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Abstract

We consider the design of forecasting competitions in which multiple
forecasters make predictions about one or more independent events and
compete for a single prize. We have two objectives: (1) to award the prize
to the most accurate forecaster, and (2) to incentivize forecasters to report
truthfully, so that forecasts are informative and forecasters need not spend
any cognitive effort strategizing about reports.

Proper scoring rules incentivize truthful reporting if all forecasters are
paid according to their scores. However, incentives become distorted if only
the best-scoring forecaster wins a prize, since forecasters can often increase
their probability of having the highest score by reporting extreme beliefs.
Even if forecasters do report truthfully, awarding the prize to the forecaster
with highest score does not guarantee that high-accuracy forecasters are likely
to win; in extreme cases, it can result in a perfect forecaster having zero
probability of winning. In this paper, we introduce a truthful forecaster
selection mechanism. We lower-bound the probability that our mechanism
selects the most accurate forecaster, and give rates for how quickly this
bound approaches 1 as the number of events grows. Our techniques can be
generalized to the related problems of outputting a ranking over forecasters
and hiring a forecaster with high accuracy on future events.

1. Introduction

The study of probabilistic forecasting dates back to the 1950s when mete-
orologists developed proper scoring rules as a way to both incentivize truthful
predictions about future events and compare the relative accuracy of different
forecasters (Brier, 1950; Good, 1952). Brier’s original quadratic scoring rule is

1



still widely used to motivate and measure forecasting accuracy (e. g., Atanasov
et al., 2016). When forecasters are paid proportional to their quadratic scores,
they maximize expected payment by truthfully reporting their beliefs.

However, in typical forecasting competitions, forecasters care not about maxi-
mizing expected score, but about whether their forecasts are judged to be better
than others’. For example, in the Good Judgment Project, a recent geopolitical
forecasting tournament, the top 2% of forecasters were awarded so-called “su-
perforecaster” status (Tetlock and Gardner, 2015), which (on top of bragging
rights) gave them full travel reimbursement to a superforecaster conference. On
ProbabilitySports,1 participants predict the outcomes of NFL games, competing
for prizes that are awarded to the highest-scoring forecaster in a given week or
month. In play-money prediction markets, forecasters often compete for a place
at the top of a leaderboard (e. g., Servan-Schreiber et al., 2004). And the same
phenomenon holds for algorithmic forecasters; Netflix offered $1,000,000 to the
team whose machine learning algorithm could best predict how users would rate
movies based on their past preferences,2 and the machine learning competitions
run by Kaggle3 rank submitted algorithms based on how well they predict the
labels of data points from an undisclosed test set. One of Kaggle’s main uses today
is for recruiters to hire the developers of the best-performing algorithms (Harris,
2013).

Unless they are designed with care, these winner-take-all competitions can
distort incentives, encouraging forecasters to take big risks as opposed to truthfully
reporting their beliefs. Lichtendahl and Winkler (2007) studied a strategic game
between two forecasters reporting on a single event. In their model, each forecaster
wishes to maximize her utility, which is assumed to be a mixture of a proper scoring
rule payment and an (explicit or implicit) bonus for being the best forecaster,
with a parameter trading off these two components. They showed that when
forecasters optimize for their relative rank, they typically want to report more
extreme probabilities than those corresponding to their true beliefs. Even putting
truthfulness aside, we show that awarding a prize to the forecaster with highest
score does not guarantee that high-accuracy forecasters are likely to win, and in
fact can lead to situations in which a perfect forecaster has zero probability of
winning.

In this paper, we present the Event-Lotteries Forecaster Selection Mechanism
(ELF). ELF borrows a trick from the competitive scoring rule of Kilgour and
Gerchak (2004), a self-financed betting mechanism that truthfully elicits proba-
bilistic forecasts for single events. Under Kilgour and Gerchak’s mechanism, a

1www.probabilitysports.com
2www.netflixprize.com
3www.kaggle.com
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forecaster’s payment depends on her relative performance (measured by a proper
scoring rule) compared with other forecasters. Specifically, her total payment is
the difference between her own score and the average score of all other forecasters.
For a single event, ELF uses a similar idea to compute scores for all forecasters
that are non-negative and sum up to 1. Treating these scores as a probability
distribution over forecasters, ELF then runs a lottery to determine the winner of
the prize. With multiple events, ELF runs one such lottery for each individual
event, eventually awarding the prize to the forecaster who has won the most event
lotteries.

In this way, ELF probabilistically selects a single winning forecaster while
incentivizing truthful forecasts for any sequence of independent events, regardless
of the number of events being predicted or the specific risk preferences of the
forecasters. We lower-bound the probability that ELF selects the most accurate
forecaster, and show that this bound approaches 1 as the number of events grows.
Our techniques generalize to other natural settings, such as the truthful ranking
of forecasters and hiring a forecaster with high accuracy on future events.

2. Model

We consider a group of n ≥ 2 forecasters, indexed by i ∈ [n] = {1, . . . , n},
and m independent events, indexed by k ∈ [m] = {1, . . . ,m}. We model these
as m independent random variables Xk that take values in {0, 1}, and we say
that “event k occurred” if Xk = 1 and that “event k did not occur” if Xk = 0.
In each of these cases, we say that “event k materialized,” and we denote the
vector of all materialized outcomes with x =

(
x1, . . . , xk, . . . , xm

)
. The true,

unknown probability that event k occurs is θk with θk ∈ (0, 1) for all k ∈ [m].
Every forecaster i has a subjective belief pi,k of the probability that event k will
occur with pi,k ∈ (0, 1) for all i ∈ [n] and all k ∈ [m]. Throughout the paper we
assume that it is common knowledge that the m events are independent. (We
discuss the problems that arise when events can be correlated in Section 6.5.)
All forecasters report their beliefs about event k at the same time, before event
k materializes. When reporting on event k, we allow forecasters to know the
outcomes of all past events. The reported forecast of forecaster i for event k is
denoted by yi,k ∈ [0, 1]. A forecaster’s report can be equal to her true belief (i.e.,
yi,k = pi,k) but does not have to be, and we denote the vector of i’s reported
forecasts as yi =

(
yi,1, . . . , yi,k, . . . , yi,m

)
.

Once all m events have materialized, the mechanism selects one of the n
forecasters as the “winner.” The selection is based on the event outcomes and all
forecasters’ reports on all events. We allow this selection to be randomized.

3



Definition 1. A forecaster selection mechanism M : y1, . . . ,yn,x→ [n] takes all
forecasters’ reports on all events and the materialized outcomes of all events, and
outputs a single forecaster.

In contrast to standard proper scoring rules, forecasters only care about
being selected. Every forecaster thus seeks to maximize the probability of being
selected. Incorporating forecaster i’s subjective beliefs over event outcomes and
the mechanism’s randomization (if any), we obtain the following definition for
strict truthfulness of a mechanism.

Definition 2. Forecaster selection mechanism M(y1, . . . ,yn,x) is strictly truth-
ful if and only if for all i ∈ [n], all pi, all y′

i 6= pi, and all yj for j 6= i,
Pr
x∼pi

(
M(y1, . . . ,pi, . . . ,yn,x) = i

)
> Pr
x∼pi

(
M(y1, . . . ,y

′
i, . . . ,yn,x) = i

)
.

Observe that we do not require the typical assumption that forecasters are risk
neutral: every forecaster strictly prefers being selected over not being selected,
so that the higher the probability of being selected, the better. This observation
is not new; previous work used lotteries to address unknown risk preferences
of forecasters (Karni, 2009; Lambert, 2011). While we also reward forecasters
probabilistically (and obtain robustness to unknown risk preferences as a bonus),
the primary reason we use lotteries is because we have many forecasters but only
a single prize to award. To the best of our knowledge, we are the first to study
this competitive lottery setting in the context of forecasting.

We compare forecasters by their accuracy, which is defined as 1 minus the
squared distance between their reports and the true (unknown) probabilities,
averaged over all m events. The accuracy ai of forecaster i is thus

ai = 1− 1
m

m∑
k=1

(
yi,k − θk

)2
with higher ai being better. Observe that ai ∈ (0, 1] for all i ∈ [n]. Of course,
other definitions of accuracy are thinkable, but this definition interacts particularly
nicely with the use of the quadratic scoring rule.

The objective in this work is to select the forecaster with the highest accuracy
with as high a probability as possible, and ideally with probability approaching 1
as m grows. Of course, one could imagine other objectives, such as maximizing
the expected accuracy of the selected forecaster or minimizing the accuracy gap
between the selected and the best forecaster. We briefly discuss alternatives in
Section 6.
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3. Forecaster Selection Using Standard Proper Scoring Rules

Consider a single forecaster and a single event. A scoring rule computes a
payment that depends on the event outcome x and the forecaster’s report y
regarding the probability that x = 1, paying the forecaster some amount R(y, x).

Definition 3 (Strictly Proper Scoring Rule). A scoring rule R(y, x) ∈ R ∪ {−∞}
is a mapping from reports y ∈ [0, 1] and outcomes x ∈ {0, 1} to scores. A scoring
rule R is proper if for all p, y ∈ [0, 1], Ex∼p

[
R(p, x)

]
≥ Ex∼p

[
R(y, x)

]
, and strictly

proper if the inequality is strict whenever y 6= p.

There exist infinitely many proper scoring rules since any (strictly) convex
function corresponds to a (strictly) proper scoring rule (Gneiting and Raftery 2007,
Theorem 1). In this paper, we focus on the quadratic scoring rule (Brier, 1950).

Proposition 1. (Brier, 1950) The quadratic scoring rule Rq(y, x) = 1− (y − x)2

is strictly proper.

Observe that Definition 3 is phrased in an incentive spirit, where the expectation
is taken with respect to a forecaster’s subjective belief p. Proper scoring rules
also have an accuracy interpretation, where a higher expected score implies a
more accurate forecast. In this case, the expectation is taken with respect to the
true probability θ of the event occurring and properness means that the report
of the true probability obtains a higher expected score than any other report.
Which of two imperfect forecasts (forecasts not coinciding with θ) obtains a higher
expected score is determined only by the specific proper scoring rule one chooses.
The quadratic scoring rule gives higher expected score to whichever forecast has
lower squared distance to θ. A convenient property of the quadratic score is that
the expected difference in quadratic score between two forecasters is equal to the
difference between their accuracies.

Proposition 2. The quadratic scoring rule has expected score Ex∼θ
[
Rq(y, x)

]
=

θ2−θ+1−(θ−y)2. Further, Ex∼θ
[∑m

k=1
(
Rq(yi,k, xk)−Rq(yj,k−xk)

)]
=m(ai−aj).

Proof. The first statement is easily derived by expanding out and rearranging the
terms in

E
x∼θ

[
Rq(y, x)

]
= θ

(
1− (y − 1)2)+ (1− θ)

(
1− (y − 0)2).

5



For the second statement,

E
x∼θ

[
m∑
k=1

(
Rq(yi,k, xk)−Rq(yj,k, xk)

)]

=
m∑
k=1

((
θ2
k − θk + 1− (θk − yi,k)2)− (θ2

k − θk + 1− (θk − yj,k)2))
=
(
m−

m∑
k=1

(
yi,k − θk

)2)− (m− m∑
k=1

(
yj,k − θk

)2)
=m(ai − aj).

3.1. Mechanism

A natural way to extend a proper scoring rule R to a forecaster selection
mechanism is to output the forecaster with highest score according to R, summed
across all m events. This mechanism is commonly used in practice to choose top
forecasters, including by the Good Judgment Project and ProbabilitySports. Let
Mq denote the mechanism derived in this way from the quadratic score. That is,
Mq selects the forecasters with highest quadratic score,

Mq(y1, . . . ,yn,x) ∈ argmax
i∈[n]

m∑
k=1

Rq(yi,k, xk),

with ties broken uniformly at random. In the remainder of this section, we show
that, despite its common use, Mq may select an arbitrarily bad forecaster, while
not incentivizing forecasters to report their beliefs truthfully.

3.2. Incentives

It is well known that selecting a forecaster according to highest quadratic score
may produce perverse incentives. In general, forecasters are incentivized to make
over-confident reports to increase their chance of being judged the best forecaster
ex post for at least some outcomes. In this section we present a representative
example; for a thorough analysis of the strategic behavior of competitive forecasters
when ranked by standard proper scoring rules, we defer to Lichtendahl and Winkler
(2007).

Example 1. Consider m ≥ 1, n ≥ 2, and pi,k = 0.9 for all forecasters i and events
k. If all forecasters report truthfully, then they achieve the same quadratic score
regardless of the outcome. Each is therefore chosen as the winner with probability
1/n. Suppose however that forecaster 1 misreports y1,1 = 0.95. Now, forecaster 1
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has the highest quadratic score whenever x1 = 1, which occurs with probability 0.9,
so this is an advantageous misreport.

3.3. Accuracy

We now show that Mq may fail to choose even a perfect forecaster with any
positive probability.

Proposition 3. For arbitrary m ≥ 1, n ≥ 3, and true event probabilities
θ1, . . . , θm ∈ (0, 1), there exist reports y1, . . . ,yn such that the best forecaster
has accuracy 1 but is selected with probability 0 by Mq.

Proof. Let forecaster 1 report perfectly on all events, (i.e., y1,k = θk for all k ∈ [m]).
For the first event, let there be at least one other forecaster with more weight on
each possible outcome. For example, let forecaster 2 report y2,1 = 1 and forecaster
3 report y3,1 = 0. For all following events, let all n forecasters report perfectly (i.e.,
yi,k = θk for all k ≥ 2). Then, for any outcome x, either forecaster 2 or forecaster
3 will have a higher average quadratic score than forecaster 1, despite forecaster 1
having accuracy 1.

Note that the example used in the proof of Proposition 3 shows that the best
forecaster may be selected with low probability, but does not say anything about
the quality of the selected forecaster. Indeed, for large m, all forecasters have very
similar quality, so the selected forecaster will be close to best in this particular
example.

4. Truthful Forecaster Selection with a Single Event

In this section and the next, we present a forecaster selection mechanism that
avoids the shortcomings of Mq. To build intuition, we begin by considering a
single-event setting (m = 1). In Section 5, we show how to extend our mechanism
to handle multiple events.

What needs to hold in order for a forecaster selection mechanism to be truthful?
First note that truthfulness requires that, holding the reports of everyone but
forecaster i fixed, the probability fi of choosing forecaster i must behave like a
proper scoring rule for i. If this is not the case, then i could increase her probability
of being selected by misreporting. Thus we need proper scoring rules for each
forecaster that are non-negative and always sum to 1 to form a valid probability
distribution. A natural first attempt to achieve this would be to use a standard
scoring rule, like the quadratic score, and renormalize by dividing by the sum of
all forecasters’ scores. However, as Example 2 shows, this renormalized scheme is
not truthful.
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Example 2. Let n = 2, and suppose p1 = p2 = 0.9. If both forecasters report
truthfully, each is chosen with probability 0.5, regardless of the outcome. However,
suppose that forecaster 1 reports y1 = 0.8. Now, if x = 1, the probability that
she is chosen is Rq(0.8, 1)/

(
Rq(0.8, 1) +Rq(0.9, 1)

)
= 0.96/1.95, and if x = 0, the

probability that she is chosen is Rq(0.8, 0)/
(
Rq(0.8, 0) + Rq(0.9, 0)

)
= 0.36/0.55.

Thus, her probability of being chosen is 0.9 ·0.96/1.95+0.1 ·0.36/0.55 ≈ 0.509 > 0.5,
which means that y1 = 0.8 is an advantageous misreport.

The reason that such a renormalization of proper scores breaks truthfulness is
that the probability of choosing forecaster i dependsmultiplicatively on a function of
other players’ reports and, crucially, the outcome x. To get around this, we borrow
a trick from the competitive scoring rule mechanism of Kilgour and Gerchak (2004),
which takes advantage of the fact that truthfulness is preserved when adding or
subtracting a function of other reports and the outcome. Using their mechanism,
each forecaster’s payment is a standard proper score (such as quadratic) minus
the average standard score of all other forecasters. Our Event-Lotteries Forecaster
Selection Mechanism (ELF) uses a similar idea to “normalize” all forecasters’
scores additively, so that they are non-negative and sum up to 1. ELF then runs a
lottery based on these scores to determine the winner of the prize. Alternatively,
one can think of ELF as giving each forecaster a 1/n probability to start with
and adjusting this up or down depending on how their performance compares
with that of other forecasters. As we will see, ELF is strictly truthful and selects
high-accuracy forecasters with higher probability than low-accuracy forecasters.

4.1. Mechanism

For a single event, the Event-Lotteries Forecaster Selection Mechanism (ELF)
Ml(y1, . . . , yn, x) selects forecaster i ∈ [n] with probability

fi = 1
n

+ 1
n

(
Rq
(
yi, x

)
− 1
n− 1

∑
j 6=i

Rq
(
yj , x

))
.

It is easy to see that
(
f1, . . . , fn

)
is a valid probability distribution. That

each fi is non-negative follows immediately from Rq being bounded in [0, 1]. And∑n
i=1 fi = 1 since

n∑
i=1

(
Rq
(
yi, x

)
− 1
n− 1

∑
j 6=i

Rq
(
yj , x

))
= 0.
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4.2. Incentives

Using a similar argument to that of Kilgour and Gerchak (2004), we can show
that ELF is truthful.

Theorem 4. ELF is strictly truthful for a single event.

Proof. Note that the only term in fi that depends on yi is (1/n)Rq(yi, x). By
linearity of expectation, maximizing Ex∼pi [fi] is therefore equivalent to maximizing
Rq(yi, x), and truthfulness follows from the fact that Rq is a strictly proper scoring
rule.

4.3. Accuracy

We now show that ELF chooses forecasters with higher accuracy more often
than those with lower accuracy.

Proposition 5. The probability that ELF chooses forecaster i given true probability
θ is 1

n + 1
n

(
ai − 1

n−1
∑
j 6=i aj

)
.

Proof. Using the second half of Proposition 2,

Pr
x∼θ

(
Ml

(
y1, . . . , yn, x

)
= i
)

= E
x∼θ

[
fi
]

= E
x∼θ

[
1
n

+ 1
n
· 1
n− 1

∑
j 6=i

(
Rq
(
yi, x

)
−Rq

(
yj , x

))]

= E
x∼θ

[
1
n

+ 1
n
· 1
n− 1

∑
j 6=i

(
ai − aj

)]

= 1
n

+ 1
n

(
ai −

1
n− 1

∑
j 6=i

aj

)
.

5. Truthful Forecaster Selection with Multiple Events

We now show how to generalize our single-event selection mechanism to handle
multiple independent events. One seemingly natural generalization would be to
run ELF on each of the m events independently, and then choose each forecaster i
with probability

∑m
k=1 fi,k/m, where fi,k = Pr

(
Ml(y1,k, . . . , yn,k, xk) = i

)
. Unfortu-

nately, doing this would not satisfy one of our key desiderata: that our mechanism
chooses the most accurate forecaster with probability tending to 1 as the number
of events grows. This failure is illustrated by Example 3.
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Example 3. Let n = 2, and suppose that there are m events, with θk = 0.5
for all k ∈ [m]. Suppose that forecaster 1 reports y1,k = 0.5 for all k, while
forecaster 2 reports y2,k = 1 for all k. As m grows large, approximately half the
events will have outcome xk = 0, so that f1,k = 1

2 + 1
2(0.75 − 0) = 0.875 and

f2,k = 1
2 + 1

2(0 − 0.75) = 0.125. The other half of the events will have outcome
xk = 1, so that f1,k = 1

2 + 1
2(0.75 − 1) = 0.375 and f2,k = 1

2 + 1
2(1 − 0.75) =

0.625. Therefore, after all m outcomes are observed, forecaster 1 is chosen with
probability (0.875 + 0.375)/2 = 0.625, and forecaster 2 is chosen with probability
(0.125 + 0.625)/2 = 0.375. Despite the fact that forecaster 1 is a much better
forecaster, we still choose forecaster 2 with 37.5% probability, even with a large
number of events.

In the following, we propose and analyze an alternative generalization that is
guaranteed to select the best forecaster with probability tending to 1 as the number
of events grows. It does this by running an independent lottery on each round and
selecting the forecaster who wins the most lotteries. Having independent lotteries
retains truthfulness while picking up on forecasters’ accuracy differences better
than a single lottery, for the same underlying reason that statistical concentration
inequalities hold (e. g., Hoeffding, 1963).

5.1. Mechanism

For multiple events, the Event-Lotteries Forecaster Selection Mechanism (ELF)
Ml(y1, . . . ,yn,x) is defined as:

(i) For each event k, pick forecaster i to be the event winner wk with probability

fi,k = 1
n

+ 1
n

(
Rq
(
yi,k, xk

)
− 1
n− 1

∑
j 6=i

Rq
(
yj,k, xk

))
.

(ii) Select the forecaster who won the most events, argmaxi
∑m
k=1 1(wk = i),

breaking ties uniformly at random. Here 1 denotes the 0/1 indicator function.

5.2. Incentives

We now show that ELF remains truthful with multiple events. This proof
relies heavily on our assumption that the independence of the m events is common
knowledge. In particular, if a forecaster believes that events are correlated, she
could have an incentive to misreport.

Theorem 6. ELF is strictly truthful for m ≥ 1 events.

Proof. Without loss of generality, order the events by the time at which the
forecasters report on them. So event 1 is reported on first, and event m is reported
on last.
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Fix all forecasters’ reports y1, . . . ,yn. Consider forecaster i and suppose that
at least one of i’s reports does not equal her true belief. Of all such events, let k′

be the one with lowest index. That is, yi,k′ 6= pi,k′ , and yi,k = pi,k for all events
k < k′. We will argue that i can improve her probability of being selected as the
best forecaster by instead reporting yi,k′ = pi,k′ . This shows truthfulness, since we
can repeat the argument as long as there remains an event on which i does not
report truthfully.

Consider the m − 1 events other than k′. Since we have assumed that the
outcomes for these events are independent of the outcome of event k′, we can reason
about them independently. There are three possible cases that we distinguish:

(i) There exists some forecaster j 6= i that wins at least two more events than
forecaster i, or i wins at least two more events than all other forecasters.

(ii) There exists some forecaster j 6= i that wins exactly one more event than
forecaster i, but no forecaster that wins two or more events more than i.

(iii) No forecaster wins more events than i, but there exists some forecaster j 6= i

that wins either the same number of events as i, or one event less than i.

In Case 1, i’s probability of being selected is either 0 or 1, regardless of who
wins event k′. Therefore, her utility is unaffected by her report yi,k′ .

In Case 2, forecaster i wants to maximize fi,k, since winning event k is the
only scenario in which she gets selected with any non-zero probability. By strict
truthfulness of ELF for a single event (Theorem 4), she accomplishes this only by
truthfully reporting yi,k′ = pi,k′ .

In Case 3, forecaster i has two (potentially conflicting) objectives: to maximize
fi,k, and to minimize fj,k for all forecasters j from some subset of the other
forecasters. However, it is easy to check that these objectives are not actually
in conflict; truthfully reporting yi,k′ = pi,k′ simultaneously maximizes fi,k, and
minimizes fj,k, for any j 6= i.

To complete the argument that i is strictly incentivized to report yi,k′ = pi,k′ ,
we argue that i believes that at least one of Cases 2 and 3 occurs with positive
probability (in fact, she will believe that both occur with positive probability
but one is sufficient). To see this, note that for all events k that have already
materialized at the time the forecasters report on event k′ it holds that

fj,k > 0 ∀j ∈ [n], (1)

and for all events k that have not yet materialized at the time the forecasters
report on event k′ it holds that

E
xk∼pi,k

[
fj,k > 0

]
∀j ∈ [n]. (2)

11



Equation 1 holds because if k has materialized before the forecasters report on
k′, then the forecasters reported on k before they reported on k′ (i.e., k < k′).
Therefore, by minimality of k′, yi,k = pi,k ∈ (0, 1). From this, it can easily be
verified that fj,k > 0 for all j, regardless of the outcome xk. To verify Equation 2,
note that pi,k ∈ (0, 1), which means that i has strict uncertainty about outcome xk.
This implies that Exk∼pi,k

[
Rq(yj,k, xk) > 0

]
for any yj,k ∈ [0, 1], and it is easy to

check that any forecaster j with non-zero quadratic score for event k has fj,k > 0.
Therefore, since (the expected value of) fj,k > 0 for all forecasters j ∈ [n] and all
events k 6= k′, it is possible that all forecasters win the same number of events (up
to one, due to indivisibility of events) from these m− 1 events, which corresponds
to Case 3.

Thus, i improves her probability of being selected by reporting yi,k = pi,k, and
ELF is strictly truthful.

5.3. Accuracy

Finally, we bound the probability that ELF chooses the most accurate forecaster.
The proof uses Hoeffding’s inequality (Hoeffding, 1963), which we state here for
convenience.

Theorem 7 (Hoeffding’s inequality). Let X1, . . . , Xm be independent random
variables bounded by the interval [0, 1]. Define Sm = X1 + . . .+Xm. Then

Pr
(∣∣Sm −E

[
Sm
]∣∣ ≥ t) ≤ 2e−

2t2
m .

Theorem 8. Suppose that ai ≥ aj + ε for all j 6= i. Then the probability that ELF
chooses forecaster i is

Pr
x∼θ

(
Ml

(
y1, . . . ,yn,x

)
= i
)
≥ 1− 4(n− 1)e−

mε2
2(n−1)2 .

That is, for fixed n and ‘accuracy gap’ ε, for any δ > 0, ELF chooses the best
forecaster with probability at least 1− δ if

m ≥ 2(n− 1)2

ε2
ln
(4(n− 1)

δ

)
.

Proof. We first bound the difference between the expected number of events won
by i and the expected number of events won by some other forecaster j 6= i:
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E
x∼θ

[
m∑
k=1

fi,k

]
− E
x∼θ

[
m∑
k=1

fj,k

]
= E
x∼θ

[
m∑
k=1

(
fi,k − fj,k

)]

=
Ex∼θ

[∑m
k=1

(
Rq(yi,k, xk)−Rq(yj,k, xk)

)]
n− 1 ≥ mε

n− 1 .

The second equality follows from substituting the definition of fi,k and simpli-
fying, and the inequality follows from the second part of Proposition 2 and the
assumed difference in accuracy between i and all other forecasters.

Let Fi be a random variable for the number of events won by forecaster i, so
that E[Fi] = E

[∑m
k=1 fi,k

]
, where the latter expectation is taken over the outcomes,

and the former is taken over the outcomes and the randomness of the lotteries.
Likewise, let Fj be the number of events won by forecaster j. Observe that if
Fj ≥ Fi, then it holds that either E[Fi]− Fi ≥ mε

2(n−1) or Fj −E[Fj ] ≥ mε
2(n−1) . By

Hoeffding’s inequality,

Pr
(∣∣∣Fi −E

[
Fi
]∣∣∣ ≥ mε

2(n− 1)

)
≤ 2e−

mε2
2(n−1)2 ,

with the analogous inequality holding for Fj . Putting these together, we have

Pr(Fj ≥ Fi) ≤Pr
((

E
[
Fi
]
− Fi ≥

mε

2(n− 1)

)
∪
(
Fj −E

[
Fj
]
≥ mε

2(n− 1)

))

≤Pr
(

E
[
Fi
]
− Fi ≥

mε

2(n− 1)

)
+ Pr

(
Fj −E

[
Fj
]
≥ mε

2(n− 1)

)

≤ 4e−
mε2

2(n−1)2 .

A standard union bound argument yields the result, as there are n−1 forecasters
other than i, and i is chosen whenever none of them wins more events than i.

6. Discussion

In this section, we discuss connections between our work and related research
areas, describe extensions to our model, and discuss the open problem of handling
correlations.

6.1. Correspondence with Wagering Mechanisms

As discussed in Section 4, ELF is very closely related to Kilgour and Gerchak’s
competitive scoring rule. Competitive scoring rules are a special case of wagering
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mechanisms (Lambert et al., 2008; Chen et al., 2014), in which each forecaster
reports both a probability pi of an event occurring and a monetary wager wi ∈ R+.
Once the event has materialized, wagers are redistributed to the forecasters in
such a way that the redistributed amounts depend on each forecaster’s relative
performance. A competitive scoring rule is simply a wagering mechanism in which
all forecasters are required to wager the same amount.

There is a one-to-one correspondence between (truthful) budget-balanced com-
petitive scoring rules and (truthful) single-event forecaster selection mechanisms.
In particular, we can view a forecaster selection mechanism as a mechanism in
which each forecaster starts out with an initial probability of 1/n and “wagers”
this probability against other forecasters. These initial probabilities are then
redistributed among the n forecasters according to their relative performance.
Using this interpretation, this paper provides a general framework for constructing
forecaster selection mechanisms: first, fix a particular competitive scoring rule (or
wagering mechanism) and define the corresponding single-event forecaster selection
mechanism. Second, extend to multiple events by picking a winner for each event
and selecting the forecaster who won the most events.

Because of this strong correspondence, existing work on wagering mechanisms
is informative about limitations for the design of forecaster selection mechanisms.
A general problem with wagering mechanisms is that of low stakes: even for fairly
different reports, forecasters generally stand to lose only a small fraction of their
wager, regardless of the outcome. When a low-stakes wagering mechanism is
used as a building block for a forecaster selection mechanism, this means that
even a bad forecaster will be chosen with relatively high probability. Lambert
et al. (2008) show that, under fairly mild assumptions on the behavior of the
wagering mechanism (all of which are satisfied by the Kilgour-Gerchak competitive
scoring rules), it is impossible for any forecaster to more than double her wager.
In our forecaster selection setting, this directly implies that no forecaster wins
an event with probability higher than 2/n, even if she reports perfectly and all
other forecasters have the worst-possible reports. In practice, this means that
any forecaster selection mechanism built on a wagering mechanism that satisfies
the assumptions of Lambert et al. (including ELF) will only slowly converge to
selecting the best forecaster with probability 1 as the number of events grows.

To circumvent this, some assumptions would need to be relaxed. One promising
direction is to drop the requirement of strict budget balance, meaning that the
mechanism must pay out exactly what it takes in, and instead require weak budget
balance, which allows the mechanism to profit. For forecaster selection, this
would mean that probabilities could sum to less than one, which one can interpret
as allowing the possibility of abstaining from choosing a forecaster (with some
appropriate, application-dependent, penalty for abstaining). Using a wagering
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mechanism that gives up strict budget balance for higher stakes, such as the Double
Clinching Auction of Freeman et al. (2017), may produce faster convergence in
practice.

6.2. Forecaster Hiring

Forecasting competitions are often used as a method of choosing a forecaster
to hire when future predictions are needed. In this setting, the goal of the
selection mechanism is to choose the forecaster who will be (approximately) the
most accurate on future events. There is an implicit assumption here that good
performance on the observed events translates into good performance in the future.

Our methods and results can be extended to this setting. Instead of defining
accuracy as a function of the m events being predicted, we could instead assume a
joint distribution D over event probabilities θ and the beliefs pi of each forecaster
i. We could then define the accuracy of forecaster i in terms of the expected
quadratic score of her forecasts with respect to D.

Under this model, mechanism Mq discussed in Section 3 can be viewed as
performing an analog of empirical risk minimization. Similar to how basic empirical
risk minimization bounds are proved for PAC learning (e. g., Kearns and Vazirani,
1994), we could then argue that, with high probability, the forecaster with the
highest accuracy on any observed sample of events has expected accuracy close
to that of the best forecaster in the set. Therefore, as the number of events
grows large, the forecaster selected by Mq would be guaranteed to have accuracy
arbitrarily close to that of the most accurate forecaster. However, the incentive
issues remain. The advantage of ELF is that it obtains truthful reports for any m
while achieving similar accuracy guarantees as m grows large. In this sense, ELF
can be viewed as a mechanism for learning in the presence of strategic agents.

6.3. Beyond Binary Outcomes

So far, we have restricted our analysis to events with binary outcomes. In
practice, we are also interested in events with non-binary (categorical) outcomes,
to which the definition of forecaster accuracy can be naturally extended. Unsurpris-
ingly, selecting the forecaster with highest quadratic score (using the generalization
introduced by Brier, 1950) inherits all the problems exhibited in Section 3.

ELF readily extends to categorical outcomes. The competitive scoring rule
of Kilgour and Gerchak (2004) is truthful for categorical outcomes when the
generalized quadratic scoring rule is used, and ELF inherits this truthfulness for a
single event. With multiple events, truthfulness follows from the same arguments
used in the proof of Theorem 6. Moreover, in terms of accuracy, it still holds that
more accurate forecasters obtain higher quadratic scores in expectation, so the
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most accurate forecaster still wins the most events in expectation. Hence, by a
qualitatively identical argument as the one in Theorem 8, we can lower bound the
probability of selecting the most accurate forecaster with a bound that approaches
1 as the number of events grows.

A similar extension would allow us to truthfully elicit a sequence of expectations
of bounded continuous random variables and select the highest accuracy forecaster.

6.4. Outputting a Forecaster Ranking

In some practical applications, it may be more appropriate to output a ranking
rather than a single forecaster. For example, most play-money prediction markets
maintain a ranking of contestants. Ranking forecasters in order of quadratic score
again inherits all of the problems described in Section 3.

ELF can be adapted to produce a ranking by simply ordering forecasters
according to the number of events that they win. As long as forecasters strictly
prefer higher positions in the ranking, ELF remains truthful, since forecasters
maximize their probability of winning an event (and potentially moving up in the
ranking) by reporting truthfully.

Moreover, the same style of accuracy results from Section 5.3 hold, at least
qualitatively, when the objective is to maximize the probability of outputting the
correct ranking. In expectation, more accurate forecasters achieve higher quadratic
scores, leading to higher expected values of fi,k. Thus, more accurate forecasters
win more events in the long run, and the true ranking is faithfully revealed.

6.5. Correlated Events

When m > 1, a forecaster who believes that two or more events are correlated
may have an incentive to misreport under ELF, as illustrated in the following
example.

Example 4. Let n = 2 and let m be large. Suppose that all events are perfectly
correlated (so that either all xk = 1 or all xk = 0), with θ1 = . . . = θm = 0.8. If
y1 = y2 = (0.8, . . . , 0.8), then ELF chooses each forecaster with probability 0.5.
Suppose instead that forecaster 1 reports y1 = (1, . . . , 1). If xk = 1 for all k, then
for each k, Pr(wk = 1) = 0.5 + 0.5(1 − 0.96) = 0.52. If m is sufficiently large
and forecaster 1 has probability 0.52 of winning each event, she is selected by ELF
over forecaster 2 with probability close to 1. This happens with probability 0.8, so
forecaster 1 is selected with probability close to 0.8, much higher than if she had
reported truthfully.

For similar reasons, ELF may fail to identify the best forecaster with high
probability if events are correlated.
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It is an open question whether the performance of ELF (in terms of both
truthfulness and accuracy) degrades gracefully under mild correlations. As one
piece of evidence suggesting that it might, if a particular event is not correlated
with any others, a forecaster has incentive to report truthfully for that event. It
would also be interesting to investigate whether forecaster selection mechanisms can
be designed to be (theoretically or empirically) robust to some level of correlation,
perhaps by allowing more expressive reports.

7. Conclusion

We examined a setting in which forecasters compete for a single prize, and
have shown that choosing the forecaster with highest score according to a stan-
dard proper scoring rule can lead to selecting a sub-optimal forecaster with high
probability, as well as creating incentives for forecasters to lie about their beliefs.
To overcome these drawbacks of this commonly-used approach, we designed the
Event-Lotteries Forecaster Selection Mechanism (ELF). ELF both incentivizes
truthful reporting and yields provable guarantees on the probability that the most
accurate forecaster is selected. As the number of events predicted grows large, the
probability that ELF selects the best forecaster approaches 1. Beyond the future
research directions outlined in Section 6, another important next step will be to
evaluate ELF experimentally against other truthful and non-truthful mechanisms.
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