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Learning the Prior in Minimal Peer Prediction

JENS WITKOWSKI, Albert-Ludwigs-Universität Freiburg
DAVID C. PARKES, Harvard University

Many crowdsourcing applications rely on the truthful elicitation of information from workers; e.g., voting
on the quality of an image label, or whether a website is inappropriate for an advertiser. Peer prediction
provides a theoretical mechanism for eliciting truthful reports. However, its application depends on knowl-
edge of a full probabilistic model: both a distribution on votes, and a posterior for each possible single
vote received. In earlier work, Witkowski and Parkes [2012b], relax this requirement at the cost of “non-
minimality,” i.e., users would need to both vote and report a belief about the vote of others. Other meth-
ods insist on minimality but still require knowledge of the distribution on votes, i.e., the signal prior but
not the posterior [Jurca and Faltings 2008, 2011; Witkowski and Parkes 2012a]. In this paper, we develop
the theoretical foundation for learning the signal prior in combination with these minimal peer-prediction
methods. To score an agent, our mechanism uses the empirical frequency of reported signals against which
to “shadow” [Witkowski and Parkes 2012a], delaying payments until the empirical frequency is accurate
enough. We provide a bound on the number of samples required for the resulting mechanism to provide
strict incentives for truthful reporting.

1. INTRODUCTION
Our focus in this paper is on a setting in which there are multiple tasks sampled
from a stationary distribution. For example, these could be tasks in which workers
are asked to vote on the appropriateness of content on a web page for advertisers. We
refer to a particular task or item as a world and, to keep the presentation simple,
we associate each agent with a single world. Each world is assumed to have a state
with different states generating different observations by a worker (agent). Agents
are asked to report their observation and we will score the report of an agent in a
given world on the basis of (a) the empirical frequency of the reports of agents in other
worlds, and (b) the report of other agents in the current world.

Our main result is a truthful mechanism that allows agents to have subjective beliefs
about the prior probability of a particular world state and the conditional probability
of an observation given a world state. All that is assumed to be common knowledge is
a lower bound on the extent of the belief change from signal prior to signal posterior
for any given agent. Moreover, we insist on minimality, i.e. agents are only asked to
report their observation. Our mechanism is the first truthful mechanism that achieves
both minimality and subjective prior beliefs.

The remainder of the paper is organized as follows: In Section 2, we introduce the
model. After reviewing proper scoring rules and the classical peer prediction method
in Section 3, we present peer shadowing in Section 4, a minimal peer prediction mech-
anism which requires only knowledge of a common signal prior but where the possible
signal posteriors are allowed to be subjective. In Section 5, we then introduce empirical
peer shadowing which allows agents to have subjective beliefs about both their prior
and their possible posteriors, and where the signal prior required for peer shadowing
is learned from agent reports in other worlds. In Section 5.2, we show how to use a
form of Hoeffding’s inequality to derive upper bounds on the required number of sam-
ples given a lower bound on the extent of the belief change from signal prior to signal
posterior. We conclude with remarks on ongoing work and directions for future work
in Section 6.

Related Work
In addition to the original peer prediction method [Miller et al. 2005] that we will
introduce in Section 3.2, there is other related work:

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. 9, No. 4, Article 39, Publication date: June 2013.



39:2 J. Witkowski and D. C. Parkes

Jurca and Faltings [2007] apply techniques from robust optimization to the peer pre-
diction method to make it robust against small variations in the commonly-held prior.
Their work differs from ours in that we allow subjective priors to differ arbitrarily
between agents, and in that the mechanism does not need to have a prior itself.

Prelec [2004] develops the “Bayesian truth serum” (BTS) for a setting where the
prior need not be known to the mechanism, but must still be common to the agents.
In addition to requiring a common prior, BTS is not minimal because it requires the
agents to report both their observation and their belief about the observations of other
agents.

For a setting with binary signals, Witkowski and Parkes [2012a] provide a Robust
Bayesian Truth Serum (RBTS). As in Prelec’s mechanism, RBTS requires a common
prior to agents but does not insist on the mechanism knowing the prior. Unlike Pr-
elec’s mechanism, RBTS achieves strict incentive compatibility for every number of
agents n ≥ 3. The mechanism is based on the observation that a particularity of the
quadratic scoring rule can be used to truthfully elicit signals even if the mechanism
does not know an agent’s prior. This is the idea of identifying a “shadow” belief report
by perturbing some other belief according to the agent’s signal report. In Section 4,
we present “peer shadowing”, an application of this “shadowing method” to a peer pre-
diction setting with semi-subjective priors (where the signal prior is common but the
signal posteriors are not). In our main result of Section 5, we then use peer shadowing
with a signal prior that is learned from reports of agents in other worlds.

Jurca and Faltings [2008; 2011] suggest a mechanism for on-line polls which is sit-
uated in the same common-prior setting as BTS and RBTS. Their mechanism is min-
imal, i.e. requires only a signal report, but it is not incentive compatible. Instead, the
mechanism publishes the empirical frequencies of reports, and the authors show that
these converge in equilibrium towards the true distribution of signals in the popula-
tion. Their mechanism can also be regarded as a form of peer shadowing (Section 4)
if the mechanism is assumed to know a common signal prior. Like our peer shadow-
ing mechanism, their mechanism then allows for semi-subjective priors. However, peer
shadowing is more robust than their “one-over-prior” mechanism which is crucial when
coupled with learning: payments remain bounded for all learned signal priors and the
mechanism is well-defined for learned signal priors of 0.

Most closely related to this paper is our earlier work [2012b], which is situated in
the same setting without a common prior. We obtain incentive compatibility for ev-
ery number of agents n ≥ 2 (in the same world) and binary information. However, the
mechanism in this earlier work is not minimal but requires the agents to report a belief
report before making an observation. A crucial requirement in that work is “temporal
separation,” i.e., the ability to elicit relevant information from an agent both before
and after she makes her observation. The advantage of the combination of minimality
and subjective priors is that agents are allowed to hold complex subjective beliefs po-
tentially diverging from other agents’ beliefs, but do not have to deliberate about them
since they only need to report their observation.

2. MODEL
Each item or task is referred to as a world. To keep the presentation simple we assume
that each agent participates in a single world. The modification to allow each agent
to participate in multiple worlds just requires care to only use worlds the agent does
not participate in when calculating the empirical frequency with which to score that
agent. Note that we cannot use any reports from worlds the agent participates in (not
even from other agents) because, by participating, the agent learns something about
the instantiated state of those worlds, and from the agent’s perspective signals would
thus not be drawn according to the prior distribution anymore.
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There are n different worlds, each of which contains at least two agents. Each agent
is indexed such that agent i belongs to world i (modulon). When interacting with its
world, agent i observes a binary signal Si, which is a random variable with values
{0, 1}, that is sometimes represented {l, h} and referred to as a “low” and a “high” sig-
nal, respectively. The signal represents an agent’s experience or opinion, and different
world states induce different distributions on signals. The objective in peer prediction
is to elicit an agent’s signal in an incentive compatible way.

Each agent i has a subjective prior in regard to the state of the world, and the sig-
nal it will receive conditioned on different world states. That is, every agent i has
subjective beliefs in regard to a prior Pri(T = t) on the world state, in regard to the
conditional probability Pri(S = h | T = t) for how signals are generated for each possi-
ble state t, and in regard to the number of possible states, denoted mi. The mechanism
does not need to know these priors and, moreover, the prior can vary from agent to
agent. Note that an agent’s subjective prior is the agent’s belief about her own world
before observing a signal and all other worlds for which she has not observed a signal.
Collectively, we refer to an agent’s subjective beliefs as the agent’s belief type, denoted
θi ∈ Θ for some abstract set Θ. We insist that all belief types are admissible:

Definition 2.1 (Admissible belief.). An agent’s belief type θi is admissible if the sub-
jective prior satisfies the following properties:

— There are two or more possible states; i.e., mi ≥ 2
— Every state has positive probability, so that Pri(T = t) > 0 for all t ∈ {1, . . . ,mi}.
— States are distinct, such that Pri(S = h | T = t) 6= Pri(S = h | T = t′) for any two
t 6= t′.

— The signal beliefs conditional on state are fully mixed, with 0 < Pri(S = h | T = t) < 1
for all t.

We adopt the convention that states are sorted; i.e., Pri(S = h | T = 1) < . . . <
Pri(S = h | T = mi).

Admissibility of an agent’s belief type is a weak requirement. In particular, note
that any belief type can be transformed into an admissible belief type as long as (a) all
signal beliefs conditional on state are fully mixed for states with positive probability,
and (b) the signal beliefs conditional on state are distinct for at least two states with
positive probability. Any two states with the same signal probability can be merged
into a new state, and states with zero probability can be dropped.

When an agent observes a signal, she updates her world state and signal beliefs ac-
cording to her subjective prior. It is important to emphasize that an agent’s subjective
prior reflects her belief about the behavior of the true world and since the true world
affects every agent in the same way, agent i has a subjective belief which is symmetric
with regard to other agents. That is, agent i does not distinguish between her belief
about an agent j and her belief about some other agent k. We can thus adopt short-
hand pi(sj |si) = Pri(Sj = sj | Si = si) for agent i’s posterior signal belief that any other
agent j in the same world receives signal sj given agent i’s signal si.
The posterior signal belief can be calculated as

pi(sj |si) = Pri(Sj = sj | Si = si) =

mi∑
t=1

Pri(Sj = sj | T = t) Pri(T = t | Si = si), (1)

and applying Bayes’ rule to the second part of the summation in (1) yields

Pri(T = t | Si = si) =
Pri(Si = si | T = t) Pri(T = t)

Pri(Si = si)
. (2)
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The denominator in (2) is the prior signal belief and can be computed as

Pri(Si = si) =

mi∑
t=1

Pri(Si = si | T = t) Pri(T = t). (3)

Similar to the posterior beliefs, we denote the prior signal belief for a high signal by
pi(h) = Pri(Si = h). Note that pi(h) is agent i’s belief about (a) an agent in her own
world observing a high signal before she observes a signal, i.e. pi(h) = Pri(Si = h) =
Pri(Sj = h), and (b) the distribution of high signals over all worlds. The latter is re-
flected in (3), where the latter part of the right hand side is the prior state belief of
any randomly-picked world and former part of the right hand side is the probability
of a high signal given that world (for si = h). Note that after a signal observation,
agent i’s belief about the signals observed by other agents in her own world changes
whereas pi(h) remains agent i’s belief about the distribution of high signals over all
other worlds.

We will need Lemma 2.2 from earlier work. It states that after observing a high sig-
nal, an agent will increase her belief about another agent in the same world observing
a high signal (decreasing after observing a low signal).

LEMMA 2.2. [Witkowski and Parkes 2012a] For all admissible priors it holds that
1 > pi(h|h) > pi(h) > pi(h|l) > 0.

The main requirement we place on the knowledge of the mechanism and the agents
is that it the designer has a lower bound b > 0 on the distance between the prior pi(h)
and the posteriors following Si = l and Si = h, respectively, i.e.

b ≤ min
(
pi(h)− pi(h|l), pi(h|h)− pi(h)

)
. (4)

This provides a lower bound on how much the belief of an agent changes through
observing a signal. It can be chosen arbitrarily small as long as it is strictly positive. In
Section 5, we analyze the trade-off between low belief change bound b and low number
of required samples.

3. PRELIMINARIES
In this section we review proper scoring rules and the classical peer prediction method.

3.1. Proper Scoring Rules
Proper scoring rules can be used to incentivize a rational agent to truthfully report her
private belief about the likelihood of a future event.

Definition 3.1 (Binary Scoring Rule). Given possible outcomes Ω = {0, 1}, and a re-
port y ∈ [0, 1] in regard to the probability of outcome ω = 1, a binary scoring rule
R(y, ω) : [0, 1] × {0, 1} → R ∪ {−∞,+∞} assigns a score based on report y and the
outcome ω that occurs.

First, the agent is asked for her belief report y ∈ [0, 1]. Second, an event ω ∈ {0, 1} ma-
terializes (observed by the mechanism) and, third, the agent receives payment R(y, ω).

Definition 3.2 (Strictly Proper Scoring Rule). A binary scoring rule is proper if it
leads to an agent maximizing her expected score by truthfully reporting her belief
p ∈ [0, 1] and strictly proper if the truthful report is the only report that maximizes the
agent’s expected score.

An example of a strictly proper scoring rule is the quadratic scoring rule.
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Definition 3.3 (Quadratic Scoring Rule). The binary quadratic scoring rule Rq, nor-
malized to give scores between 0 and 1, is given by:

Rq(y, ω = 1) = 2y − y2

Rq(y, ω = 0) = 1− y2.
(5)

PROPOSITION 3.4. [e. g., Selten 1998] The binary quadratic scoring rule Rq is
strictly proper.

We state the proof of the following lemma from Witkowski and Parkes [2012a] to
build intuition for the analysis in the present paper.

LEMMA 3.5 (MINIMIZE DISTANCE). [Friedman 1983] Let p ∈ [0, 1] be an agent’s
true belief about a binary future event. If the center scores the agent’s belief report ac-
cording to the quadratic scoring rule Rq but restricts the set of allowed reports to Y ⊆ R,
a rational agent will report a y ∈ Y with minimal (y − p)2 and thus minimal absolute
difference |y − p|. The quadratic scoring rule is thus said to have quadratic loss.

PROOF. First observe that the quadratic scoring rule’s two equations are well-
defined for any y ∈ R, including values of y outside [0, 1]. The expected score of
reporting y if p is the true belief is E[y] = p

(
2y − y2

)
+ (1 − p)

(
1− y2

)
. Let’s sub-

tract this from the expected score given that the agent can submit a truthful report:
E[p] − E[y] = p

(
2p− p2

)
+ (1 − p)

(
1− p2

)
− p

(
2y − y2

)
− (1 − p)

(
1− y2

)
= (p − y)2.

Maximizing E[y] is equivalent to minimizing E[p]−E[y], and so we see that a rational
agent will seek to minimize (p− y)2 and thus minimize absolute difference |p− y|.

Friedman’s property of effective scoring rules given the Euclidean metric is not satis-
fied by all scoring rules, and stated here for the quadratic scoring rule. Note that the
lemma does not require the set Y to be contained in [0, 1], and it thus holds for values
y outside this range.

3.2. Classical Peer Prediction
The classical peer prediction method is defined for a common prior, shared by all
agents and also known to the mechanism. In particular, it provides both a signal prior
and a posterior for every possible signal. For this, we denote by p(h|si) = Pr(Sj =
h | Si = si) the signal posterior for a generic agent i that another generic agent j in
the same world received a high signal given that agent i received signal si. While we
present the binary version of the peer prediction method, it extends to an arbitrary
number of signals.

The classical peer prediction method is defined as:

(1) Each agent i is asked for her signal report xi ∈ {0, 1}.
(2) For each agent i, choose another agent j from the same world and pay agent i:

ui = R (p(h|xi), xj) , (6)
where R is an arbitrary proper scoring rule and xj ∈ {0, 1} the signal report by
agent j.

The mechanism knows the prior and thus can calculate p(h|xi) and the score for an
agent.

THEOREM 3.6. [Miller et al. 2005] The classical peer prediction method is strictly
Bayes-Nash incentive compatible for any strictly proper scoring rule R and any admis-
sible common prior.
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0 pi(h) 1pi(h|l) pi(h|h)

d d

Fig. 1. Illustration of the peer shadowing mechanism with pi(h) ∈
(
pi(h|l), pi(h|h)

)
. Note that pi(h|l) is

closer to y′i = pi(h)−d than to y′i = pi(h)+d, and that pi(h|h) is closer to y′i = pi(h)+d than to y′i = pi(h)−d.

Example: Two agents each observe a signal in the same world, e.g. both agents inspect
the same website to determine whether it contains inappropriate content. The common
prior has two possible world states with Pr(T = 2) = 0.7, as well as conditional signal
probabilities Pr(S = h | T = 2) = 0.8 and Pr(S = h | T = 1) = 0.1. The prior probability
that agent i will receive a high signal is therefore Pr(Si = h) = Pr(Si = h | T =
2) Pr(T = 2) + Pr(Si = h | T = 1) Pr(T = 1) = 0.59.

For the mechanism to be strictly Bayes-Nash incentive compatible, agent i’s unique
best response should be truthful reporting when agent j is truthful. Agent i’s belief
about the state following a high signal is Pr(T = 2|Si = h) = Pr(Si = h|T = 2) Pr(T =
2)/Pr(Si = h) = 0.95. The analogous update following a low signal leads to Pr(T =
2|Si = l) = 0.34. Because of this belief update, agent i revises her belief that agent j
received a high signal, with posterior signal beliefs p(h|h) = Pr(Sj = h | Si = h) = 0.76
and p(h|l) = Pr(Sj = h | si = l) = 0.34. If agent i reports high, the center calculates
signal posterior belief 0.76 and applies this, together with agent j’s signal report, to a
strictly proper scoring rule. Agent i reporting her signal truthfully thus corresponds to
her making a prediction about agent j’s signal report with her true belief about agent
j’s signal. Assuming that agent j is truthful, agent i’s unique best response is thus to
report truthfully.

4. PEER SHADOWING
We say that a peer prediction method is minimal if an agent’s report is only a signal
and not a belief. In this section, we adapt the shadowing method of Witkowski and
Parkes [2012a] to provide a method for minimal peer prediction. Unlike classical peer
prediction there is no need to determine a posterior for a given signal report. As in
the “one-over-prior” mechanism of Jurca and Faltings [2008; 2011], peer shadowing re-
quires only knowledge of a signal prior on the part of the designer. However, peer shad-
owing is more robust than the one-over-prior mechanism when coupled with learning:
payments remain bounded for all learned signal priors p̂i(h), and the mechanism is
well-defined for learned signal priors of 0.

4.1. Mechanism
Let Sj = sj denote the signal observed by agent j in the same world as agent i. The
peer shadowing mechanism is defined as follows (also see Figure 1):

(1) Agent i receives a signal Si = si and, based on her belief type, she forms a posterior
belief pi(h|si) ∈ {pi(h|l), pi(h|h)} about Sj = h.

(2) The mechanism asks the agent for signal report xi ∈ {0, 1} and transforms it into
a “shadow” posterior report

y′i =

{
p(h) + d, if xi = 1
p(h)− d, if xi = 0,

(7)

where d > 0 is a parameter of the mechanism.
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(3) The shadow posterior report y′i, and agent j’s report are then applied to the
quadratic scoring rule Rq to give agent i a score of

Rq(y
′
i, xj). (8)

4.2. Analysis
Given that we allow for subjective priors, the solution concept we adopt is ex post sub-
jective equilibrium [Witkowski and Parkes 2012b]. In this equilibrium concept, each
agent i is best responding to the strategy of every other agent given common knowl-
edge of rationality, common knowledge of admissible belief types, and knowledge of
her own type (i.e., her own subjective prior). The equilibrium is subjective because it
allows for each agent to have a distinct belief type, and ex post because it allows for
strict uncertainty in regard to the types of other agents.

THEOREM 4.1 (TRUTHFULNESS). The Peer Shadowing Mechanism is strictly ex
post subjective incentive compatible given a common signal prior p(h) known to the
agents and the mechanism.

PROOF. Given that agent j is truthful, we prove that agent i’s unique best response
is to report truthfully. We establish this by reasoning about the distance between agent
i’s signal posterior and shadow posterior. Without loss of generality, suppose agent i’s
signal is Si = h. There are two cases:

— p(h) + d ≤ pi(h|h). But now d > 0, and so p(h)− d < p(h) + d ≤ pi(h|h) and the result
follows by Lemma 3.5.

— p(h)+d > pi(h|h). Since p(h) < pi(h|h) (Lemma2.2) it holds that (p(h)+d)−pi(h|h) <
pi(h|h)− (p(h)− d) and the result follows by Lemma 3.5.

This completes the proof.

5. THE EMPIRICAL PEER SHADOWING MECHANISM
We are now ready to define an approach to adaptive peer shadowing that adopts an
empirical frequency in place of the center’s assumed knowledge of the signal prior.
The empirical peer shadowing mechanism is minimal, i.e. it elicits reports consisting
of only signals. Note that the mechanism withholds payments until every agent has
reported her signal.

5.1. Mechanism
The Empirical Peer Shadowing Mechanism proceeds as follows:

(1) First, every agent i reports her signal xi ∈ {0, 1} to the mechanism in private, i.e.
without any other agent observing xi.

(2) Then, for each agent i:
(a) Let N be one agent from each world except agent i’s world. Compute the em-

pirical frequency (empirical mean) p̂i(h) of all n − 1 signal reports of agents in
N :

p̂i(h) =
∑
k∈N

xk
n− 1

.

(b) Choose some d > 0 and compute the shadow posterior y′i by “shadowing” from
this empirical frequency:

y′i =

{
p̂i(h) + d, if xi = 1
p̂i(h)− d, if xi = 0,

(9)
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(c) Let j be another agent in the same world as agent i. Use shadowing to score
agent i depending on how well y′i predicts agent j’s signal:

ui = Rq(y
′
i, xj)

5.2. Analysis
The main challenge in the analysis of the empirical peer-shadowing mechanism is to
reason about the impact of whether or not the empirical frequency of high signals,
p̂i(h), lies “in between” the two possible posteriors for any finite number of samples.
With some probability, we have p̂i(h) ≤ pi(h|l) or p̂i(h) ≥ pi(h|h), and in this case peer
shadowing would not be truthful. We derive a lower bound on the expected benefit
of being truthful given that p̂i(h) lies within the interval and an upper bound on the
expected benefit from a misreport when p̂i(h) is outside the interval. Together with
an upper bound on the probability that the empirical frequency is outside the inter-
val, this provides a bound on the number of samples required for the empirical peer
shadowing mechanism to have strict incentives for agents to be truthful.

We begin with two technical lemmas.

LEMMA 5.1. pi(h)− pi(h|l) ≤ pi(h|h)− pi(h)⇔ pi(h) ≤ 0.5.

PROOF. Note that

pi(h|h) = 1− pi(l|h) = 1− pi(l)

pi(h)
pi(h|l) = 1− 1− pi(h)

pi(h)
pi(h|l) = 1− pi(h|l)

pi(h)
+ pi(h|l).

So we have

pi(h)− pi(h|l) ≤ pi(h|h)− pi(h)⇔ pi(h)− pi(h|l) ≤ 1− pi(h|l)
pi(h)

+ pi(h|l)− pi(h)

⇔ 2pi(h)− 2pi(h|l) +
pi(h|l)
pi(h)

− 1 ≤ 0⇔ 2pi(h)2 − 2pi(h|l)pi(h) + pi(h|l)− pi(h) ≤ 0

⇔
(
2pi(h)− 1

)(
pi(h)− pi(h|l)︸ ︷︷ ︸

>0

)
≤ 0⇔ pi(h) ≤ 0.5.

This completes the proof.

LEMMA 5.2. The smallest possible pi(h|h) given belief change bound b is:

p
i
(h|h) =

{
2
√
b− b, if pi(h) ≤ 0.5

0.5 + b, if pi(h) ≥ 0.5,
(10)

A lower bound for pi(h|h) given belief change bound b is 2
√
b− b.

PROOF. We first prove the statement for pi(h) ≥ 0.5. From Lemma 5.1, we know
that b ≤ pi(h|h) − pi(h) entails b ≤ pi(h) − pi(h|l), so that it is sufficient to minimize
pi(h|h) subject to b ≤ pi(h|h) − pi(h). Then pi(h|h) = pi(h) + b which is minimized for
pi(h) = 0.5, so that p

i
(h|h) = 0.5 + b if pi(h) ≥ 0.5.

For the case where pi(h) ≤ 0.5, we can restrict the analysis to b ≤ pi(h) − pi(h|l)
because we know from Lemma 5.1 that for pi(h) ≤ 0.5, b ≤ pi(h) − pi(h|l) entails
b ≤ pi(h|h)− pi(h). From the proof of Lemma 5.1 we also know that

pi(h|h) = 1− pi(h|l)
pi(h)

+ pi(h|l) = 1− pi(h|l)
(

1

pi(h)
− 1

)
(11)

Equivalent to minimizing pi(h|h) given b ≤ pi(h) − pi(h|l) is thus maximizing
pi(h|l)

(
1

pi(h)
− 1
)

given b ≤ pi(h) − pi(h|l). This is maximized for the largest possi-
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0 pi(h) 1pi(h|l) pi(h|h)

ε ε

d dp̂i(h)

︸ ︷︷ ︸
≥b

︸ ︷︷ ︸
≥b

Fig. 2. Illustration of Case 1 in the analysis of the empirical peer shadowing mechanism. Observe that
ε < b, so that p̂i(h) = pi(h) + ε < pi(h|h). (Depending on parameter d > 0, it may or may not hold that
p̂i(h) + d < pi(h|h).)

ble pi(h|l) and the smallest possible pi(h), so that a necessary condition for a minimal
pi(h|h) is pi(h|l) = pi(h)− b. Using this in (11) we obtain:

p
i
(h|h) = 1−

(
pi(h)− b
pi(h)

−
(
pi(h)− b

))
=

b

pi(h)
+ pi(h)− b (12)

Taking the derivative and setting to 0 one obtains:

∂p
i
(h|h)(pi(h))

∂pi(h)
= 1− b

pi(h)2
= 0 ⇔ pi(h) =

√
b

Inserting this back into (12), one obtains the minimal pi(h|h) for pi(h) ≤ 0.5:

p
i
(h|h) =

b√
b

+
√
b− b = 2

√
b− b. (13)

Since 2
√
b− b ≤ 0.5 + b for all 0 < b < 0.5, this completes the proof.

In the proof of Theorem 5.4, we will use a form of Hoeffding’s inequality in order to be
able to make a statement about the number of samples we require without knowledge
of pi(h). (For the simple steps showing how to get from the standard formulation to the
formulation we use, see for example p.3 in Domke [2010].)

LEMMA 5.3. [Hoeffding 1963] Let Z1, . . . , Zn ∈ [0, 1] be independent and identically
distributed random variables. If

n ≥ 1

2ε2
ln

(
2

δ

)
,

for ε > 0, 0 < δ < 1, then Pr(
∣∣ 1
n

∑n
i=1 Zi − E[Z]

∣∣ ≤ ε) ≥ 1− δ. That is, with probability at
least 1− δ, the difference between the empirical mean 1

n

∑n
i=1 Zi and the expected value

E[Z] is at most ε.

THEOREM 5.4. The Empirical Peer-Shadowing Mechanism is strictly ex post sub-
jective incentive compatible given belief change bound b and n − 1 samples with

n ≥ 1
2ε2 ln

(
2
(
1+2(b−

√
b)−ε

)
b−ε

)
+ 2 and 0 < ε < b.

PROOF. Given that all other agents are truthful, we show that agent i’s unique best
response is to be truthful. To apply Hoeffding’s inequality, we introduce some ε > 0,
ε < b and analyze two cases: the case where the empirical frequency is no more than ε
away from the signal prior pi(h), i.e. |p̂i(h)−pi(h)| ≤ ε, and the case where the empirical
frequency is further away than ε, i.e. |p̂i(h)− pi(h)| > ε.

(Case 1): |p̂i(h)− pi(h)| ≤ ε. (Also see Figure 2.)
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0 pi(h) 1pi(h|l) pi(h|h)

ε ε d dp̂i(h)

︸ ︷︷ ︸
≥b

︸ ︷︷ ︸
≥b

Fig. 3. Illustration of Case 2 in the analysis of the empirical peer shadowing mechanism. Since p̂i(h) is
sampled using a finite number of samples and since it is not restricted to be within the ε bounds, it can
happen that p̂i(h) = 1.

From 0 < ε < b ≤ min(pi(h) − pi(h|l), pi(h|h) − pi(h)) it follows that pi(h|l) < p̂i(h) <
pi(h|h), so that the shadowing method elicits signals truthfully. We proceed quantifying
this positive expected benefit of reporting truthfully using the difference in expected
loss given Si = h (case Si = l is analogous). Recall that the quadratic scoring rule has
quadratic loss (Lemma 3.5):

∆Ui(xi = h|Si = h)

=Ui(xi = h|Si = h)− Ui(xi = l|Si = h)

=−
(
pi(h|h)− (p̂i(h) + d)

)2
+
(
pi(h|h)− (p̂i(h)− d)

)2
=
((
pi(h|h)−(p̂i(h)−d)

)
+
(
pi(h|h)−(p̂i(h)+d)

))((
pi(h|h)−(p̂i(h)−d)

)
−
(
pi(h|h)−(p̂i(h)+d)

))
=
(
2pi(h|h)− 2p̂i(h)

)
2d = 4d

(
pi(h|h)− p̂i(h)

)
Using pi(h|h) ≥ pi(h) + b and p̂i(h) ≤ pi(h) + ε, we derive lower bound

∆Ui(xi = h|Si = h) = 4d
(
pi(h|h)− p̂i(h)

)
≥ 4d

(
pi(h) + b− (pi(h) + ε)

)
= 4d (b− ε)

on the gain in expected payment from reporting truthfully.

(Case 2): |p̂i(h)− pi(h)| > ε. (Also see Figure 3.)
In this case we provide an upper bound on the expected benefit from lying. Consider

again without loss of generality that Si = h:

∆Ui(xi = l|Si = h) = −∆Ui(xi = h|Si = h) = 4d
(
p̂i(h)− pi(h|h)

)
.

The maximal ∆Ui(xi = l|Si = h) is obtained for p̂i(h) maximal and pi(h|h) minimal.
Since |p̂i(h) − pi(h)| > ε, nothing prevents p̂i(h) = 1. From Lemma 5.2 we know that a
lower bound of pi(h|h) given pi(h|h)− pi(h) ≥ b and pi(h)− pi(h|l) ≥ b is 2

√
b− b, so that

we can derive an upper bound for the expected benefit from lying by setting p̂i(h) = 1

and pi(h|h) = 2
√
b− b, to obtain:

∆Ui(xi = l|Si = h) = 4d
(
p̂i(h)− pi(h|h)

)
≤ 4d

(
1− 2

√
b+ b

)
.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. 9, No. 4, Article 39, Publication date: June 2013.



Learning the Prior in Minimal Peer Prediction 39:11

From Hoeffding’s inequality, we know that Case 1 occurs with probability at least
1− δ, so that the mechanism is truthful if

(1− δ)4d(b− ε) > δ4d
(
1− 2

√
b+ b

)
⇔ (1− δ)(b− ε) > δ

(
1− 2

√
b+ b

)
⇔ (b− ε) > δ

(
1 + 2(b−

√
b︸ ︷︷ ︸

≥−0.25

)− ε︸︷︷︸
<b≤0.5

)
︸ ︷︷ ︸

>0

⇔ δ <
b− ε

1 + 2(b−
√
b)− ε

To determine the number of worlds from which signals need to be sampled, the overall
optimization problem becomes

min. n

s.t. ε < b

δ < b−ε
1+2(b−

√
b)−ε

n− 1 ≥ 1
2ε2 ln( 2

δ ).

The last line contains n− 1 instead of n because we compute p̂i(h) using samples from
n − 1 worlds. For any fixed ε, it is optimal to maximize δ, since this makes the right
hand side of the final inequality as small as possible. Because of this, the problem can
be restated as

min. n

s.t. ε < b

δ = b−ε
1+2(b−

√
b)−ε

n− 1 > 1
2ε2 ln( 2

δ ),

where we have adopted equality for the second constraint and made the final inequal-
ity strict. Now, substituting for δ in the last inequality, we have:

min. 1
2ε2 ln

(
2
(
1+2(b−

√
b)−ε

)
b−ε

)
+ 1

s.t. ε < b

This completes the proof.

It is important to understand that the mechanism allows for subjective prior beliefs
because it uses only “objective” signal reports which stem from the true world state
to learn the prior. In particular, it does not elicit any beliefs from the agents. Since
the signal reports used for learning the signal prior are not revealed to the agent, an
agent forms a belief about this learned signal prior using her own belief type and it is
therefore sufficient that the bounds we derive hold for any admissible belief type that
satisfies belief change bound b.

Also note that for any given b, the minimal number of required samples can be com-
puted numerically. For example, given bound b = 0.05, the optimal ε is ε = 0.046, giving
a corresponding requirement of n − 1 = 1351 samples. We believe sample numbers in
this range are reasonable for applications such as eliciting votes on the quality of an
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image label or whether a website is inappropriate for an advertiser. Note that these
samples are from different items, so that we require that there are many images or
websites and not that there are many votes on any particular image or website.

6. CONCLUSION
In this paper, we have presented an incentive compatible peer prediction mechanism
which is the first to combine minimality with priors that are fully subjective and known
only to the respective agent. This combination is compelling because it provides robust-
ness against agents with non-standard (and possibly wrong) beliefs without imposing
cognitive costs onto agents intending to report truthfully. In the analysis of the Empir-
ical Peer Shadowing Mechanism, we derive an upper bound on the number of worlds
(items) one needs to sample from. We believe that our mechanism could already be
applied in applications such as crowdsourced image tagging, where requesters elicit
information about many different items.

In addition to tightening the current analysis in regard to the number of samples
required for strict incentives, and obtaining analytical bounds that are stated just in
terms of b and not ε and b, there are two major future directions for this work. The
first is to extend the mechanism to work in a setting with multiple signals. Second,
we plan on designing a truthful mechanism for the orthogonal setting presented by
opinion polls where the mechanism has access to many signal reports from the same
world for learning information that can be used to incentivize truthful reporting but
where the signal reports are all coming from this one world.
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