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Chapter 1

Introduction

Whereas fifteen years ago the termelectronic marketwas primarily associated with

online dependencies of large retailers, this has changed dramatically with the rise of

Amazon and eBay. These companies probably understood best both chances and chal-

lenges entailed in online trading environments. As in otherareas, the Internet helped

market participants to drastically lower information costs. Whereas other retailers sim-

ply moved the content of their offline catalogues to an onlineenvironment, Amazon

allowed customers to write feedback about the products theysell. Online auctions at

eBay, on the other side, build an online market for products traditionally traded at a

flea market and thereby enabled trade by distant market participants for these low- to

mid-value products.

While a larger market is beneficial regarding both prices andsupply, the distance

and anonymity between traders give rise to challenges, as well. Reputation systems

address two of these challenges:moral hazardandadverse selection.

Imagine an online auction setting where the buyer of a good isasked to pay for it

in advance and only when the money arrived, the seller is supposed to send the good.

Without any trust-enabling mechanism, it is not likely thistrade takes place. Why

should the seller send the good if he already received his money? And why should

the buyer send the money knowing that the seller has no incentive acting according

to the specified procedure? The seller is unable to credibly commit to sending the

good. This constellation is termedmoral hazard. The role of a moral hazard reputation

mechanism is sanctioning bad behavior. eBay’s reputation system is an example for

such a mechanism and albeit problematic from a game-theoretic perspective, it only

made possible the success of the market.1

Another related peril isadverse selection. In 1970, Akerlof [1] introduced his fa-

1According to Resnick and Zeckhauser [21] over 99% of all feedback given on eBay is positive.
Widespread reports of consumer fraud in online auctions highly suggest that this fact does not reflect traders’
actual experiences. Dellarocas and Wood [6] use statistical measures to estimate that only about 80% of ebay
traders are satisfied with their respective trading partner.
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mousmarket of lemons2. As an example, he sketched a market for used cars of different

quality where the information about the cars’ quality is asymmetric. That is, the seller

knows each car’s quality and its corresponding value while potential customers are

only able to estimate the average quality and value of all cars together. A customer

that is interested in a specific car (of her3 choice) will not accept a price higher than

the price corresponding to the average quality. Anticipating this, the seller withdraws

all cars that have above-average quality as he would make a loss selling them at the

average price. The potential buyer, again, anticipates theseller’s action and adjusts the

average price she is willing to pay for a car out of this reduced set of cars. Asymmetric

information could thereby lead to a downward spiral of both quality and prices up to

the point where there is only one car left, the one with the worst quality.4

The role of reputation mechanisms is to prevent these marketfailures. As men-

tioned earlier, there do exist reputation systems for both moral hazard and adverse

selection scenarios. While the specific design of these systems differs5, both types rely

on feedback by agents that report their private experience with either another agent (in

the case of a moral hazard setting) or a product6 (in the case of an adverse selection

scenario). The majority of reputation systems that are actually employed by internet

companies simply neglect the incentive issues entailed in giving feedback. I present a

mechanism that is able to cope with rational agents playing the system if that benefits

them and although the focus of this work is on adverse selection settings, the principal

requirements on the feedback payments are also applicable to environments with moral

hazard.

The incentive issues when asking agents for feedback are coming down to two chal-

lenges in particular. The first is underprovision. Agents are usually required to register

an account and are subsequently asked to fill out forms describing their experiences.

This process is time consuming. In contrast to other settings such as those regulated

by the legal system, we are unable to force agents into participating. Instead, we have

to design the mechanism in such a way that it is in the agents’ best interest to partici-

pate. In our setting, a rational agent will only invest the effort of giving feedback when

remunerated appropriately.

Another—and trickier—issue is honesty. How should we incentivize agents to not

only reportsomethingbut to honestly report the quality they actually experience? In

the context of giving feedback different scenarios with external interests (i. e. biases

towards non-truthful reporting) are possible. Agents might fear retaliation or simply

2that—togehter with other related research to asymmetric information—earned him, Michael Spence and
Joseph Stiglitz the Nobel Memorial Prize in Economic Sciences in 2001

3Following Miller, Resnick and Zeckhauser [15], I refer to the center as male and the rating agents as
female.

4Please note that—in essence—this effect would also occur ifeither side’s anticipation abilities are lim-
ited.

5see [5] for a comprehensive discussion of reputation systems in general
6I will use the termsproductandserviceinterchangeably.
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feel uncomfortable giving bad ratings, resulting in too positive feedback. Another peril

is sellers paying reporting agents for favorable feedback.7 Imagine two companies

competing for the same group of customers. Both companies may have incentives to

badmouth the competitor or praise their own products and it is crucial to incorporate

these issues into the mechanism’s design by making it too costly for the seller to bribe.

The rest of the study thesis is organized as follows. In chapter 2 I introduce the

basic setting and the needed probability calculations. Chapter 3 gives an intuition as to

why the automated mechanism works and chapter 4 introduces the basic optimization

problem. Chapter 5 introduces the Markov extension while chapter 6 discusses the

experimental results. In chapter 7 I show how to efficiently compute the updates of the

type beliefs and chapter 8 finally concludes with a discussion of future research.

7From a deceiptive seller’s perspective, this may well be worth a thought: In a controlled field experiment,
Resnick et al. [22] sold the same product (vintage postcards) on ebay with two different reputation profiles
operated by the same seller. They found that the buyers’ willingness-to-pay was 8.1% higher for the high
reputation profile than for the low reputation profile.
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Chapter 2

The Base Case

2.1 The Setting

The basic setting is that of Miller, Resnick and Zeckhauser [15] (henceforth MRZ)

including adaptions by Jurca and Faltings [10, 12, 11]. A group of agents in an online

market experiences the same product. The quality of the product (henceforth itstype)

stays the same1 and is drawn out of a finite set of possible typesΘ = {θ1, ... , θ|Θ|}. All

agents share a common belief2 regarding the prior probabilityPr(θ) that the product

is of typeθ with

∑

θ∈Θ

Pr(θ) = 1.

while Pr(θ) > 0 for all θ ∈ Θ.

The quality observations by the agents are noisy, so that after purchasing the prod-

uct, a buying agent does not know with certainty the product’s actual type. Instead, she

receives a signal drawn out of a set of signalsS = {s1, ... , sM}.

Let Oi denote the signal received by agenti and let

f(sm| θ) = Pr(Oi = sm| θ)

be the probability that agenti receives the signalsm ∈ S given that the product is of

typeθ ∈ Θ. We assume that different types generate different conditional distribution

of signals and that allf(sm| θ) are common knowledge3. As these signal emissions

again constitute a probability distribution, all signal probabilities sum up to 1:

1this assumption will be relaxed in section 5
2I will use the wordsbelief andestimateinterchangeably
3These rather strong assumptions can potentially be relaxedto incorporate noiseup to a certain level.

Jurca and Falting have presented a solution to the related problem of incorporating deviations in prior type
beliefs[12].
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M∑

m=1

f(sm| θ) = 1 ∀ θ ∈ Θ

We will allow the mechanism to pay agents for their feedback.A simple solution to

the problem of underprovision is to pay the agents more than the rating process costs

them. LetCi be the (positive) costs reflecting agenti’s time spent for this process. We

ease the mechanism’s requirement regarding these reporting costs by assuming there

exists aC with C = maxi Ci that is not too far away from the individual costs of each

agent.4

Let ∆i(sj , sh) be the external benefit agenti could gain by falsely announcing sig-

nalsh instead of signalsj (the one actually received). Similar to the above-mentioned

reporting costs, we relax the assumption of individual lying incentives and assume we

know the upper bound∆(sj , sh) = maxi ∆i(sj , sh), denoting the maximal external

benefit an agent may obtain by falsely announcing signalsh instead ofsj . Furthermore,

∆(sj , sj) = 0 and∆(sj , sh) ≥ 0 for all sj 6= sh.

2.2 Comparing Signal Reports

In the rating process a central authority (the reputation mechanism) asks each agent for

feedback regarding the quality information she perceived.This information is private

to the agent and she can choose whether to report the signal actually received, to lie

(i. e. to report some other signals 6= Oi) or to not report at all. Letai = (ai
1, . . . , a

i
M )

be the reporting strategy of agenti, such that she reports signalai
j ∈ S if she received

sj . The honest strategy is̄a = (si
1, . . . , s

i
M ), i. e. always reporting the signal received.

The payment assigned to the reporting agent is determined bycomparing the signal

announced by her with that of another agentr(i), called the reference reporter. While

different designs on how to choose the reference reporter can be considered, I will score

the agents by simply evaluating two neighboring reports (ina time sense).5

The central idea of comparing two signal reports is that knowing one of the received

signals should tell you something about the other. This is generally the case since both

signals are emitted by the same underlying type and we demanded that signal emis-

sions conditional on types are different for different types. This concept was coined

stochastic relevance.

4neglecting the issue of private preferences.
5With regards to collusion properties of the mechanism, a random choice can be beneficial [11]. The

drawback of a random choice is that the mechanism has to wait longer before publicly updating the type
beliefs as it needs more private reports to randomly choose from. In addition, random choices may harm the
mechanism’s credibility if the random variable is not publicly verifiable. As an alternative one may consider
rating an agent against an entire group of reporting agents.Jurca and Faltings [10] show that this approach
can lead to a more efficient budget.
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Definition 1. Random variableOi is stochastically relevantfor random variableOr(i)

if and only if the distribution ofOr(i) conditional onOi is different for different real-

izations ofOi.

That is,Oi is stochastically relevantfor Or(i) if and only if for any distinct realizations

of Oi, call themsj andsh, there exists at least one realization ofOr(i), call it sk, such

that Pr(sk|sj) 6= Pr(sk|sh). I elucidate on the actual requirements onPr(θ) and

f(s| θ) in section 5.5. For the moment, I will assume stochastic relevance holds.

Let

g(sk| sj) = Pr(Or(i) = sk|O
i = sj) (2.1)

represent the posterior belief thatr(i) received signalsk given that agenti received

signalsj .

2.1 can be extended to:

g(sk| sj) =
∑

θ∈Θ

f(sk| θ) · Pr(θ|Oi = sj). (2.2)

Applying Bayes’ Theorem to the second part of the sum in 2.2, we receive

Pr(θ|Oi = sj) =
f(sj | θ) · Pr(θ)

Pr(Oi = sj)
(2.3)

and for the denominator of 2.3:

Pr(Oi = sj) =
∑

θ∈Θ

f(sj | θ) · Pr(θ). (2.4)

2.3 Example

Consider the simple example of only two possible types, a good typeG and a bad type

B. Furthermore, there are only two possible signals, namely ahigh signalh and a low

signall. The prior type probabilities arePr(G) = 0.7 andPr(B) = 0.3, the signal

probabilites conditional on types aref(h|G) = 0.75 andf(h|B) = 0.35. With these

given, we can calculate the prior probability of a rater receiving a certain signal. With

a slight abuse of notation, I refer toPr(Oi = sm) asPr(sm).
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Pr(h) = f(h|G) · Pr(G) + f(h|B) · Pr(B)

= 0.75 · 0.7 + 0.35 · 0.3

= 0.63

Pr(l) = 1 − Pr(h)

= 0.37

Bayes’ Theorem gives us the probabilities for types conditional on signals:

Pr(G|h) =
f(h|G) · Pr(G)

Pr(h)

=
0.75 · 0.7

0.63
≃ 0.83

Pr(B|h) = 1 − Pr(G|h)

≃ 0.17

Pr(G|l) =
f(l|G) · Pr(G)

Pr(l)

=
0.25 · 0.7

0.37
≃ 0.47

Pr(B|l) = 1 − Pr(G|l)

≃ 0.53

Eventually, we can calculate the probability of a raterr(i) receiving a certain signal

7



conditional on the signal rateri received:

Pr(Or(i) = h|Oi = l) = g(h|l)

= f(h|G) · Pr(G|l) + f(h|B) · Pr(B|l)

≃ 0.75 · 0.47 + 0.35 · 0.53

≃ 0.54

Pr(Or(i) = l|Oi = l) = g(l|l)

= 1 − g(h|l)

≃ 0.46

Pr(Or(i) = h|Oi = h) = g(h|h)

= f(h|G) · Pr(G|h) + f(h|B) · Pr(B|h)

≃ 0.75 · 0.83 + 0.35 · 0.17

≃ 0.68

Pr(Or(i) = l|Oi = h) = g(l|h)

= 1 − g(h|h)

≃ 0.32

Please note, that raterr(i) receiving ahigh signal is the most probable outcome

whether rateri’s signal washigh or low. That is, simply paying the agents for agree-

ment does not necessarily induce truthtelling.
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Chapter 3

Peer-Prediction-Scoring

While I will later use Linear Programming (LP) in order to formulate the requirements

mentioned in section 2.1, I introduce the mechanism’s general concept by presenting

the orignal model of MRZ [15] who use explicitly-stated scoring rules to elicit the

agents’ signals. This provides us with an intuitive understanding of the general concept

behind the LP formulation.

3.1 Scoring Rules

Scoring rules [3, 26] are functions that can be used to incentivize rational agents to

truthfully announce their private beliefs about a probability distribution1. ForΩ, a set

of mutually exclusive events, andP , a class of probability distributions over them,

they take the form:R : P × Ω → R. A scoring rule is said to beproper if the agent is

maximizing her expected score by truthfully announcingp ∈ P andstrictly proper if

the truthful announcement is the only announcement maximizing her expected score.

If not explicitly stated otherwise, I refer tostrictly properscoring rules.

The timely order is as follows: First, the agent is asked for her belief announcement

p ∈ P . Second, an eventω ∈ Ω materializes and, third, the agent gets paidR(p, ω),

i. e. the score associated with the probability announcement and the event that actually

took place. I reward agents with the score generated by a strictly proper scoring rule

and assume that agents are aiming to maximize expected payoff (or expected utility

with a linear utility function)2.

Three commonly cited strictly proper scoring rules are the logarithmic, the spheri-

1Other usages of scoring rules exist. For instance, they are applied to rank probabilistic predictions,
such as weather forecasts with one another. For an interesting information-theoretic interpretation of the
log-scoring rule see [23].

2See [18] for an adaption of proper scoring rules that incorporate deviations from expected value maxi-
mization.
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cal and the quadratic scoring rule. For its notational simplicity 3, I use the logarithmic

rule to exemplify their usage:

R(p, ω) = logb(pω) | b > 1, pω > 0 ∀ω ∈ Ω.

Say, you want to incentivize a selfish agent to truthfully declare her probability

estimate that presidential candidate A will win the generalelection of the United States

in 2008. As there are only two possible events (i. e.win andnot win), the distribution

is well-defined by announcing the probability estimate of only one of them. Letp

be the agent’s probability estimate (or belief) that candidate A wins and letq be her

announcement.

According to the scoring rule, the agent receiveslogb(q) if the candidate wins and

logb(1 − q) if he does not win. Her expected score is thus:

Eq = p · logb(q) + (1 − p) · logb(1 − q).

Setting the derivative to0 givesq = p as the only solution.4 The second derivative

is strictly negative at all positions ofEq, so the function is solely maximized by truth-

fully announcingq = p. In order to make it individually rational5 for agents to partic-

ipate, a constant may be added to the score without losing truthfulness.6 Furthermore,

the rule can be scaled with a scalar which allows creating thenecessary incentives for

the agent to invest costly effort into acquiring her actual belief.

3.2 The Peer-Prediction Method

As seen,proper scoring rulescan be tailored to truthfully elicit private estimates about

publicly observable events. In our setting, though, there is no such publicly observable

event. Instead, the mechanism conditions the payments to agent i on the announce-

ments made by her reporting agentr(i). The key idea is to construct payments that

make honest reporting by agenti the single best response to an honest report byr(i)

and vice versa.

From section 2.2 we know thatOi is stochastically relevant forOr(i). That is,

different realizations ofOi generate different beliefs aboutOr(i). As in equation 2.1,

3The score of the logarithmic rule depends only on the probability assigned to the event that actually
materialized (i. e. it is local) and it is the only proper scoring rule with this property.

4The derivative with respect toq is dE
dq

= p · 1
q · ln(b)

+ (1 − p) · 1
(1−q) · ln(b)

· (−1)
5See [20, p. 34f.] for a treatment of the different IR constraints.
6Note that this holds true forinterim IR and the logarithmic scoring rule although the logarithm diverges

to−∞ around 0. The expected score is computed by multiplying the score of the events with their (believed)
probabilities, so thatlogb(ǫ) is multiplied byǫ. Adding the absolute value ofEp’s minimum to the log-rule
results in an expected payment that is positive for allp ∈ P . Equally, one may add a constant to push
the expected score above the participation costs. In the case of the logarithmic rule,Ep’s minimum is the
uniform distribution of allp as this is the least-informative (as captured by the notion of entropy).
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let g(sk| sj) denote the posterior belief thatr(i) receivedsk given that agenti received

sj . With a slight abuse of notation, letR(ar(i)| ai) denote the result of the strictly

proper scoring rule calculated by

R(ar(i)| ai) ≡ R(p, ω) = R( g(sk| sj), a
r(i)
k ). (3.1)

As mentioned in section 3.1, scoring rules can be extended toincorporate both

participation and effort constraints. The same method allows for the incorporation of

external benefits. I will explicitly state them in the LP formulation in the next chapter.

For the moment, I will assume thatR(·|·) is a strictly proper scoring rule scaled in a

way that it complies with these constraints. Letτ(ai, ar(i)) be the payment agenti

receives if she announcedai and the reference reporter announcedar(i).

Proposition 2. If we assign the payments according to

τ(ai, ar(i)) = R(ar(i)| ai),

honest reporting by both agenti andr(i) is a strict Nash equilibrium of the simultane-

ous reporting game.

Proof. Honest reporting is a Nash equilibrium if and only if honest reporting by agent

i is the single best response to an honest report byr(i) and vice versa. As our setting is

symmetric, it is sufficient to show that given an honest report by r(i), agenti is strictly

maximizing her expected score by reporting honestly herself.7 Given agentr(i) is

reporting honestly, i. e.ar(i) = sk, the best response by agenti is

argmax
ai

∑

sk∈S

g(sk|sj)
︸ ︷︷ ︸

Probability

·R(sk| a
i)

︸ ︷︷ ︸

Score

.

SinceR(·|·) is calculated by a strictly proper scoring rule, the term is solely maximized

by ai = sj . Thus, given an honest report byr(i) agenti’s best response is to announce

her signal truthfully, as well.

The expected payment (a priori) is

M∑

j=1

Pr(sj)

(
M∑

k=1

g(sk| sj) · τ(sj , sk)

)

(3.2)

Unfortunately, the honest equilibrium is not unique. MRZ [15] argue that the hon-

est equilibrium will be chosen albeit a possibly pareto-optimal alternative as honest

reporting is a focal point that makes it attractive for agents to coordinate on.8 Jurca

7One may say this approach is decision-theoretic rather thangame-theoretic as the mechanism is built
around a single agent and extended towards a multi-agent setting only in the last step.

8For an illustration of focal or Schelling points, see for example [14, p. 248f.].
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and Faltings [9] examine the application of reports that aretrue with high probability

(so-calledtrusted reports). They find that rating other raters against these trusted re-

ports makes honest reporting the only equilibrium strategyor renders unattractive lying

equilibria.

3.3 Example

Applying the logarithmic scoring rule with basee to our example from section 2.3,

results in the following payments:

τ(h, h) = ln(g(h|h)) ≃ ln(0.68) ≃ −0.39

τ(h, l) = ln(g(l|h)) ≃ ln(0.32) ≃ −1.14

τ(l, h) = ln(g(h|l)) ≃ ln(0.54) ≃ −0.62

τ(l, l) = ln(g(l|l)) ≃ ln(0.46) ≃ −0.78

We want all payments to be positive, so we add1.14 to τ(·, ·) and the resulting payment

matrix is:

i

r(i)

h l

h 0.75, 0.75 0, 0.52

l 0.52, 0 0.36, 0.36

Note that in this example always reportingh by both agents and always reportingl

by both agents are strict Nash equilibria. Furthermore, theformer is pareto-optimal to

the honest equilibrium whose expected payment (equation 3.2) is:

u(āi, ār(i)) ≃ 0.63 (0.68 · 0.75 + 0.32 · 0) +

0.37 (0.54 · 0.52 + 0.46 · 0.36)

≃ 0.49

It is 0.75 ≃ u(h, h) > u(āi, ār(i)) ≃ 0.49. For binary settings (i. e. only two possible

signals), there are always lying equilibria with one of thembeing pareto-optimal to the

honest equilibrium [9].
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Chapter 4

An Automated Mechanism

An alternative to the use of explicit proper scoring rules isthe formulation of the above-

mentioned equilibrium requirements as a Linear Program. This technique was coined

Automated Mechanism Design[2, 24] and is advantageous in our setting for several

reasons. First, we will be able to find the budget-optimal, i.e. the cheapest, mechanism

while preserving the requirements for truthtelling and voluntary participation. Second,

we can focus on thinking about the requirements while delegating a large fraction of

algorithmic considerations to an external solver. That notonly limits the possibility

of programming mistakes but also allows for an easier adaptation for more complex

extensions to the model than what would have been feasible with a manual formulation

using explicit scoring rules. Nonetheless, it is insightful analyzing the mechanism’s

behavior with the intuition of strictly proper scoring rules (compare chapter 3).

Definition 3. LetA ∈ R
m×n be a matrix,b ∈ R

m andc ∈ R
n. A Linear Program in

standard formhas the following form:

min cT x

subject to Ax ≥ b

x ≥ 0

We are looking for the budget-optimal mechanism, i. e. the minimization of ex-

pected payments. We already formulated the expected payment in equation 3.2 and we

may use it as objective function in our LP. All probability calculations are the same as

in chapter 3. The only difference is that ourτ(·, ·) is no longer defined by an explic-

itly stated scoring rule. Instead, the LP solver will searchfor the optimal assignment.

Please note that the objective function is the expected payment of the honest equi-

librium since this is what we expect the agents to coordinateon (after all, this is the
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mechanism’s entire purpose). For instructions how to calculateg(sk| sj), see section

2.2.

The core of the LP consists of the constraints that make sure that the honest signal

announcement is the single best response given an honest reporting agent. For every

possible signalOi = sj ∈ S, there existM − 1 dishonest announcementsai
j 6=

āj . Given that the reference report is honest, we want the expected payment of an

honest announcement by agenti to be strictly larger than the expected payment of any

other announcement. More accurately, we want them to be strictly larger by a margin

∆(sj , sh)1, that is,

M∑

k=1

g(sk| sj) · τ(sj , sk) −

M∑

k=1

g(sk| sj) · τ(sh, sk) > ∆(sj , sh)

∀sj , sh ∈ S, sj 6= sh

and (in a more compact notation)

M∑

k=1

g(sk| sj) (τ(sj , sk) − τ(sh, sk)) > ∆(sj , sh).

∀sj , sh ∈ S, sj 6= sh

In our setting, an agent decides whether to participate in the rating process after

experiencing the good (i. e. she knows her own signal) but without knowing the signals

received by the other agents. Therefore, we useinterim IR:

M∑

k=1

g(sk| sj) · τ(sj , sk) > C ∀sj ∈ S

In addition, all payments need to be positive as we have no possibility withdrawing

credit from the agents.

The mechanism’s final LP in standard form LP is:

LP 1.

min W =
M∑

j=1

Pr(sj)

(
M∑

k=1

g(sk| sj) · τ(sj , sk)

)

;

s. t.
M∑

k=1

g(sk| sj) (τ(sj , sk) − τ(sh, sk)) > ∆(sj , sh);

∀sj , sh ∈ S, sj 6= sh

M∑

k=1

g(sk| sj) · τ(sj , sk) > C ∀sj ∈ S;

τ(sj , sk) ≥ 0 ∀sj , sk ∈ S;

1Remember that∆(sj , sh) are possible external benefits from lying (compare chapter 2.1).
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Jurca and Faltings present numerous extensions to this basemodel. They show how

to further lower the budget by using multiple rating reportsand a filtering technique for

reports that are false with high probability (while still paying these reports) [10]. In

order to incorporate prior beliefs that are slightly different from the center’s, they built

a mechanism robust to small changes in these beliefs [12]. Aninsightful presentation

of the expressive abilities entailed in the LP formulation is the work on colluding agents

and sybil attacks (i. .e one agent controlling several accounts) [11].
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Chapter 5

Time-dependent quality changes

So far we have only considered situations where the quality of the product is fixed. This

situation is not given very often. Imagine a freemail provider that constantly improves

its services as it is competing for market share (e. g. expanding the allowed storage

space) or technical products such as television devices that get outdated because of

technological change. Fortunately, these quality changeshappen rather slowly. An

agent rating a television device today can trust with high probability that the signal

received by her reference agent arriving a week later stems from the same underlying

type. These slow and constant changes can be taken care of by adding a small constant

to the∆(sj , sh) bounds in the LP.

This is different for more complex settings often occuring in online environments.

Imagine a webservice that has a certain probability to be offline for some time but that

returns to its old quality type after it got fixed. Or—in a similar vein—another webser-

vice might have different loads depending on the number of clients it has to serve at the

time. With the fixed-type mechanism we are unable to model these situations appro-

priately as we do not have a possibility for near-time reports being correlated stronger

than those further away.

5.1 A Markov Extension to the Base Setting

In order to allow for these time-dependent quality changes,I extend the base setting by

introducing a transition matrix modelling quality changesas a Markov Process (MP).

Together with the noisy perception of the signals, the resulting structure is a discrete-

time hidden Markov model (HMM) with a finite set of states.

Besides the fact that selfish agents make the observations, Ialso extend the standard

definition of an HMM to allow for bothnull transitionsandmultiple observations(i.e.

for eacht, there might be no agent receiving a signal or more than one agent receiving

a signal, respectively).
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The transition matrixP is given with the problem definition and stays the same for

all t (i. e. the MP is time-homogeneous). Given type (i. e. state)θi, the probability to

go to typeθj in the next time step isPr(θt+1
j | θt

i). Please note thatP is a so-called

left stochastic matrix (i. e. thecolumnssum up to 1). This is coherent with the format

of the other matrices I use and it allows for a simple way to determine the probability

of the type vector in a certain time step. Since we will need torate at least one agent

against asucceedingagent,P is required to be reversible. In addition, we demand it to

be non-singular.

P =







Pr(θt+1
1 | θt

1) . . . P r(θt+1
1 | θt

|Θ|)
...

. . .
...

Pr(θt+1
|Θ| | θ

t
1) . . . P r(θt+1

|Θ| | θ
t
|Θ|)







We assume the agents announce their signals at the time they receive it. That is,

their strategies do not depend ont. This is reasonable in cases where the reputation

system is located at an intermediary, such as expedia.com oramazon.1 Here, agents

cannot lie about the time step in which they consumed the product as the reputation

mechanism already knows this from the booking data. A possible weakness is that the

good’s consumption may be either postponed or brought forward if that is beneficial in

the rating process. Yet, I believe that when booking a holiday at expedia it is reason-

able to believe that the time of travel is independent from possible minor advantages

in the subsequent rating process. However, these issues canbe important in certain

applications and constructing a dynamic mechanism remainsfuture work.

5.2 The Optimal Time-Dependend Payment Scheme

Without loss of generality, letr(i) receive her signal at timet1 while agenti receives

her signal at timet2. Let st1
k andst2

j denote the signals received byr(i) and agenti,

respectively. Slightly abusing the notation, I alterg(·| ·)’s defintion (see equation 2.1)

to incorporate the timing information.

The expected payment to agenti is thus:

M∑

k=1

g(st1
k | st2

j ) · τ(ai
j , a

r(i)
k ).

After observing her signalst2
j , agenti wants to maximize her expected payment. Thus,

given that her reference raterr(i) reports truthfully, her optimal choice is

arg max
ai

j

M∑

k=1

g(st1
k | st2

j ) · τ(ai
j , a

r(i)
k ).

1The same holds true for ebay in moral hazard environments
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g(st1
k | st2

j ) can be computed as:

g(st1
k | st2

j ) =

|Θ|
∑

l=1

Pr(st1
k | θt1

l ) · Pr(θt1
l | st2

j ). (5.1)

Pr(st1
k | θt1

l ) can be simplified tof(sk| θl) as the probability of receiving a signal given

a certain type is independent of when it is received as long asit is in the same time step

(for reasons of simplicity, I will sometimes omit the timinginformation for these cases

in subsequent calculations).

Applying Bayes’ Theorem to equation 5.1 we receive:

Pr(θt1
l | st2

j ) =
Pr(st2

j | θt1
l ) · Pr(θt1

l )

Pr(st2
j )

. (5.2)

Let

Pr(θ) =









Pr(θ1)

Pr(θ2)
...

Pr(θ|Θ|)









(5.3)

be the vector of prior type probabilities (i. e.t = 0).

As we know both the topology and the parameters of the HMM, calculating the

entire probability vectorθt is straightforward:

Pr(θt) =









Pr(θt
1)

Pr(θt
2)

...

Pr(θt
|Θ|)









= P
t × Pr(θ)

(5.4)

Please note that in the context of a matrix, the superscript denotes an exponentiation2:

P
t = P × . . . × P

︸ ︷︷ ︸

t

. (5.5)

2For the matrix exponentiation I use a simple divide and conquer approach having a runtime of magnitude
O(|Θ|3 · log t). This mark can possibly be further improved by more sophisticated numerical algorithms
but since the runtime required for the exponentiation is notthe limiting factor of application, I leave this to
future work. Compare section 6.1.2 for details regarding the running time depending ont.
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Using 5.4, we get:

Pr(st
j) =

|Θ|
∑

l=1

f(sj | θl) · Pr(θt
l ). (5.6)

The probability that agenti receives signalst2
j given that the type wasθt1

l can be

computed as follows:

Pr(st2
j | θt1

l ) =

|Θ|
∑

o=1

f(sj | θo) · Pr(θt2
o | θt1

l ).

For the probability of a certain type at timet2 knowing the type at timet1 we need

to distinguish two cases.

• t2 ≥ t1

Here, we only need a minor change of equation 5.4:

Pr(θt2 | θt1
l ) = P

t2−t1 ×













θt1
1 = 0

...

θt1
l = 1

...

θt1
|Θ| = 0













,

i. e. thelth column ofP t2−t1 .

• t2 < t1

From Bayes we know

Pr(θt2
o | θt1

l ) =
Pr(θt1

l | θt2
o ) · Pr(θt2

o )

Pr(θt1
l )

and we can calculate thePr(θt1
l | θt2

o ) analogue to thet2 ≥ t1 case:

Pr(θt1 | θt2
o ) = P

t1−t2 ×













θt2
1 = 0

...

θt2
o = 1

...

θt2
|Θ| = 0













.

In the Linear Program, we needg(st1
k | st2

j ) for all st1
k , st2

j ∈ S. I store this data in

a M × M matrix and extend the calculations of this section to matrixmultiplications

where possible. Except for the two Bayes transformations, all calculations can be
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rewritten in such a way (see Appendix A). The resulting code is easier to read, compact

and optimized for use with numerical software, such as Matlab or Python’s NumPy

package. In addition, the feasibility analysis (section 5.5) is easier and more intuitive

when interpreting the calculations as linear transformations.

The resulting Linear Program is:

LP 2.

min W =
M∑

j=1

Pr(st2
j )

(
M∑

k=1

g(st1
k | st2

j ) · τ(st2
j , st1

k )

)

s.t.
M∑

k=1

g(st1
k | st2

j )
(
τ(st2

j , st1
k ) − τ(st2

h , st1
k )
)

> ∆(st2
j , st2

h );

∀st2
j , st2

h ∈ S, st2
j 6= st2

h

M∑

k=1

g(st1
k | st2

j ) · τ(st2
j , st1

k ) > C; ∀st2
j ∈ S

τ(st2
j , st1

k ) ≥ 0; ∀st2
j , st1

k ∈ S

5.3 Example

Let us extend the example from section 2.3. As before, we havetwo typesθ1 = B

andθ2 = G emitting two signalss1 = l ands2 = h. The probabilities given by the

base setting arePr(G) = 0.7, Pr(B) = 1 − Pr(G) = 0.3 andf(h|G) = 0.75,

f(h|B) = 0.35. The transition matrix is

P =

(

0.95 0.1

0.05 0.9

)

.

and agent1 received a signal att1 = 0 while agent2 received a signal att2 = 2.

We want to compute the budget-optimal payments for agent2. The first step is to

computeG. Therefore, we need the unconditional type probabilities at t1 andt2. For

t1 = 0 this simply is the prior type probability and fort2 = 2, we compute the vector

by equation 5.4:

Pr(θt2) = P
t2 × Pr(θ)

=

(

0.9075 0.185

0.0925 0.815

)

×

(

0.3

0.7

)

=

(

0.40175

0.59825

)
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Then, we needAθt2×θt1 . As t2 > t1, this simply isP t2−t1 = P t2 which we have

already calculated in the preceding equation.

The next step is the calculation of the signals att2 conditional on a type att1:

A
st2×θt1

= F × A
θt2×θt1

=

(

0.65 0.25

0.35 0.75

)

×

(

0.9075 0.185

0.0925 0.815

)

=

(

0.613 0.324

0.387 0.676

)

Before we can calculateAθt1×st2 using Bayes’ Theorem, we have to compute the

unconditional signal probability att2 which is easily done multiplyingF with Pr(θt2):

s
t2 = F × Pr(θt2)

=

(

0.65 0.25

0.35 0.75

)

×

(

0.40175

0.59825

)

=

(

0.4107

0.5893

)

Now we have all data needed to compute the probabilities of a type att1 given a signal

at t2 using Bayes’ Theorem (compare equation 5.2) resulting in3:

A
θt1×st2

=

(

0.4478 0.197

0.5522 0.803

)

With this result we may finally compute theG we need for the coefficients of LP 2:

G = F × A
θt1×st2

=

(

0.65 0.25

0.35 0.75

)

×

(

0.4478 0.197

0.5522 0.803

)

=

(

0.4291 0.3288

0.5709 0.6712

)

The objective function requires the products of the signal probability at t2 and the

respective entry inG. The respective equations are:

3In the rest of the example, I do some minor rounding but continue the calculation with higher accuracy.
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Pr(ht2) · g(ht1 |ht2) = 0.3956

Pr(ht2) · g(lt1 |ht2) = 0.1938

Pr(lt2) · g(ht1 |lt2) = 0.2345

Pr(lt2) · g(lt1|lt2) = 0.1762

Setting all∆(sj |sh) (h 6= j) to 0.15 andC to 0.1, we can now write down the

entire LP. For reasons of clarity, I further round the valuesto 2 digits after the decimal

point. Furthermore, allτ are required to be≥ 0:

LP 3.

min 0.18 τ(l, l) + 0.23 τ(l, h) + 0.19 τ(h, l) + 0.4 τ(h, h);

s.t. 0.43 τ(l, l) + 0.57 τ(l, h) − 0.43 τ(h, l)− 0.57 τ(h, h) > 0.15;

−0.33 τ(l, l)− 0.67 τ(l, h) + 0.33 τ(h, l) + 0.67 τ(h, h) > 0.15;

0.43 τ(l, l) + 0.57 τ(l, h) > 0.1;

0.33 τ(h, l) + 0.67 τ(h, h) > 0.1;

The optimal payment scheme that is computed by the solver is thus:

i

r(i)

h l

h 1.86 0

l 0 1.13

Please note that the payments are given only for agent2 as the setting is no longer

symmetric.

5.4 Choosing the reference rater

I will rate agenti against the announcement of the preceding agent. The only exception

to the rule is the first agent who is rated against the second (i. e. against the following)

agent. Besides its simplicity, this procedure has two majoradvantages: First, only the

very first agent has to wait for her payments while all other agents can be scored right

away. Second, the information contained in past signal announcements can be released
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quickly. Generally, we have to keep the current (i. e. updated) type beliefs undisclosed

as long as the information contained in the updated beliefs are informative about the

signal announced by the reference agent. The immediate release of this information is

especially important in the Markov setting where types may change and information

thus outdates.

Depending on the actual setting, other choice procedures may be advantageous.

For example, one might consider rating against the agent that is closest with regards to

the time-steps. Similarily, one may select the neighboringagent that is the cheapest.

Both of these procedures have the drawback that the mechanism needs to withhold its

payments until the reference rater is chosen. Another intuitive objective is finding the

cheapest rating pairs4. Since most of the time, the center will not know how many

agents will arrive and when, this procedure would require anonline approach. I leave

this for future work.

5.5 Feasible region of the LP

The LP may be infeasible and this section is devoted to the analysis of these infeasible

configurations. That is, settings in which we are unable to construct a mechanism.

As is quickly seen, the objective function is bounded if the constraints are feasible.

All factors are positive or zero and thus have a lower bound atzero which corresponds

to zero costs. The analysis of the feasible region of the LP ismore difficult.

5.5.1 LP feasible⇔ Stochastic relevance

Suppose for a moment we already have the payment matrix induced byτ(·|·) (see Ap-

pendix A). What is the expected payment to agenti given her signal and announcement

(the latter not necessarily truthful)?

Definition 4. Letst2
j be the signal received by agenti and letai

h be her announcement.

Thegeneralized expected paymentis the expected payment to agenti given thatr(i) is

announcing her signal truthfully.

E(ai
h, st2

j ) =

M∑

k=1

g(st1
k | st2

j ) · τ(ai
h, a

r(i)
k )

=

M∑

k=1

τ(ai
h, a

r(i)
k ) · g(st1

k | st2
j )

4Note that ’pairs’ are not necessarily symmetric, i. e. ifr(i) is the reference agent to agenti, this does
not induce that the relation holds the other way round, as well.
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This can be captured in a two-dimensional matrix holding allE(·|·):

E =







E(ai
1, s

t2
1 ) . . . E(ai

1, s
t2
M )

...
. . .

...

E(ai
M , st2

1 ) . . . E(ai
M , st2

M )







= τ × G

Proposition 5. LP 2 is feasible if and only if the signal observation at timet2 is

stochastically informative about the signal observation at timet1

Proof. • ”⇒” I prove themodus tollensequivalent of the expression, i. e. given

the signal observations arenot stochastically informative, the LP isnot feasible.

The signal observations are not stochastically informative, so that at least two

different columns inG5 have the same entries. Without loss of generality, let

g(·|sh) andg(·|sj) be these two colums with equal entries. Multiplyingτ with

g(·|sh) andg(·|sj) results in the columnsE(·, sh) andE(·, sj), respectively. As

in both multiplications the factors are equal, the resulting columnsE(·, sh) and

E(·, sj) are equal, as well. The first constraint group in LP 2 (honestycon-

straints), though, is requiring that the expected payment of the honest announce-

ment isstrictly larger than any of the dishonest announcements. In particular:

E(ah, sh) > E(aj , sh) = E(aj , sj) > E(ah, sj) = E(ah, sh)  

• ”⇐” To show that LP 2 is feasible if all columns inG are different, I construct a

τ that complies with all constraints in LP 2.

It is simple to scale aτ that complies with the first group of constraints (honesty)

to comply with the second (participation) and third (non-negative transfers), re-

spectively. Therefore, I will first elucidate on the honestyconstraints.

In chapter 3 I already introduced a way to construct a feasibleτ : strictly proper

scoring rules. Let us constructτ by applying such a scoring ruleR(·|·) to G as

mentioned in section 3.2:

τ(ai
h, a

r(i)
k ) = R(a

r(i)
k |ai

h)) (5.7)

5for definition of these matrices, I again refer to Appendix A)
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The generalized expected payment is then

E(ai
h, st2

j ) =

M∑

k=1

g(st1
k | st2

j ) · R(a
r(i)
k |ai

h)) (5.8)

which is solely maximized by the honest announcement (see chapter 3), i. e. the

expected payment of the honest announcement is at leastǫ > 0 larger than any

announcement with different probability values and thus also strictly larger than

any of the dishonest announcements for allst2
j .

So far, τ does not necessarily comply with the external benefits from lying,

∆(sj , ah). From chapter 3 we know that neither multiplyingτ with a scalar

λ nor adding a constant changes its incentive properties. A multiplication with

λ results in aτ ′ whose honesty bounds (i. e. the difference between the honest

and dishonest announcements) are scaled byλ, as well. These honesty bounds

are actually a constraint onE: For every honest announcement we haveM − 1

dishonest announcements and the corresponding expected payments are noted

down inE. So for every column inE we look at the (expected payment) differ-

ence between the honest announcementsj and every dishonest announcementah

and divide it to the lower bound it is supposed to conform to, i. e. ∆(sj , ah). If

we pickλ to be the maximum of all these fractions, we receive aτ ′ conforming

with the external benefits:

max
j,h

E(aj , sj) − E(ah, sj)

∆(sj , ah)
. (5.9)

To makeτ ′ complying with the second group of constraints, i. e. voluntary par-

ticipation, we may simply add|min(τ(·, ·)′)| + C to all entries inτ ′. That way,

all τ(·, ·)′ are positive, as well.

5.5.2 Stochastic relevance

As shown in the preceding subsection, finding the feasible region of the LP comes

down to analyzing the stochastic relevance of the observations made by agenti and

her reference agentr(i). Finding an exact description of the stochastically informative

settings is very difficult even in the base case without the Markov Process6. Thus, I will

6Neither MRZ nor Jurca and Faltings fully analyze these settings. In fact, while the larger part of Radu
Jurca’s PhD-thesis is about this model, for the infeasibility analysis, he simply refers to the original paper by
MRZ who use scoring rules. In addition, the models of MRZ and Jurca and Faltings slightly differ in that
the latter allow different types to have the same signal distribution and the prior probability types to be0.
This not only questions a simple reference but further complicates the analysis. On the other hand, in the
final version of MRZ’s paper, the analysis is substituted by areference to a paper never written (by the same
authors). This technique was coinedproof by phantom reference.
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restrict myself to the somewhat intuitive description of these settings made by MRZ

[15], give a matrix formulation of it and explain a special type of stochastic irrelevance

that comes with the introduction of the MP.

I will describe the set of parameters thatfail stochastic relevance. All sets of pa-

rameters that do not fail stochastic relevance obey it and will thus make the LP feasible.

Let st2
j andst2

h with j 6= h be two signal observations that generate the samer(i) signal

posterior distribution, i. e.g(st1
k | st2

j ) = g(st1
k | st2

h ) for all k ∈ {1, . . . , M}.

Expanding this gives us:

g(st1
k | st2

j ) − g(st1
k | st2

h ) = 0 ∀k
∑

θ∈Θ

f(sk|θ) · Pr(θt1 |st2
j ) −

∑

θ∈Θ

f(sk|θ) · Pr(θt1 |st2
h ) = 0 ∀k

∑

θ∈Θ

f(sk|θ)
(
Pr(θt1 |st2

j ) − Pr(θt1 |st2
h )
)

= 0 ∀k

(5.10)

Rewriting these calculations as matrix multiplications (linear transformations) has

two advantages: First, it is more compact and natural to dealwith matrix multiplica-

tions than with arrays of regular calculations and, second,we can take advantage of

theorems proven in Linear Algebra and apply them to our setting.

Let

Pr(θt1 |st2
j ) =










Pr(θt1
1 |st2

j )

Pr(θt1
2 |st2

j )
...

Pr(θt1
|Θ||s

t2
j )










andPr(θt1 |st2
h ) analogue. In addition, letu denote the difference between the two

type posteriors:

u =









u1

u2

...

u|Θ|









= Pr(θt1 |st2
j ) − Pr(θt1 |st2

h ).
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Then, the infeasible region is the solution to

F × u = 0 (5.11)

while 0 denotes the null vector (compare equation 5.10).

Therefore, there are two cases that can make LP 2 infeasible:

1. F is such that for two different type distributions, it generates the same (poste-

rior) signal distribution.

2. The (posterior) type belief att1 is the same for two distinct signal observation at

t2.

According to MRZ it is straightforward to show that these restrictions are only satis-

fied non-generically and that the set of distributionsF andθ that satisfy them have

Lebesgue measure zero. Note that if only one condition fails, the LP becomes infea-

sible. Despite this being a strong limitation from a mathematical point of view, MRZ

argue that these cases are rare in practical implementations and even small perturba-

tions of the believes make the setting stochastically informative again.

Intuitively, the first restriction should not be given very often if different types

generate different probability distributions (as we demanded). If F is quadratic (i. e.

M = |Θ|), this only is the case for (non-invertible) matrices with rank strictly smaller

thanM .

The second situation is especially interesting with regards to the Markov Process:

First,P may may have a format, such that it loses information in between twoneigh-

boring time steps and, second,P
t may converge to a steady state, i. e. the MP forgets

where it came from resulting in type posteriors that—after some t—are identical in

their floating point representation. Regarding the latter,I refer to section 6.2.2.

From equation 5.4 we know how to compute the unconditional type update, i. e. the

change in type belief that occurs simply through the time passing by without any ad-

ditional information through signal announcements7. If P is such thatafter the update

information about the type beliefsbeforethe update is lost,Oi cannot be stochastically

informative aboutOr(i) and the LP will thus be infeasible, as well.

7How to update the type beliefs taking into account signal announcements, see section 7.
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The analysis is similar to that of equation 5.11. Letv be the difference of two type

vectors att1 andt2, respectively:

v =









v1

v2

...

v|Θ|









= Pr(θt1) − Pr(θt2).

Then, the MP breaks the stochastic connection between two neighboring time steps if

and only if forv 6= 0 it holds that

P × v = 0. (5.12)

SinceP is quadratic by definition, this is given if and only ifP has rank lower than|Θ|.

This is why the setting demands thatP is non-singular which in the case of quadratic

matrices is an equivalent statement.
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Chapter 6

Experimental Results

If not stated otherwise, the parameters for the experimental settings are created as de-

scribed in Appendix B.

6.1 Running Time

Linear Programs can be solved in weakly polynomial running time. For example, the

Ellipsoid algorithm finds the optimal solution (or technically a very good approxima-

tion of it) in O(n4L) wheren is the number of variables (M2 in our setting) andL is

the number of input bits (i. e. the number of bits needed to encode the LP).

While having an exponential worst-case running time, the Simplex method usually

performs better in practice. Thus, in order to tell whether the feedback mechanism is

applicable in real-world settings, I empirically evaluateit on a customary Notebook

with Intel Core2Duo (1.6GHz) and 2GB of RAM running Windows XP. The solving

process is essentially twofold: First, a small Python 2.5 program computes all condi-

tional probabilitiesg(st1
k | st2

j ) that are needed to build LP 2 while in the second step,

the LP is composed and passed to an external solver (lpsolve 5.5.10 via its Python

API).

6.1.1 Running time dependent onM

Figure 6.1 shows the running time for different values ofM . I used gnuplot 4.2.3 to

make a least-square-fit against the runtime data. The fitted curve f(x) corresponds to

0.0235369x3−0.186207x2+1.19075x+0.274942and fitting curves with a polynomial

of order lower than3 results in bad approximations.

29



 0

 20

 40

 60

 80

 100

 120

 140

 2  4  6  8  10  12  14  16  18  20

m
ill

is
ec

on
ds

 (
av

er
ag

e)

M

running time
f(x)

Figure 6.1: Running time for different values ofM

6.1.2 Running time depending on∆(t)

We are also interested in the runtime that comes with the introduction of the MP. Let

the unary∆(t) denotet2 − t1. Figure 6.2 shows the running time depending on the

time steps that lie in between the two agents while∆(t) = 0 corresponds to1001.

Interestingly, the runtime not only grows with∆(t) but becomes larger for largeM ,

as well. This is due to the matrix exponentiation algorithm whose runtime isO(|Θ|3 ·

log t) while in our settings,|Θ| equalsM andt corresponds to∆(t). For larger∆(t),

the factor|Θ|3 = M gets more influence on the running time if only multiplied by

log t.

Nonetheless, the running time of the Markov Process is unlikely to be the limiting

factor for application. Values for∆(t) will rarely be much higher than40 so that the

slowdown will be within 10% even for settings with a large signal set. Secondly, for

someP , the setting may be infeasible by then (compare figure 6.4) and finally, the

expected costs we aim to minimize are growing at a higher pacewith every time step

in between the two ratings (compare figure 6.3).

6.2 Payment behavior

6.2.1 Expected Costs

What are the expected costs depending on∆(t)? Figure 6.3 shows the expected costs

for different values of stochastic movement inherent inP 2 as reflected byǫ (see Ap-

1Please note that forM = 5 I took 10000 settings instead of 1000.
2For the expected payment analysis I focus on the behavior regarding∆(t) andP . Simply applying the

random setting as described in Appendix B to compare the behavior for different values ofM and|Θ| may
lead to wrong conclusions. This is due to the fact that the noise level ofF andP does not naturally extend
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Figure 6.2: Normalized running time depending on∆(t)

pendix B for a description of the random setting).

As expected, the more time lies in between the two ratings thehigher are the mech-

anism’s cost. A largerǫ corresponds to more type perturbations through the MP (also

see section 6.2.2). For larger∆(t) the probabilities for a certain type att2 conditional

on the types att1 become more alike as the Markov Process converges to its steady

state and so do the columns ofG. As these are the coefficients of the LP and they

are getting closer, the solver needs largerτ to separate the honest from the dishon-

est announcements. Note that our external benefits from lying are constant and thus

independent of∆(t).

6.2.2 Stochastic Relevance

As mentionend in section 5.5, ifP is non-trivial (i. e. it adds uncertainty to the set-

ting), large∆(t) may break the stochastic connection between the signal observations

because of floating point inaccuracies. That is, the LP becomes infeasible because two

minimally different vectors inG are represented by the same floating point numbers

resulting in a stochastically irrelevantG.

The point at which a setting becomes infeasible obviously depends on the mag-

nitude of stochastic movement. Figure 6.4 shows the fraction of infeasible settings

depending on∆(t) for different values ofǫ and 5000 settings. As one would expect,

higher perturbations on the type vectors result in quicker convergence ofG.

to different numbers of types or signals.
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6.2.3 Convergence

Since we usually rate every agent against her preceding agent (compare section 5.4),

our t1 is mostly set to0 (also compare Appendix B for the description of the random

settings), so that∆(t) corresponds to the interval from0 to t2 and is thus fixed. For

other pairing methods, though, it is insightful to study thebehavior for fixed∆(t) at

different positions fort1. Figure 6.53 shows the costs in both expectation and range for

differentt1.

One can see that the payments rapidly converge. The level they converge to cor-

responds to the payments that are computed for the steady state type vector for fixed

∆(t). Most transition matricesP that are applicable in our setting have a unique steady

state (they are irreducible4 and aperiodic5 [13]). The intuition is that seen fromt = 0

(i. e. the mechanism’s position) the type beliefs att1 andt2 with fixed ∆(t) become

more alike for larget1, t2. In fact, as the MP perturbes them, they become closer to

the steady state vector so that the mechanism computes payments that are converging

to these steady state payments. For further explanations onsteady states in Markov

processes, I refer to [13, p. 194-216].

3For some reason, LATEX had problems including an eps graphic with gnuplot’s errorbars, so that I used
pointlines instead.

4it is possible to get to any state from any state
5A stateqi has periodk if any return to stateqi must occur in multiples ofk time steps. Ifk = 1, then

the state is said to be aperiodic. If all states are aperiodic, the MP is said to be aperiodic.
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Chapter 7

Updating the Type Beliefs

7.1 Motivation

Up to this point, we have constructed payments that induce agents to give honest feed-

back about the signals they receive. What is supposed to be published, though, is the

probability that the product has a certain type.

The literature on hidden Markov models1 describes three basic algorithms answer-

ing the following questions:

1. What is the probability of a certain signal sequence giventhe model?

2. Given a signal sequence, what is the most likely hidden sequence of states?

3. Given only the topology of the model, what are the parameters that maximize

the probability for the observed signal sequence?

Unfortunately, none of these match our situation. Note thatthe most likely hidden

sequence of states is not what we are looking for. Potential customers are only inter-

ested in the quality the product has right now (or in the future) but not in the quality the

product most likely once had. Given the topology and the model, the future of the MP

only depends on the most recent state. Thus, what we are interested in is the probability

distribution of the most recent state given the signal sequence announced by the agents.

Note that simply taking the last state of the most likely hidden sequence of states

will not help us for two reasons: First, it only gives us a single state and not a probability

distribution. Second, it may well be that the most likely last state is not at the end of

the most likelysequenceof states.

Let N = |Θ| be the number of states andT the most recent time step. The naive

approach goes through allNT+1 possible state sequences (the index begins with0) and

1see for example [7, p.409-429]
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is thus infeasible for largeT . However, we can use Dynamic Programming to come up

with an algorithm linear inT .

7.2 One Announcement per Time Step

Let us first consider a setting with exactly one observation per time step. In a next step,

we will extend this to incorporate bothnull transitionsandmultiple observations.

The outer part of the algorithm consists of computing the conditional probability

that the most recent stateqT is θ given the vector of signal announcementsY . Extend-

ing this conditional probability gives us

Pr(qT = θ|Y ) =
Pr(qT = θ ∩ Y )

Pr(Y )
. (7.1)

We begin with iteratively calculatingPr(qT = θ ∩ Y ). Let st denote the signal

announcement at time stept while Y t = (s0, s1, . . . , st) is the timely-ordered vector

of all these signals up to time stept. Calculating the base caset = 0 is straightforward:

Pr(q0 = θ ∩ s0) = Pr(θ) · f(s0|θ). (7.2)

Computing the joint probability at timet + 1 can be reduced to computingN joint

probabilities at timet:

Pr(qt+1 = θ ∩ Y
t+1) = f(st+1|θ) ·

N∑

i=1

[
Pr(qt = θi ∩ Y

t) · Pr(θi → θ)
]

(7.3)

What is left, is the denominator of equation 7.1. Following the law oftotal probability,

summing up all joined probabilities att = T for all θ ∈ Θ suffices and we receive

Pr(Y ) =
N∑

i=1

Pr(qT = θi ∩ Y ). (7.4)

Extending equation 7.1 results in:

Pr(qT = θ|Y ) =
Pr(qT = θ ∩ Y )

N∑

i=1

Pr(qT = θi ∩ Y )

. (7.5)

The runtime of the algorithm isO(N2 T ). Please see section 7.3.1 for a detailed dis-

cussion of the runtime.
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7.3 Multiple Announcements per Time Step

Since the agents do not necessarily arrive one every time step, we need to incorporate

bothnull transitionsandmultiple observations. I will first interpret the announcements

made in a single time step as a vector. Thereafter, I will showhow compute the condi-

tional probability that interprets the announcements in a single time step as a set (i. e.

without ordering inside a single time step). We will see thatthe results are equal.

7.3.1 Ordered Tuple Case

Let ot denote theordered tupleof signal announcements in time stept andOt =

(o0, o1, . . . , ot) the timely-ordered tuple of these announcement tuples up totime step

t. Then,h(ot|θ) is the probability ofot conditional on stateθ.

h(ot|θ) =







1, if |ot| = 0
∏

s∈ot

f(s|θ), else. (7.6)

Analogue to equation 7.2, the base case is:

Pr(q0 = θ ∩ o
0) = Pr(θ) · h(o0|θ) (7.7)

Adapting the iteration step (equation 7.3) yields:

Pr(qt+1 = θ ∩ O
t+1) = h(ot+1|θ) ·

N∑

i=1

[
Pr(qt = θi ∩ O

t) · Pr(θi → θ)
]
. (7.8)

Similar to equation 7.5, the outer equation for the ordered case is

Pr(qT = θ|O) =
Pr(qT = θ ∩ O)

Pr(O)

=
Pr(qT = θ ∩ O)

N∑

k=1

Pr(qT = θk ∩ O)

.
(7.9)

Running time

The computation ofh(ot|θ) for a singleθ in a single time step is inO(|ot|). It needs

to be computed for allθ in all time steps, resulting in

N · |o0| + N · |o1| + · · · + N · |oT |
︸ ︷︷ ︸

(T+1)×

= N ·
(
|o0| + |o1| + · · · + |oT |

)
= N · |OT |
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for this part. Note that theh(ot|θ) can be computed independently of the Dynamic

Programming part.

The runtime of the latter is the same as that of section 7.2. The base case has one

multiplication for everyN while every iteration hasN multiplications for every of the

N types. For this part, this results in a runtime ofO(N2 T ). Putting together the two

parts results in a runtime of

O(N2 T + N |OT |). (7.10)

7.3.2 Unordered Tuple Case

In this part, I am going to interpret the announcements made in a single time step

as anunorderedtuple as this is closer to our setting’s intuition that announcements

are made concurrently. Fortunately, we can reduce the computation of the conditional

probability in the unordered case to the respective computation in the ordered case. In

fact, the values are identical.

Slightly abusing the notation, letst be the unordered tuple representing the signal

announcements int and letY t = (s0, s1, . . . , st) now denote the timely-ordered

vector made up of the unordered tuples up to time stept.

Proposition 6. The conditional probability in the unordered multiset case, Pr(qT =

θ|Y ), equals the conditional probability in the ordered tuple case,Pr(qT = θ|O).

Proof. The difference to the ordered case is that the joined probabilities for ordered

tuples need to be multiplied with the number of possible orderings forst. The number

of possible orderings in time stept is computed by the multinomial coefficient:

m(st) =

(
|st|

|s1 ∈ st|, . . . , |sM ∈ st|

)

=
|st|!

|s1 ∈ st|! · . . . · |sM ∈ st|!
. (7.11)

The base case using equation 7.7 is:

Pr(q0 = θ ∩ s
0) = m(s0) · Pr(q0 = θ ∩ o

0). (7.12)

Similarily, the iteration refers to equation 7.8:
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Pr(qt+1 = θ ∩ Y
t+1) = m(st+1) · h(ot+1|θ) ·

N∑

i=1

[
Pr(qt = θi ∩ Y

t) · Pr(θi → θ)
]

= m(st+1) · h(ot+1|θ) ·

t∏

j=1

m(sj) ·

N∑

i=1

[
Pr(qt = θi ∩ O

t) · Pr(θi → θ)
]

= h(ot+1|θ) ·

t+1∏

j=1

m(sj) ·

N∑

i=1

[
Pr(qt = θi ∩ O

t) · Pr(θi → θ)
]

(7.13)

Putting together the outer calculation (similar to equation 7.1), we see that the multi-

nomials can be cancelled out (also compare equation 7.8 and 7.9):

Pr(qT = θ|Y ) =
Pr(qT = θ ∩ Y )

N∑

k=1

Pr(qT = θk ∩ Y )

=

h(oT |θ) ·
T∏

j=1

m(sj) ·
N∑

i=1

[
Pr(qT−1 = θi ∩ OT −1) · Pr(θi → θ)

]

N∑

k=1

h(oT |θk) ·
T∏

j=1

m(sj) ·
N∑

i=1

[Pr(qT−1 = θi ∩ OT −1) · Pr(θi → θk)]

=

h(oT |θ) ·
N∑

i=1

[
Pr(qT−1 = θi ∩ O

T −1) · Pr(θi → θ)
]

N∑

k=1

h(oT |θk) ·
N∑

i=1

[Pr(qT−1 = θi ∩ OT −1) · Pr(θi → θk)]

= Pr(qT = θ|O)

(7.14)

Thus, if we need to compute the updated type probabilities with multiple observa-

tionsandnull transitionsand we have the announcements per time step in an unordered

tuple, we can spare computing multinomials and use the easier ordered tuple case of

section 7.3.1.
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7.4 Example

I continue with the example from section 2.3 and its extension from section 5.3. As

before, we have two typesθ1 = B andθ2 = G emitting two signalss1 = l ands2 = h.

The probabilities given by the base setting arePr(G) = 0.7, Pr(B) = 1 − Pr(G) =

0.3 andf(h|G) = 0.75, f(h|B) = 0.35. The transition matrix2 is

P =

(

0.95 0.1

0.05 0.9

)

and I will refer to the transition probabilities as exemplified by pGB = Pr(G →

B) = 0.1. Furthermore, we are int = 2 and the agent announcements areY =

({h}, {}, {l, h}).

What is the updated type belief inT = 2 givenY ? From the previous section we

know that it is sufficient computing

Pr(q2 = θ|Y ) = Pr(q2 = θ|O)

with O = ((h), (), (l, h)), i. e. Y in a fixed (but arbitrary) order. Please note, that I

will omit some of the vector brackets for better readability.

We begin with computing the base cases:

Pr(q0 = G ∩ h) = Pr(G) · h(h|G)

= Pr(G) · f(h|G)

= 0.7 · 0.75

= 0.525

Pr(q0 = B ∩ h) = Pr(B) · h(h|B)

= Pr(B) · f(h|B)

= 0.3 · 0.35

= 0.105

2remember that we use aleft stochastic matrix, see 5.1
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Pr(q1 = G ∩ (h, ())) = h(()|G) ·
(

Pr(q0 = G ∩ h) · pGG

+ Pr(q0 = B ∩ h) · pBG

)

= 1 ·
(

0.525 · 0.9 + 0.105 · 0.05
)

≃ 0.478

Pr(q1 = B ∩ (h, ())) = h(()|B) ·
(

Pr(q0 = G ∩ h) · pGB

+ Pr(q0 = B ∩ h) · pBB

)

= 1 ·
(

0.525 · 0.1 + 0.105 · 0.95
)

≃ 0.152

Pr(q2 = G ∩ ((h), (), (l, h))) = h((l, h)|G) ·
(

Pr(q1 = G ∩ (h, ())) · pGG

+ Pr(q1 = B ∩ (h, ())) · pBG

)

≃ 0.25 · 0.75 ·
(

0.478 · 0.9 + 0.152 · 0.05
)

≃ 0.188 · 0.438

≃ 0.082

Pr(q2 = B ∩ ((h), (), (l, h))) = h((l, h)|B) ·
(

Pr(q1 = G ∩ (h, ())) · pGB

+ Pr(q1 = B ∩ (h, ())) · pBB

)

≃ 0.65 · 0.35 ·
(

0.478 · 0.1 + 0.152 · 0.95
)

≃ 0.228 · 0.192

≃ 0.044

Before we are able to put the outer part together, we need to computePr(O):

Pr((h), (), (l, h)) = Pr(q2 = G ∩ ((h), (), (l, h))) + Pr(q2 = B ∩ ((h), (), (l, h)))

≃ 0.082 + 0.044

≃ 0.126

40



Eventually, we can compute the (conditional) probability that θ2 = G andθ2 = B,

respectively:

Pr(q2 = G|((h), (), (l, h))) =
Pr(q2 = G ∩ ((h), (), (l, h)))

Pr((h), (), (l, h))

≃
0.082

0.126
≃ 0.651

Pr(q2 = B|((h), (), (l, h))) =
Pr(q2 = B ∩ ((h), (), (l, h)))

Pr((h), (), (l, h))

≃
0.044

0.126
≃ 0.349
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Chapter 8

Conclusion & Discussion

Adverse selection repuation mechanisms are a way to create the right incentives for

agents giving feedback. I introduced an extension to the model of Jurca and Faltings

[11, 12, 9, 10] that is able to cope with scenarios in which thequality of the product

changes over time. To model the change, I used a Markov Process, so that the result-

ing structure includes hidden Markov models (HMM) as special cases (i. e. those in

which there is exactly one observation every time step). As HMMs have found wide

application in diverse areas, such as Robotics, Pattern Recognition, Bioinformatics and

Finance, it may well be that similar applications of the mechanism can be found in

these areas, as well.

Depending on the actual application at hand, there may be a need for further exten-

sions. For example, there are settings in which a single agent makes multiple obser-

vations at possibly different points in time. In order to cope with these scenarios, one

could probably adapt the technique described by Jurca and Faltings [11] for making

the mechanism robust against colluding agents. In other settings, some or all of the

probability data may be either unknown or only known within acertain range. This

situation may especially arise in the setting described in this work. For most applica-

tions, the assumption that the center perfectly knows the transition matrix is too strict.

Instead, he may have an approximate estimation of it. Jurca and Faltings [12] provided

a formulation of LP 1 as a robust optimization problem. This readily extends to the

setting described in this work but it only addresses deviations with regards to the signal

posteriors that make up the coefficients of the final LP (ourG). This approach has

the disadvantage that one cannot precisely control the robustness level of the different

probabilistic parameters given with the setting. If, for example, the general probabilis-

tic setting is well known (and the center’s believe is sharedby the agents) but one wants

to incorporate noisy perceptionsup to a certain level, this does not simply translate to a

robust optimization problem. Rather, one would have to propagate these noise intervals

through the entire sequence of calculations to see how it is reflected in the coefficients
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of the LP.

Instead of rewriting the LP into a robust optimization problem, one may also try to

truthfully elicit the probabilistic parameters. If—as in our setting—the center knows

when an agent perceives her signal because he acts as an intermediary, the truthful

elicitation of prior beliefs should be possible. I am thinking of a three-step process in

which the rating agent first announces her belief about the type distribution, receives her

signal and then makes a signal announcement to the center. Here, the agent receives two

scores, one depending on how good her prior announcement matches with the reference

agent’s signal and the other for her actual signal announcement. The tricky part is to

scale the first score in such a manner that the expected profit that can be gained by a

false prior announcement (the second score is computed withthe announced priors) is

dominated by the expected profit of an honest prior announcement. To the best of my

knowledge this has not been done so far and I believe this is aninteresting field for

future work.

Similarily, the non-probabilistic parameters given with the setting may be unknown

by the center. While it will be difficult to truthfully elicitthe external benefits from

lying, the costs of participationCi may be a different thing. Depending on the certainty

level the center requires with regards to the product’s type, only a limited number of

agents are needed to give feedback. If the center’s information solely depends on the

numberof agents while he is indifferent aboutwho is giving it (as it was assumed so

far), it is reasonable to only let the agents with lowestCi do the rating. In order to

achieve this, it may be possible to apply anascending reverse auctionwith sealed bids.

The auction starts at the level of expected payment that is guaranteed by the honesty

constraints and the level is raised until the needed (updated) type belief accuracy is

reached and the auction ends. The online environment facilitates the application of

sealed bid auctions.

Depending on the context, the process ofacquiring the information may require

costly effort. Right after buying a product or service, the agent might not have a precise

idea about its quality. Instead, she must invest time to testit thoroughly and compare

it to other products. If not factored into the mechanism appropriately, an agent might

therefore be better off sparing this investment and simply report some random signal.

Zohar and Rosenschein [27] discuss these constraints in a non-reputation setting for a

single agent.

As we have seen, the mechanism presented in this work may havemultiple equilib-

ria, some of which correspond to higher payoffs for the feedback-giving agents. This

leads us to the topic of equilibrium selection. It is not clear and depends on the ac-

tual situation which equilibrium is chosen [8, p. 18-23]. Asmentioned, MRZ argue

that the honest equilibrium is a focal point and will thus be chosen. Unfortunately,

this is far from being certain. On the contrary, there is reason to believe that human

agents coordinate on a pareto-optimal lying equilbrium, especially if it is composed
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by symmetric pure strategies as it is mostly the case in the matrices induced by our

mechanism. Ironically, through the introduction of payments we may actually receive

a worse outcome than in a system without any payments in whichsome selfish agents

(those whose external benefits are low compared to their participation costs) may not

engage in the process at all.

However, I believe the presented mechanism can be applied tosoftwareagents.

Reputation issues arise in distributed systems—such as Peer-To-Peer networks1—and

the standard software is usually provided by the same actor that also develops the pro-

tocol. In this scenario, the goal of the mechanism or protocol designer is to construct

a network that is robust against modified programs2 which allow free-riding on the

cost of users of the standard software. If the standard software can be programmed on

playing honestly, most users will begin using this honest software. Therefore, the ob-

jective would be to maximize the fraction of modified software that is needed to make

dishonest play a best response. Potentially, an evolutionary framework with a protocol

implementing an honest evolutionary stable strategy (or a generalization thereof) may

prove useful. In addition, for two reasons the prior elicitation outlined above is espe-

cially interesting for distributed networks made up of software agents: First, the prior

beliefs may differ vastly depending on the locality of the network node and, second,

it is much easier for a software as opposed to a human agent to learn and announce

probability distributions.

Except for a single work by Dellarocas [4] that ignores the feedback part, all repu-

tation mechanisms are either combattingadverse selectionor moral hazardbut cannot

cope with combined scenarios. Real-world applications on the contrary are made up

mostly by the latter, i. e. the perceived quality depends on both the selling agent’sabil-

ity andwill . In a P2P network, for example, the speed of a file transfer depends on both

the physical connection between the agents and the sharing parameters at the sender’s

side (i. e. how much bandwith is open for upload). A similar argument can be made

for auction sites of all kind. Creating such mechanisms thatare able to cope with both

moral hazardandadverse selectionremains an important part of future work.

1depending on the type of network one may need a distributed mechanism
2such as BitThief in the BitTorrent network or Kazaa Lite in the Kazaa network
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Appendix A

Probability Calculations by

Matrix Multiplication

τ =







τ(s1, s1) . . . τ(s1, sM )
...

. . .
...

τ(sM , s1) . . . τ(sM , sM )







F =







f(s1| θ1) . . . f(s1| θ|Θ|)
...

. . .
...

f(sM | θ1) . . . f(sM | θ|Θ|)







G =







g(st1
1 | st2

1 ) . . . g(st1
1 | st2

M )
...

. . .
...

g(st1
M | st2

1 ) . . . g(st1
M | st2

M )







= F × A
θt1×st2
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s
t =







Pr(st
1)

...

Pr(st
M )







= F × θ
t

A
st2×θt1

=







Pr(st2
1 | θt1

1 ) . . . P r(st2
1 | θt1

|Θ|)
...

. . .
...

Pr(st2
M | θt1

1 ) . . . P r(st2
M | θt1

|Θ|)







= F × A
θt2×θt1

For t2 ≥ t1:

A
θt2×θt1

=







Pr(θt2
1 | θt1

1 ) . . . P r(θt2
1 | θt1

|Θ|)
...

. . .
...

Pr(θt2
|Θ|| θ

t1
1 ) . . . P r(θt2

|Θ|| θ
t1
|Θ|)







= P
t2−t1
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Appendix B

Random setting

Since every agent but the first is rated against her precedingagent and the types are

updated immediately, I sett1 = 0 andt2 ≥ t1 (which is the case for all but the first

agent). Furthermore, I consider settings in which every type corresponds to a signal,

i. e. M = |Θ|. Default isM = 5.

The observation matrixF is set according to the routine also used by Jurca and

Faltings [10]:

f(sm|θl) =







1 − ǫ m = l

ǫ/(M − 1) m 6= l
(B.1)

Similarily, P is generated:

Pr(θi → θj) =







1 − ǫ j = i

ǫ/(|Θ| − 1) j 6= i
(B.2)

For bothF andP , I takeǫ = 10%.

The type vector att = 0 is uniformely distributed, all∆(sj |sh) (h 6= j) are set to

0.15 andC is set to0.1. I averaged over 1000 randomly generated settings.
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[13] Ulrich Krengel. Einführung in die Wahrscheinlichkeitstheorie und Statistik, vol-

ume 8. Vieweg, 2005.

[14] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic

Theory. Oxford University Press, June 1995.

[15] Nolan Miller, Paul Resnick, and Richard Zeckhauser. Eliciting Informative Feed-

back: The Peer-Prediction Method.Management Science, 51(9):1359–1373,

2005.

[16] Michael Mitzenmacher and Eli Upfal.Probability and Computing. Cambridge

University Press, 2005.

[17] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors.Al-

gorithmic Game Theory. Cambridge University Press, 2007.

[18] Theo Offerman, Joep Sonnemans, Gijs van de Kuilen, and Peter P. Wakker. A

truth-serum for non-bayesians: Correcting proper scoringrules for risk attitudes.

Technical report, Econometric Institute, Erasmus University Rotterdam, 2007.

[19] Martin J. Osborne and Ariel Rubinstein.A Course in Game Theory. MIT Press,

1994.

[20] David Parkes.Iterative Combinatorial Auctions: Achieving Economic andCom-

putational Efficiency. PhD thesis, Department of Computer and Information Sci-

ence, University of Pennsylvania, 2001.

[21] Paul Resnick and Richard Zeckhauser. Trust among strangers in internet transac-

tions: Empirical analysis of ebay’s reputation system. InThe Economics of the

Internet and E-commerce, volume 11, pages 127–157. JAI, 2002.

[22] Paul Resnick, Richard Zeckhauser, John Swanson, and Kate Lockwood. The

value of reputation on ebay: A controlled experiment.Experimental Economics,

9(2):79–101, June 2006.

[23] Mark S. Roulston and Leonard A. Smith. Evaluating probabilistic forecasts using

information theory.Monthly Weather Review, 130(6):1653–1660, 2002.

49



[24] Tuomas Sandholm. Automated mechanism design: A new application area for

search algorithms. InProceedings of the International Conference on Principles

and Practice of Constraint Programming (CP 03), 2003.

[25] Gilbert Strang.Linear Algebra. Springer Verlag, 2003.
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