, the problem cascades: when an uninformed agent is

used as peer j for another agent i, this agent i no longer has an incentive to

invest effort either.

I present two approaches to avoid this unraveling of incentives. To make

progress, I first assume access to a quality oracle and the ability to block partic-

1http://www.allourideas.org
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ipation based on an agent’s quality. In the full model, I then allow an agent to

first decide whether to “pass” and take a zero utility outside option, or partici-

pate. In addition, I allow for negative payments. Introducing the passing option

and allowing for negative payments goes hand in hand because without negative

payments every agent will choose to participate. The main result is that pay-

ments can be designed such that uninformed agents and agents whose qualities

are too low are better off passing than participating while agents with quali-

ties over a specific threshold that is a design parameter choose to invest effort

and report their signals truthfully. That is, I design payments that incentivize

agents to invest effort and self-select according to quality.

The remainder of this chapter is organized as follows. In Section 7.1, I

discuss the difference to related work. In Section 7.2, I explain the difference

of the model used in this chapter as compared to the models of Chapters 2

to 6. In Section 7.3, I analyze the basic decision problems in the model of this

chapter from the perspective of a single agent investing effort and not investing

effort. In Section 7.4, I develop a baseline mechanism through the assumption

of access to a quality oracle that knows for every agent whether her quality is

over a specified threshold and the mechanism lets only those agents over this

threshold participate. I derive the mechanism’s expected cost for, allowing for

negative payments and restricting to non-negative payments. In Section 7.5,

I then design a mechanism with negative payments that incentivizes agents to

self-select, such that they only choose to participate when their quality is over

the specified quality threshold. This self-selection mechanism has the same

expected cost as the cost-minimal baseline mechanism with access to a quality

oracle. In Section 7.6, I conclude with a discussion of the results and their

implications for application, and point to interesting directions for future work.

7.1 Related Work

In addition to the related work on peer prediction mechanisms introduced in

Chapters 2 to 6, there is additional related work particular to this chapter.

Most closely related is the work by Dasgupta and Ghosh [2013]. Their paper

is situated in a very similar model for information elicitation with unknown

ground truth where agents have individual qualities, defined just as in the model

of this chapter as the probability that an agent can identify the correct, ground

truth, ranking. The main difference to the model used in this chapter is that

they require each agent to report on several items. While even simple output-

agreement mechanisms induce a truthful equilibrium in their model, their key

contribution is to develop a technique for eliminating other, unwanted equilibria.

In a brief treatment, they comment that costly effort would be incentivized by
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scaling payments and that the qualities could be obtained by pre-screening; e.g.,

through qualification tests. I formalize this approach to costly effort, and use

the resulting mechanism as a baseline with which to compare my mechanism.

The mechanism I introduce is shown to have significantly lower cost and does

not require the ability to screen participants. Rather, participants will self-select

into the mechanism according to their quality.

7.2 Model

There are two items A and B with true order A � B; a situation that is referred

to as “A is best.” Each agent in a sequence of agents is presented with the two

items in a random order. From the perspective of a given agent i, the items are

denoted Ai and Bi. For example, imagine that item Ai is the item presented

on the left and Bi the item presented on the right, and that the decision about

the ordering is made uniformly at random. Because of this, the signal prior of

agent i is Pr(Ai � Bi) = 0.5.

Agent i has the option of investing effort to observe a noisy signal �i about

the true order of the items. In particular, agent i has a quality µi, which is

drawn uniformly on [0.5, 1]. The distribution on quality is common knowledge,

i.e. known to both the agents and the mechanism, but each agent’s quality is

private information of that respective agent. The cost of effort C > 0 is assumed

to be identical for every agent, and common knowledge. If agent i invests

effort, the signal she receives is the true order with probability µi; otherwise she

receives the wrong order. For the analysis, it is convenient to transform quality

µi ∈ [0.5, 1] to normalized quality qi ∈ [0, 1], so that qi = 2µi− 1 and qi uniform

on [0, 1].

Each agent i is matched with another agent j, said to be the peer of agent

i. For example, agent j can be the agent following agent i in the sequence, or

agent j can be chosen randomly. Agent i can also be agent j’s peer, but this

need not be the case. I study simple output agreement mechanisms for which

agent i receives payment τa > C > 0 if her report agrees with that of peer agent

j, and τd < τa otherwise. This is a slight generalization from the definition

of simple output agreement in Section 2.4 because it is not required that τd

is set to 0. In fact, this chapter’s focus is to consider the impact of allowing

τd < 0. To allow for negative payments in practice, one can imagine that the

broader context requires holding at least −τd > 0 as collateral from an agent

who participates. The payments in the case of agreement and disagreement are

common knowledge.

In contrast to the setting of Chapters 2 to 6, where every agent had an incen-

tive to participate in the mechanism because all payments were non-negative, the
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Agent i

0

pass

τa+τd
2

ai = 0 (guess)

τa+τd
2 − τa−τd

2 qiaj − C

ai = −qi (“counter”)

τa+τd
2 + τa−τd

2 qiaj−C

ai = qi (“truth”)

invest effort

participate

Figure 7.1: An illustration of agent i’s decisions within the game.

participation step is modeled explicitly in this chapter. With negative payments,

however, an agent may be better off obtaining zero utility by not participating.

An agent first decides whether to “participate” or “pass,” given knowledge of

her quality µi. If she passes, she receives zero payment. If she participates,

her strategic choice is whether to invest effort or not. The report of agent i is

denoted by �′i, and she must report Ai �′i Bi or Bi �′i Ai. When saying that

the report is A �′i B this should be understood to mean that the agent’s report

on Ai and Bi was mapped to mean A �′i B. Only a participating agent can be

chosen to be the peer of agent i, and if only one agent participates, her expected

payment is assumed to be (τa + τd)/2, and the same as the payment she would

obtain if she were matched against a peer who guesses.

7.3 Single-Agent Perspective

In this section, I analyze the set of possible best responses of an agent. We will

need this in later sections when analyzing the equilibria of the mechanisms. See

Figure 7.1 for a graphical illustration of the game from agent i’s perspective.

7.3.1 Agent not Investing Effort

Consider an agent who chooses to participate but not invest effort. Because

items Ai and Bi are in a random bijection to A and B, no matter if the agent

reports Ai �′i Bi, reports Bi �′i Ai, or reports Ai �′i Bi with some probability,

her belief about the effect of these reports is that it is equally likely to be A �′i B
or B �′i A. In the same way, an agent who does not invest effort will think it is
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equally likely that peer agent j’s report will correspond to Ai �′j Bi or Bi �′j Ai
(with respect to agent i’s item space). That is, the belief of agent i in regard to

the report of her peer is Pr(Ai �′j Bi) = 0.5. For this reason, any uninformed

reporting strategy comes down to guessing uniformly, with agent i receiving

expected utility

Ui(guess) =
τa + τd

2
(7.1)

for any report of her peer j.

Recall that the utility from not participating (i.e. from passing) is assumed

to be zero:

Ui(pass) = 0. (7.2)

Lemma 7.1 describes the primary effect of the mechanism parameters on the

agents’ equilibrium play:

Lemma 7.1. Whether passing dominates guessing depends on payments τa and

τd:

1. If τd > −τa, then Ui(guess) > Ui(pass).

2. If τd < −τa, then Ui(pass) > Ui(guess).

Proof. Ui(guess) = τa+τd
2 > 0 = Ui(pass)⇔ τd > −τa (second case analogous).

For τd = −τa, agents are indifferent between passing and guessing. Whether

passing dominates guessing or vice versa is one of the two major differences

between the mechanisms of Sections 7.4 and 7.5.

7.3.2 Agent Investing Effort

First observe that Lemma 7.1 still holds after investing effort, but that investing

effort followed by guessing or passing cannot be part of any equilibrium because

effort is costly.

Having invested effort, an agent can now follow more informed reporting

strategies. The truth strategy reports the true signal received. The counter

strategy reports the opposite order to the one received. Many other reporting

strategies are available. For example, agent i can report Ai �′i Bi with 50%

probability if her signal is Ai �i Bi and report Bi �′i Ai otherwise. Lemma 7.2

says that these other reporting strategies following a decision to invest effort are

not part of any equilibrium:
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Lemma 7.2. If investing effort is part of a best response for an agent, then the

reporting strategies “truth” or “counter” strictly dominate all other strategies.

Proof. Since C > 0, and given that investing effort is assumed part of a best

response, the expected utility from investing effort must be higher than guessing.

Therefore, the probability of agreement conditioned on at least one signal must

be greater than 0.5. Before investing effort, the agent’s subjective belief on j’s

report is Pri(Ai �′j Bi) = 0.5. Now suppose that this belief does not change

after observing Ai �i Bi, i.e. Pri(Ai �′j Bi|Ai �i Bi) = 0.5. This would then

mean that Pri(Ai �′j Bi|Bi �i Ai) = 0.5 as well since

Pri(Ai �′j Bi|Ai �i Bi) · Pri(Ai �i Bi)

+ Pri(Ai �′j Bi|Bi �i Ai) · Pri(Bi �i Ai)

= Pri(Ai �′j Bi) = 0.5.

(7.3)

But then agent i’s subjective belief about the probability of agreement remains

unchanged and we have a contradiction. Therefore, we must have Pri(Ai �′j
Bi|Ai �i Bi) 6= 0.5. Suppose Pri(Ai �′j Bi|Ai �i Bi) > 0.5 and so Pri(Ai �′j
Bi|Bi �i Ai) < 0.5 (follows from Equation 7.3). Because of this, given signal

Ai �i Bi, the agent’s unique best response is to report Ai �′i Bi and given

signal Bi �i Ai her unique best response is to report Bi �′i Ai. In each case,

this “truth” strategy dominates any other strategy including a mixed strategy.

Similarly, if Pri(Ai �′j Bi|Ai �i Bi) < 0.5 and so Pri(Ai �′j Bi|Bi �i Ai) > 0.5,

then the “counter” strategy dominates any other strategy.

Given Lemma 7.2, it is helpful to define the action ai to succinctly represent

all potential equilibrium play of an agent who chooses to participate. This

action is defined as follows:

ai =


qi , if invest effort and report truth

−qi , if invest effort and report counter

0 , if no effort, and guess.

(7.4)

Suppose, for example, that both agent i and her peer agent j invest effort

and report truthfully. Agent i’s expected utility, written as a function of ai and
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aj , and when both invest effort and report truthfully is

Ui(ai = qi, aj = qj) =

(
1 + qi

2

)(
1 + qj

2

)
τa

+

(
1− qi

2

)(
1− qj

2

)
τa

+

(
1 + qi

2

)(
1− qj

2

)
τd

+

(
1− qi

2

)(
1 + qj

2

)
τd − C

=
τa + τd

2
+
τa − τd

2
qiqj − C,

(7.5)

where the first term is when both agents agree on the correct order, the second

term is when both agree on the incorrect order, the third term is from agent i

being correct but agent j being wrong, and the fourth line from agent i being

wrong and agent j being correct.

On the other hand, if both invest effort but agent i plays truth and her peer

plays counter, then τa and τd are simply exchanged, and:

Ui(ai = qi, aj = −qj) =
τa + τd

2
− (τa − τd)

2
qiqj − C. (7.6)

Suppose both were to invest effort and play counter. In this case, we again

have:

Ui(ai = −qi, aj = −qj) =
τa + τd

2
+
τa − τd

2
qiqj − C. (7.7)

Note also that if agent i invests effort, while her peer agent guesses, then her

expected utility is just,

Ui(ai = qi, aj = 0) =
τa + τd

2
− C. (7.8)

Let σj denote peer agent j’s strategy, which is a probability distribution over

aj . The expected valued of aj given agent j’s strategy is E[aj |σj ] .Combining

Equations 7.5–7.8, we have the following lemma:

Lemma 7.3. The expected utility for a participating agent with normalized

quality qi who participates and takes action ai ∈ {−qi,+qi} is:

Ui(ai) =
τa + τd

2
+
τa − τd

2
· ai ·E[aj |σj ]− C, (7.9)

where E[aj |σj ] is the expected value of the action of peer agent j and where

sigmaj denotes her strategy.

The expectation is taken with respect to the distribution on qualities of
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agents, any mixing of strategies, and the random process that defines an agent’s

signal. Following effort by agent i, her strategic interaction with her peer agent

j is precisely captured through E[aj |σj ], and Equation 7.9 fully captures agent

i’s expected utility following effort.

7.4 Quality-Oracle Mechanism

In this section, I analyze mechanisms with τd > −τa and assume access to a

quality oracle. In Section 7.5, we will then see that the right choice of τd < −τa
induces agents to self-select according to quality so that the mechanism no

longer needs a quality oracle. The distinction between the cases τd > −τa and

τd < −τa comes from Lemma 7.1. For τd > −τa, one needs some form of

external quality screening because guessing strictly dominates passing, so that,

without screening, every agent would participate, and low-quality agents would

guess instead of investing effort and reporting truthfully. Knowing that some

peer agents will guess, higher-quality agents would also guess, leading to an

unraveling of incentives and additional noise in the reported signals.

Definition 15. For any qualification threshold q∗ > 0, a mechanism with access

to a quality oracle knows for every agent i whether normalized quality qi ≥ q∗

or qi < q∗.

In the remainder of this section, it is assumed that the mechanism has access

to a quality oracle, and uses this to only allow an agent to participate if her

(normalized) quality is qi ≥ q∗ > 0, for some threshold q∗.

When ground truth data is available for some item pairings, qualification

tests can be used as an approximation for a quality oracle. Qualification tests

ask every agent for reports about k item pairings for which the mechanism knows

ground truth. Based on this, only those agents who agree with the ground truth

on at least a fraction q∗ > 0 of their reports are allowed to participate. Of

course, such a qualification test provides only an approximate quality oracle.

With k = 10 trials and a qualification threshold of q∗ = 0.6 (corresponding

to µ∗ = 0.8), for example, a qualification test allows an agent with qi = 0.2

(corresponding to µi = 0.6) to participate with 16.73% probability despite qi <

q∗. Similarly, an agent with qi = 0.7 (corresponding to µi = 0.85) misses the

qualification bar with 17.98% probability. Due to the law of large numbers,

these mis-classifications disappear for k → ∞, so that a qualification test with

k →∞ trials approaches the behavior of a quality oracle.
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7.4.1 Incentive Analysis

Theorem 7.4. With τd > −τa and τa − τd > 4C
(q∗)2+q∗ , the mechanism with

access to a quality oracle induces a strict Bayes-Nash equilibrium where every

agent i allowed to participate, i.e. with quality qi ≥ q∗, chooses to participate,

invest effort, and report truthfully.

Proof. Consider an agent i who is allowed to participate after the mechanism

asked the quality oracle, and assume all other agents who are allowed to partic-

ipate invest effort and report truthfully. To prove is that agent i’s unique best

response is to also invest effort and report truthfully. Using Equation 7.9, we

first need to compute E[aj |σj ], where agent j invests effort and reports truth-

fully:

E[aj |σj ] = E[qj |qj ≥ q∗] =
1

1− q∗

∫ 1

qj=q∗
qj dqj =

1 + q∗

2

Observe that the quality distribution for peer agent j is now uniform on [q∗, 1].

Since τd > −τa, we know from Lemma 7.1 that passing is strictly dominated

by guessing, so that in every equilibrium agent i is always participating. From

Lemma 7.2 we know that only ai ∈ {−qi, 0,+qi} can be best responses of an

agent that participates. Now since E[aj |σj ] = 1+q∗

2 > 0 and qi ≥ q∗ > 0, by

Equation 7.9, ai = −qi cannot be part of a best response either. It then remains

to determine the values τa, τd with τd > −τa for which an agent i with quality

qi = q∗ is better off playing ai = qi than ai = 0 by setting Ui(ai = q∗) > Ui(ai =

0):

τa + τd
2

+
τa − τd

2
· q∗ ·E[aj |σj ]− C >

τa + τd
2

⇔ τa − τd
2

· q
∗(1 + q∗)

2
> C ⇔ τa − τd >

4C

(q∗)2 + q∗
.

This completes the proof.

7.4.2 Expected Cost

Now that we know the constraint on τa and τd such that for a given quality

threshold q∗, there is a Bayes-Nash equilibrium where all agents with quality

higher than the threshold invest effort and are truthful, how should payments

τa and τd be set to minimize the expected cost given C and q∗?

For each agent who participates, the expected cost in the truthful equilibrium
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of the quality-oracle mechanism is given by:

E[cost for participating agent]

=
τa + τd

2
+
τa − τd

2
· q
∗ + 1

2
· q
∗ + 1

2

=
τa + τd

2
+
τa − τd

2
· (q∗ + 1)2

4

=
1

2
(τa + τd) +

(q∗ + 1)2

8
(τa − τd).

(7.10)

Given this, the optimization problem to find the cost-minimizing mechanism

parameters becomes:

minimize
1

2
(τa + τd) +

(q∗ + 1)2

8
(τa − τd)

s.t. τa − τd >
4C

(q∗)2 + q∗

τa + τd > 0

(7.11)

The remainder of the section is organized as follows. I first solve this opti-

mization problem, and then impose the additional requirement of non-negative

payments, i.e. τd ≥ 0. Having done this, I quantify how much more the mecha-

nism has to pay in expectation because of this restriction.

Allowing for Negative Payments

I solve the optimization problem as given in (7.11) using a variable change. Let

τa = τ + ∆ and τd = τ −∆ for new variables τ and ∆. Substituting into (7.11)

and solving the optimization problem immediately gives ∆ = 2C/
(
(q∗)2+q∗

)
+ε,

and τ = ε, with ε > 0 and ε → 0. Substituting again for τa and τd, we obtain

the cost-minimizing mechanism parameters:

τa =
2C

(q∗)2 + q∗
+ ε (7.12)

and

τd = − 2C

(q∗)2 + q∗
. (7.13)

Given this, the expected cost to the mechanism for each agent who chooses
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to participate is

E[minimal cost for participating agent|τd > −τa]

=
1

2
(τa + τd) +

(q∗ + 1)2

8
(τa − τd)

=
1

2
(ε) +

(q∗ + 1)2

8

(
4C

(q∗)2 + q∗
+ ε

)
,

(7.14)

and for ε→ 0, we have:

lim
ε→0

E[minimal cost for participating agent|τd > −τa]

=
(q∗ + 1)2

8
· 4C

(q∗)2 + q∗
=

(q∗)2 + 2q∗ + 1

2(q∗)2 + 2q∗
C

=

(
1

2q∗
+

1

2

)
C.

(7.15)

Requiring Non-negative Payments

Let us now suppose that we seek to minimize the expected cost subject to τd ≥ 0.

The second constraint in (7.11) is always satisfied with τd ≥ 0. I now argue that

it must be that τd = 0 in an optimal solution. Assume this was not the case, so

that τd = z for some z > 0. Then the left-hand side of the first constraint can

be kept at the same level by setting τd := 0 and τa := τa− z, which would lower

the first part of the objective function and leave the second part unchanged. So

for minimal non-negative payments, we have:

τd = 0. (7.16)

After inserting τd = 0 back into the optimization problem, we obtain:

τa =
4C

(q∗)2 + q∗
+ ε (7.17)

with ε → 0. Based on this, the expected cost to the mechanism for each agent

who chooses to participate is

E[minimal cost for participating agent|τd ≥ 0]

=
1

2
(τa + τd) +

(q∗ + 1)2

8
(τa − τd)

=
(q∗)2 + 2q∗ + 5

8

(
4C

(q∗)2 + q∗
+ ε

) (7.18)

and for ε→ 0, we have:
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lim
ε→0

E[minimal cost for participating agent|τd ≥ 0]

=
(q∗)2 + 2q∗ + 5

8

(
4C

(q∗)2 + q∗
+ ε

)
=

(q∗)2 + 2q∗ + 5

2(q∗)2 + 2q∗
C.

(7.19)

Relative Cost of Requiring Non-Negative Payments

Constraining the mechanism’s payments to be non-negative can only increase

the expected cost (fixing the cost to agents for effort C and the design parameter

q∗ above which agents will choose to participate and invest effort). But how

much more expensive is it when the mechanism is restricted in this way? Recall

that in both cases agents must have an incentive to participate, i.e. the expected

utility for an agent who participates must be non-negative.

Theorem 7.5. Fixing quality threshold q∗, the expected cost of the cost-optimized

quality-oracle mechanism increases by a factor of

4

(q∗ + 1)2
+ 1

when constraining the mechanism to non-negative payments τa, τd ≥ 0. This is

an increase between 2 (for q∗ → 1) and 5 (for q∗ → 0).

Proof. The result follows from dividing Equation 7.19 by Equation 7.15:

limε→0 E[minimal cost for participating agent|τd ≥ 0]

limε→0 E[minimal cost for participating agent|τd > −τa]

=

(q∗)2+2q∗+5
2(q∗)2+2q∗ C

(q∗)2+2q∗+1
2(q∗)2+2q∗ C

=
(q∗)2 + 2q∗ + 5

(q∗)2 + 2q∗ + 1

=
(q∗ + 1)2 + 4

(q∗ + 1)2
=

4

(q∗ + 1)2
+ 1

(7.20)

Since (q∗ + 1)2 is strictly increasing in q∗, the term 4/(q∗ + 1)2 + 1 is strictly

decreasing. The statement follows after inserting q∗ = 0 and q∗ = 1.

7.5 Self-Selection Mechanism

In this section, I drop the assumption that the mechanism has access to a quality

oracle. At the same time, I consider the effect of setting τd < −τa so that passing

dominates guessing (Lemma 7.1). The main result is the identification of an

equilibrium in which agents self-select according to their quality qi, such that
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every agent over quality threshold q∗ invests effort and is truthful, and every

agent below the threshold is passing. While optimizing the quality threshold

is left for future work, I note here that the quality threshold trades off quality,

cost and number of reports: a higher threshold q∗ results in higher expected

quality of reports and lower expected cost per report but also results in more

agents not participating and thus fewer reports.

There are several advantages of self selection when compared to qualifica-

tion tests. First, qualification tests are equivalent to quality oracles only with

infinitely many samples. Second, qualification tests are wasteful because agents

need to be paid for test questions to which the answer is already known. Third,

self selection is more flexible than qualification tests in that it adapts to changes

in the nature of tasks without any re-testing. In the human relevance judgments

setting, for example, the quality of an agent does not have to be fixed but can

depend on the given search query. Finally, self selection does not require ground

truth data.

7.5.1 Incentive Analysis

Let σi(qi) denote the strategy that maps agent i’s quality type qi to her action

(e.g. “pass” or “guess”).

Theorem 7.6. With τd < −τa, the mechanism without access to a quality

oracle induces a Bayes-Nash equilibrium where every agent i plays the following

strategy:

σi(qi) =

{
invest effort and report truthfully, if qi ≥ q∗

pass, if qi < q∗

where

q∗ =

√
9

4
− 4(τa − C)

τa − τd
− 1

2
.

For an agent with qi 6= q∗ this is a strict best response.

Proof. It is sufficient to show that given peer agent j plays σj(qj), it is a best

response for agent i to play σi(qi), and the unique best response if qi 6= q∗.

Inserting σj(qj) into Equation 7.9, E[aj |σj ] is identical to its value in the quality-

oracle mechanism:

E[aj |σj ] = E[qj |qj ≥ q∗] =
1

1− q∗

∫ 1

qj=q∗
qj dqj =

1 + q∗

2

By Lemma 7.1, we know that passing strictly dominates guessing, so in order to

determine the indifference point between passing and investing effort followed
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by truthful reporting, we set Ui(ai = q∗) = Ui(pass) = 0 and obtain

τa + τd
2

+
τa − τd

2
· q∗ ·E[aj |σj ]− C = 0

⇔ τa + τd
2

+
(τa − τd)(q∗(1 + q∗))

4
− C = 0

⇔ q∗ + (q∗)2 = 2− 4(τa − C)

τa − τd

⇔ q∗ = ±

√
9

4
− 4(τa − C)

τa − τd
− 1

2
.

(7.21)

First observe that 4(τa−C)
τa−τd > 0 because τa > C. Now, τa−C < τa and τa−τd >

2τa since −τd > τa. Therefore, it holds that 4(τa − C)/(τa − τd) < 4τa/2τa = 2

and so only the positive solution of the square root is within the [0, 1] bounds

for q∗. Strictness for qi 6= q∗ follows from Equation 7.9 strictly increasing with

ai for E[aj |σj ] > 0.

7.5.2 Expected Cost

Since agent j’s equilibrium play is the same as in the previous section, the

equation for the expected cost of the mechanism is unchanged (Equation 7.10).

However, the equilibrium conditions of the self-selection mechanism do not allow

the same analysis used to find the cost-minimal payments in the quality-oracle

mechanism. This is because the equilibrium condition from Theorem 7.6 does

not have the same simple structure as that in Theorem 7.4. We thus insert

the equilibrium condition into Equation 7.10 and obtain (the second line in

Equation 7.22 is derived from the second line in Equation 7.21):

E[cost for participating agent]

=
τa + τd

2
+
τa − τd

2
· (q∗ + 1)2

4

=
τa + τd

2
+

2C − (τa + τd)

q∗ + (q∗)2
· (q∗ + 1)2

4

=
τa + τd

2
+

(q∗ + 1)
(
2C − (τa + τd)

)
4q∗

=
τa + τd

2
− (τa + τd)(q

∗ + 1)

4q∗
+

2C(q∗ + 1)

4q∗

=
τa + τd

2
− τa + τd

2

(
1

2
+

1

2q∗

)
+
C

2
+

C

2q∗
− C + C

=
τa + τd

2

(
1

2
− 1

2q∗

)
− C

(
1

2
− 1

2q∗

)
+ C

=

(
τa + τd

2
− C

)(
1

2
− 1

2q∗

)
+ C =

(
C − τa + τd

2

)(
1

2q∗
− 1

2

)
+ C

(7.22)
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Both factors of the first part of this equation are always positive for τd < −τa
and q∗ ∈ (0, 1). Fixing q∗, the minimal payments are thus setting τd = −τa − ε
with ε > 0 and ε → 0, so that (τa + τd)/2 → 0. Setting τd = −τa − ε leaves us

with one degree of freedom, and τa can still be used to implement any q∗, since

lim
ε→0

4(τa − C)

τa − τd
= lim
ε→0

4(τa − C)

2τa + ε
= 2− 2C

τa
,

so that

q∗ :=

√
9

4
−
(

2− 2C

τa

)
− 1

2
=

√
1

4
+

2C

τa
− 1

2
, (7.23)

can be set to any value between 0 and 1. Solving Equation 7.23 for τa, we thus

obtain the cost-minimal payments

τa =
2C

(q∗)2 + q∗

and

τd = − 2C

(q∗)2 + q∗
− ε.

For ε → 0, these are identical to the cost-minimal payments of the quality-

oracle mechanism with τd > −τa. Therefore, the self-selection mechanism with

τd < −τa has the same expected cost, with the added benefit of obtaining perfect

screening through self-selection. Theorem 7.7 then follows immediately:

Theorem 7.7. For fixed quality threshold q∗, the expected cost of the cost-

optimized self-selection mechanism is lower than the expected cost of the cost-

optimized quality-oracle mechanism constrained to non-negative payments by a

factor of
4

(q∗ + 1)2
+ 1.

7.6 Conclusion

In this chapter, I presented an analysis of simple output-agreement mechanisms

for incentivizing effort and providing screening for worker quality. The analysis

suggests that practitioners should strongly consider allowing negative payments

as they significantly lower the cost for effort-incentivizing peer prediction mecha-

nisms and provide a free way to perfectly screen based on quality in equilibrium.

In closing, I emphasize the two main contributions of this chapter and discuss

the practicality of the presented approach. First, peer prediction with effort

incentives is expensive if simple output agreement can only use non-negative

payments. For example, with effort cost C > 0 and a quality threshold of

µ∗ = 0.8 (i.e., q∗ = 0.6 and thus screening for the top 40% of quality in the
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market), the expected cost for the cost-minimal, non-negative-payment output-

agreement mechanism is 3.4C. Allowing for negative payments, the expected

cost for the mechanism decreases to 1.3C. This improvement would occur even

if the designer had access to a free method of perfectly screening for the quality

of participants and simply stems from using lower payments.

Second, in addition to lower expected cost on behalf of the mechanism,

choosing negative payments to disincentivize guessing induces an equilibrium

where agents self-select according to the selection criterion—in effect, perfect

screening comes for free. I do not believe that this principle is restricted to

selection for quality. For example, it could also be applied when all participants

have the same quality but differ in cost, and participants self-select according

to cost.

In markets where the requester competes with other requesters, a worker’s

outside option may not be to pass and obtain utility zero but to work on another

task with positive expected utility. For such a competitive setting, I conjecture

that the relative cost benefit of negative payments decreases but that incentiviz-

ing workers with low quality to pass still has the benefit that it induces workers

to self select according to their qualities.

Regarding the practicality of the approach, it seems useful to separate the

assumptions made for the analysis (such as the uniform prior on the agents’

quality) and the simplicity (and thus practical robustness) of simple output-

agreement mechanisms. In practice, a designer only needs to set two parameters,

agreement payment τa and disagreement payment τd, and this could be achieved

adaptively. The main theoretical results suggest the opportunity for significant

cost savings, along with screening of agents according to quality through self

selection.

Future Work

There are several interesting directions for future work. First, it would be

interesting to evaluate the mechanism experimentally. Second, it would be

interesting to extend the analysis to the more sophisticated belief models of

Chapters 2 to 6, where an agent may believe that she holds a minority opinion

after investing effort. This is currently precluded because an agent observes

ground truth with probability larger than 50% after investing effort. I intend to

study effort incentives for peer-prediction mechanisms that are not just simple

output agreement, such as the Robust Bayesian Truth Serum (Chapter 4).
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Chapter 8

Conclusion

Peer prediction mechanisms have originally been motivated with the need to

truthfully elicit ratings about products or services in reputation systems, such

as those employed by Yelp!,1 Amazon, or eBay. In hindsight, this motivation

seems problematic for several reasons. First, peer prediction mechanisms rely on

payments, which are infeasible in many product rating environments. Second,

the peer prediction approach does not seem appropriate for the diverse rater

population of real-world reputation systems. The computed payments are either

too high, in that raters are intrinsically motivated to report truthfully, even

without payment, or they are too low in that the incentives to manipulate ratings

are too large to be compensated through realistically scaled payments. As an

example for this latter case, consider a restaurant owner who could increase her

restaurant’s rating on Yelp! by falsely reporting a positive experience. Applying

a peer prediction mechanism to disincentivize this manipulation would require

an infeasibly high scaling of peer prediction payments given the high impact of

restaurant reviews on the restaurant’s revenue [Luca, 2011].

Nevertheless, peer prediction mechanisms do address important incentive

problems in other applications. In particular, they are useful in paid crowd-

sourcing settings, where participants need to invest costly effort. In Section 2.2,

I presented an example for such a setting, in which crowd workers were asked

to report whether a given website contains offensive content, such as explicit

violence or nudity. Paid crowdsourcing is a natural application for peer pre-

diction mechanisms because a payment infrastructure is already established.

Moreover, while there are no incentives for a worker to lie, workers do have an

incentive to shirk, and not invest effort, unless they are properly incentivized.

As I have shown in this thesis, peer prediction mechanisms address this problem

and provide the appropriate incentives for the investment of costly effort.

1http://www.yelp.com
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There are many interesting directions for future work. The first is to extend

the fixed-cost effort analysis from Chapter 7 to the more sophisticated belief

models I have discussed in Chapters 2 to 6, where an agent may believe that

she holds a minority opinion after investing effort.

Second, every truthful peer prediction mechanism also has non-truthful equi-

libria [Waggoner and Chen, 2013]. An important direction for future work is

thus the design of a general technique to prevent agents from coordinating on

any of these lying equilibria, which may also Pareto-dominate the truthful equi-

librium [Jurca and Faltings, 2009]. Researchers have made first steps in this

direction but the results are restricted. They either apply only to the common

belief model of the classical peer prediction method [Jurca and Faltings, 2009]

or only to simple output agreement settings [Dasgupta and Ghosh, 2013]. In

particular, no solution is known for any of the general robust peer prediction

models of Chapters 3 to 6. It will be interesting to see whether the early results

can be generalized.

Third, in the models of Chapters 2 to 6, agents are assumed to be identical,

in that the signals they observe only depend on the true world state. In real-

ity, agents are likely to also have individual characteristics that influence their

signals. A first step to incorporate such characteristics is the work presented in

Chapter 7, where agents are allowed to be of different quality. An interesting

direction for future work is to incorporate other realistic agent characteristics,

such as taste differences and biases, into robust peer prediction. While there is

work in the machine learning literature that incorporates these types of charac-

teristics [e.g. Piech et al., 2013], this line of research ignores incentives. I believe

that integrating peer prediction mechanisms with machine learning models will

be mutually beneficial. It will be important to balance richer agent models with

reporting costs that are still feasible for participants.

Fourth, in addition to these extensions to the standard peer prediction set-

ting, another interesting direction for future work is to combine the presented

robust peer prediction mechanisms with mechanisms used in other multiagent

settings and classical mechanism design. An early example in this spirit is the

work by Azar et al. [2012], who propose an auction where one of the participants

is asked to predict the bids of others, and where this prediction is scored using

a proper scoring rule. Using the predicted bids, a reserve price is computed,

and this robust auction is then shown to approximate the optimal, revenue-

maximizing auction that has knowledge of the bid distribution. A natural next

step in combining robust peer prediction with classical mechanism design are

mechanisms with correlated types, so that the private preferences of an agent

tell her something about the private preferences of others.
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