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Chapter 1

Introduction

Whereas fifteen years ago the teetectronic marketwas primarily associated with
online dependencies of large retailers, this has changedatically with the rise of
Amazon and eBay. These companies probably understoodditbstiances and chal-
lenges entailed in online trading environments. As in otireas, the Internet helped
market participants to drastically lower information o3tVhereas other retailers sim-
ply moved the content of their offline catalogues to an onéneironment, Amazon
allowed customers to write feedback about the products sk#ty Online auctions at
eBay, on the other side, build an online market for produetditionally traded at a
flea market and thereby enabled trade by distant marketjpetits for these low- to
mid-value products.

While a larger market is beneficial regarding both prices suqgply, the distance
and anonymity between traders give rise to challenges, ds ®Reputation systems
address two of these challengesoral hazardandadverse selectian

Imagine an online auction setting where the buyer of a goedked to pay for it
in advance and only when the money arrived, the seller isesgabto send the good.
Without any trust-enabling mechanism, it is not likely thiade takes place. Why
should the seller send the good if he already received hisey®mnd why should
the buyer send the money knowing that the seller has no iveeatting according
to the specified procedure? The seller is unable to credibtynait to sending the
good. This constellation is termeadoral hazard The role of a moral hazard reputation
mechanism is sanctioning bad behavior. eBay’s reputagstes is an example for
such a mechanism and albeit problematic from a game-the@etspective, it only
made possible the success of the matket.

Another related peril imdverse selectianin 1970, Akerlof [1] introduced his fa-

1According to Resnick and Zeckhauser [21] over 99% of all feett given on eBay is positive.
Widespread reports of consumer fraud in online auctionsihiguggest that this fact does not reflect traders’
actual experiences. Dellarocas and Wood [6] use stafistieasures to estimate that only about 80% of ebay
traders are satisfied with their respective trading partner



mousmarket of lemorfs As an example, he sketched a market for used cars of differen
quality where the information about the cars’ quality isragyetric. That is, the seller
knows each car’s quality and its corresponding value whitsiptial customers are
only able to estimate the average quality and value of al§ tagether. A customer
that is interested in a specific car (of hehoice) will not accept a price higher than
the price corresponding to the average quality. Anticigathis, the seller withdraws
all cars that have above-average quality as he would makssasklling them at the
average price. The potential buyer, again, anticipateseher’s action and adjusts the
average price she is willing to pay for a car out of this rediset of cars. Asymmetric
information could thereby lead to a downward spiral of batlalgy and prices up to
the point where there is only one car left, the one with thestvguality?

The role of reputation mechanisms is to prevent these méakates. As men-
tioned earlier, there do exist reputation systems for botiamhazard and adverse
selection scenarios. While the specific design of thesesystliffers, both types rely
on feedback by agents that report their private experieritteaither another agent (in
the case of a moral hazard setting) or a protigictthe case of an adverse selection
scenario). The majority of reputation systems that areadlgtemployed by internet
companies simply neglect the incentive issues entailedvinggfeedback. | present a
mechanism that is able to cope with rational agents playiegystem if that benefits
them and although the focus of this work is on adverse selestttings, the principal
requirements on the feedback payments are also applicadieironments with moral
hazard.

The incentive issues when asking agents for feedback armgatown to two chal-
lenges in particular. The first is underprovision. Agentswsually required to register
an account and are subsequently asked to fill out forms désgriheir experiences.
This process is time consuming. In contrast to other settsugh as those regulated
by the legal system, we are unable to force agents into jaatiog. Instead, we have
to design the mechanism in such a way that it is in the ageet’ihterest to partici-
pate. In our setting, a rational agent will only invest thieefof giving feedback when
remunerated appropriately.

Another—and trickier—issue is honesty. How should we itigére agents to not
only reportsomethingout to honestly report the quality they actually experiénte
the context of giving feedback different scenarios witheemal interests (i. e. biases
towards non-truthful reporting) are possible. Agents rhfglar retaliation or simply

that—togehter with other related research to asymmetigerimation—earned him, Michael Spence and
Joseph Stiglitz the Nobel Memorial Prize in Economic Saésnia 2001

SFollowing Miller, Resnick and Zeckhauser [15], | refer t@tbenter as male and the rating agents as
female.

4Please note that—in essence—this effect would also ocaithiér side’s anticipation abilities are lim-
ited.

5see [5] for a comprehensive discussion of reputation systermgeneral

6] will use the termsproductandserviceinterchangeably.



feel uncomfortable giving bad ratings, resulting in tooipes feedback. Another peril
is sellers paying reporting agents for favorable feeddadkagine two companies
competing for the same group of customers. Both companigshaee incentives to
badmouth the competitor or praise their own products argldtucial to incorporate
these issues into the mechanism’s design by making it taydos the seller to bribe.

The rest of the study thesis is organized as follows. In @rapt introduce the
basic setting and the needed probability calculationspna gives an intuition as to
why the automated mechanism works and chapter 4 introdhedsasic optimization
problem. Chapter 5 introduces the Markov extension whileptér 6 discusses the
experimental results. In chapter 7 | show how to efficientignpute the updates of the
type beliefs and chapter 8 finally concludes with a discussiduture research.

“From a deceiptive seller’s perspective, this may well bethvathought: In a controlled field experiment,
Resnick et al. [22] sold the same product (vintage postgandgbay with two different reputation profiles
operated by the same seller. They found that the buyershgiless-to-pay was 8.1% higher for the high
reputation profile than for the low reputation profile.



Chapter 2

The Base Case

2.1 The Setting

The basic setting is that of Miller, Resnick and Zeckhau4éi [henceforth MRZ)
including adaptions by Jurca and Faltings [10, 12, 11]. Augrof agents in an online
market experiences the same product. The quality of theustdtienceforth itsypée
stays the samteand is drawn out of a finite set of possible tyges= {6, ..., e} All
agents share a common befieégarding the prior probability’r(#) that the product
is of typef with

> Pr(o) =1.

9co
while Pr(¢) > 0forall§ € ©.

The quality observations by the agents are noisy, so that pifirchasing the prod-
uct, a buying agent does not know with certainty the produattual type. Instead, she
receives a signal drawn out of a set of signfils: {s1, ..., sa}-

Let O' denote the signal received by ageand let

f(8m|0) = Pr(O" = 5,,|6)

be the probability that agemtreceives the signad,, € S given that the product is of
typed € ©. We assume that different types generate different canditidistribution
of signals and that alf (s,,| #) are common knowledde As these signal emissions
again constitute a probability distribution, all signabpabilities sum up to 1:

Lthis assumption will be relaxed in section 5

2] will use the wordsbelief andestimatenterchangeably

3These rather strong assumptions can potentially be retax@tworporate noisep to a certain level.
Jurca and Falting have presented a solution to the relat#algon of incorporating deviations in prior type
beliefs[12].
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We will allow the mechanism to pay agents for their feedbaklsimple solution to
the problem of underprovision is to pay the agents more thamdting process costs
them. LetC? be the (positive) costs reflecting agésttime spent for this process. We
ease the mechanism’s requirement regarding these repeusts by assuming there
exists aC' with C' = max; C' that is not too far away from the individual costs of each
agent?

Let A’(s;, s,) be the external benefit agentould gain by falsely announcing sig-
nal s;, instead of signat; (the one actually received). Similar to the above-mentione
reporting costs, we relax the assumption of individualdyiimcentives and assume we
know the upper bound\(s;, s;,) = max; A’(s;, s5), denoting the maximal external
benefit an agent may obtain by falsely announcing siginaistead ofs;. Furthermore,
A(sj,sj) = 0andA(sj, sp) > 0 forall s; # sp,.

2.2 Comparing Signal Reports

In the rating process a central authority (the reputatioalmaaism) asks each agent for
feedback regarding the quality information she perceividds information is private
to the agent and she can choose whether to report the signallggeceived, to lie
(i. e. to report some other signakt O) or to not report at all. Let’ = (ai, ..., a%,)
be the reporting strategy of agensuch that she reports sigm@l € S if she received
sj. The honest strategy is= (si,. .., s%,), i. €. always reporting the signal received.

The payment assigned to the reporting agent is determinedrbparing the signal
announced by her with that of another agefi}, called the reference reporter. While
different designs on how to choose the reference reponteseaonsidered, | will score
the agents by simply evaluating two neighboring reportsi (ime sense).

The central idea of comparing two signal reports is that kngwne of the received
signals should tell you something about the other. Thisiegaly the case since both
signals are emitted by the same underlying type and we desdathét signal emis-
sions conditional on types are different for different tgp&his concept was coined
stochastic relevance

4neglecting the issue of private preferences.

Swith regards to collusion properties of the mechanism, aaanchoice can be beneficial [11]. The
drawback of a random choice is that the mechanism has to erajel before publicly updating the type
beliefs as it needs more private reports to randomly chaase. fin addition, random choices may harm the
mechanism’s credibility if the random variable is not palyliverifiable. As an alternative one may consider
rating an agent against an entire group of reporting agdotga and Faltings [10] show that this approach
can lead to a more efficient budget.



Definition 1. Random variable’ is stochastically relevarior random variableD” ()
if and only if the distribution 0" conditional onO* is different for different real-
izations ofO’.

Thatis,O" is stochastically relevarfor O"(") if and only if for any distinct realizations
of O, call thems; andsy,, there exists at least one realization®f®, call it s, such
that Pr(si|s;) # Pr(sk|sn). | elucidate on the actual requirements Bn(¢) and
f(s]0) in section 5.5. For the moment, | will assume stochastic/eglee holds.

Let
g(skls;) = PT(O"(i) = s O = s5) (2.2)

represent the posterior belief that) received signak; given that agent received
signals;.
2.1 can be extended to:

gskls;) =D f(sk]0) - Pr(6] 0" = s). (2.2)

0€O

Applying Bayes’ Theorem to the second part of the sum in 2&receive

P10 = 5 = 2P0 2

and for the denominator of 2.3:

Pr(0" =s;) =Y _ f(s;|0) - Pr(0). (2.4)

0€O

2.3 Example

Consider the simple example of only two possible types, alggoeG and a bad type
B. Furthermore, there are only two possible signals, namalglasignalh and a low
signall. The prior type probabilities arBr(G) = 0.7 and Pr(B) = 0.3, the signal
probabilites conditional on types aféh|G) = 0.75 and f (h|B) = 0.35. With these
given, we can calculate the prior probability of a rater idog a certain signal. With
a slight abuse of notation, I refer #r(O° = s,,,) asPr(s,).



Pr(h) = f(h|G) - Pr(G) + f(h|B) - Pr(B)
= 0.75-0.74+0.35-0.3
= 0.63

Pr(l) = 1-—Pr(h)
= 037

Bayes’ Theorem gives us the probabilities for types coadél on signals:

f(h|G) - Pr(G)
Pr(h)
0.75-0.7

0.63
~ (.83

Pr(Glh) =

Pr(Blh) = 1-—Pr(G|h)
~ 0.17

fUG) - Pr(G)
Pr(l)
0.25-0.7

0.37
~ 0.47

Pr(G|l) =

Pr(Bll) = 1-Pr(G))
0.53

R

Eventually, we can calculate the probability of a ratg) receiving a certain signal



conditional on the signal ratéreceived:

Pr(0"" = 0" =1)

Pr(O"" = 110" =1)

Pr(O™™ = h|O" = h)

Pr(O™™ = 10" = h)

12

12

g(nll)

f(h|G) - Pr(Gll) + f(hIB) - Pr(BI)
0.75- 0.47 + 0.35 - 0.53

0.54

g([l)
1—g(hll)
0.46

g(h|h)

f(h|G) - Pr(G|h) + f(h|B) - Pr(B|h)
0.75-0.83+0.35 - 0.17

0.68

g(l|h)
1 —g(h|h)
0.32

Please note, that ratef:) receiving ahigh signal is the most probable outcome
whether ratei’s signal washigh or low. That is, simply paying the agents for agree-
ment does not necessarily induce truthtelling.



Chapter 3

Peer-Prediction-Scoring

While | will later use Linear Programming (LP) in order to floulate the requirements
mentioned in section 2.1, | introduce the mechanism’s gdroemcept by presenting
the orignal model of MRZ [15] who use explicitly-stated sogrrules to elicit the
agents’ signals. This provides us with an intuitive underding of the general concept
behind the LP formulation.

3.1 Scoring Rules

Scoring rules [3, 26] are functions that can be used to ideatrational agents to
truthfully announce their private beliefs about a probibdistribution'. For (2, a set
of mutually exclusive events, anll, a class of probability distributions over them,
they take the formR : P x {2 — R. A scoring rule is said to bproperif the agent is
maximizing her expected score by truthfully announging P andstrictly properif
the truthful announcement is the only announcement maxigpizer expected score.
If not explicitly stated otherwise, | refer drictly properscoring rules.

The timely order is as follows: First, the agent is asked &arelief announcement
p € P. Second, an event € {2 materializes and, third, the agent gets pRig, w),
i. e. the score associated with the probability announcéarahthe event that actually
took place. | reward agents with the score generated byd@lgtproper scoring rule
and assume that agents are aiming to maximize expectedfay@xpected utility
with a linear utility function§.

Three commonly cited strictly proper scoring rules are tgatithmic, the spheri-

10other usages of scoring rules exist. For instance, they @pbed to rank probabilistic predictions,
such as weather forecasts with one another. For an integeistiormation-theoretic interpretation of the
log-scoring rule see [23].

2See [18] for an adaption of proper scoring rules that incarfodeviations from expected value maxi-
mization.



cal and the quadratic scoring rule. For its notational siaitgl®, | use the logarithmic
rule to exemplify their usage:

R(p,w) = log,(pw) | b>1,p,>0Vwe Q.

Say, you want to incentivize a selfish agent to truthfullylde her probability
estimate that presidential candidate A will win the genelattion of the United States
in 2008. As there are only two possible events (i andnot win), the distribution
is well-defined by announcing the probability estimate ofyamme of them. Letp
be the agent’s probability estimate (or belief) that caatidA wins and leg be her
announcement.

According to the scoring rule, the agent receils (¢) if the candidate wins and
log, (1 — g) if he does not win. Her expected score is thus:

E;=p - log,(q) + (1—p) - log,(1 —q).

Setting the derivative t6 givesq = p as the only solutioff. The second derivative
is strictly negative at all positions df,, so the function is solely maximized by truth-
fully announcingy = p. In order to make it individually ration&for agents to partic-
ipate, a constant may be added to the score without lositigftiness? Furthermore,
the rule can be scaled with a scalar which allows creatingnéfoessary incentives for
the agent to invest costly effort into acquiring her actiedidd.

3.2 The Peer-Prediction Method

As seenproper scoring rulegan be tailored to truthfully elicit private estimates abou
publicly observable events. In our setting, though, thereoi such publicly observable
event. Instead, the mechanism conditions the paymentsetat agn the announce-
ments made by her reporting agettt). The key idea is to construct payments that
make honest reporting by agenthe single best response to an honest report(by
and vice versa.

From section 2.2 we know thad’ is stochastically relevant fop" (V. That is,
different realizations 0O’ generate different beliefs aboQf (). As in equation 2.1,

3The score of the logarithmic rule depends only on the prdihalsissigned to the event that actually
materialized (i. e. it is local) and it is the only proper sogrrule with this property.

4The derivative with respect tgis ‘fl—? =p- #rl(z;) + (1-p) - Wldn(b) - (-1)

5See [20, p. 34f.] for a treatment of the different IR consitsai

6Note that this holds true fanterim IR and the logarithmic scoring rule although the logarithimecyes
to —oo around 0. The expected score is computed by multiplyinge¢beesof the events with their (believed)
probabilities, so thalog, (¢) is multiplied bye. Adding the absolute value d@,’s minimum to the log-rule
results in an expected payment that is positive forpale P. Equally, one may add a constant to push
the expected score above the participation costs. In the afahe logarithmic ruleF,’s minimum is the
uniform distribution of allp as this is the least-informative (as captured by the notf@ntopy).

10



let g(sk| s;) denote the posterior belief thai) receiveds;, given that agentreceived
s;. With a slight abuse of notation, Igt(a"(”)| a’) denote the result of the strictly
proper scoring rule calculated by

R(a" | a') = R(p,w) = R(g(su] 5;), ;). (3.1

As mentioned in section 3.1, scoring rules can be extendedctrporate both
participation and effort constraints. The same methodallfor the incorporation of
external benefits. | will explicitly state them in the LP faskation in the next chapter.
For the moment, | will assume thai(-|-) is a strictly proper scoring rule scaled in a
way that it complies with these constraints. k€t’,a”(V) be the payment agent
receives if she announcefland the reference reporter announced.

Proposition 2. If we assign the payments according to

r(at,a"®) = R a’),

honest reporting by both agenhandr (i) is a strict Nash equilibrium of the simultane-
ous reporting game.

Proof. Honest reporting is a Nash equilibrium if and only if honesgiarting by agent
1 is the single best response to an honest reporthyand vice versa. As our setting is
symmetric, it is sufficient to show that given an honest reppr-(i), agent is strictly
maximizing her expected score by reporting honestly hefsebiven agentr(i) is
reporting honestly, i. ea”(V) = s, the best response by agéris

arg max Z g(sklsj) - R(s|a’).

Probability Score

SinceR(-|-) is calculated by a strictly proper scoring rule, the ternoigly maximized
by a’ = s;. Thus, given an honest report bgi) agenti's best response is to announce
her signal truthfully, as well. O

The expected payment (a priori) is

M M
ZPr(sj) (Z g(skls;) - T(Sj,Sk)) (3.2
j=1 k=1

Unfortunately, the honest equilibrium is not unique. MR3] &rgue that the hon-
est equilibrium will be chosen albeit a possibly paretotopt alternative as honest
reporting is a focal point that makes it attractive for ageot coordinate ofi. Jurca

7One may say this approach is decision-theoretic rather ghame-theoretic as the mechanism is built
around a single agent and extended towards a multi-ageimgsenly in the last step.
8For an illustration of focal or Schelling points, see for mxde [14, p. 248f.].
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and Faltings [9] examine the application of reports thattare with high probability
(so-calledtrusted reports They find that rating other raters against these trusted re
ports makes honest reporting the only equilibrium strateggnders unattractive lying
equilibria.

3.3 Example

Applying the logarithmic scoring rule with bageto our example from section 2.3,
results in the following payments:

7(h, h) = In(g(h|h)) ~ In(0.68) ~ —0.39
7(h,1) = In(g(I|h)) ~ In(0.32) ~ —1.14
7(1,h) = In(g(hll)) ~ In(0.54) ~ —0.62
7(1,1) = In(g(I|l)) ~ In(0.46) ~ —0.78

We want all payments to be positive, so we ddd! to 7 (-, -) and the resulting payment
matrix is:
(i)
h l
h | 0.75,0.75 0,0.52
l 0.52,0 0.36,0.36

Note that in this example always reportihdpy both agents and always reporting
by both agents are strict Nash equilibria. Furthermorefdhmer is pareto-optimal to
the honest equilibrium whose expected payment (equatns3.

u(at,a" )

12

0.63 (0.68 - 0.75 + 0.32- 0) +
0.37 (0.54 - 0.52 + 0.46 - 0.36)
~ 0.49

2

Itis 0.75 ~ u(h, h) > u(a’,a" V) ~ 0.49. For binary settings (i. e. only two possible
signals), there are always lying equilibria with one of theemng pareto-optimal to the
honest equilibrium [9].

12



Chapter 4

An Automated Mechanism

An alternative to the use of explicit proper scoring rulethesformulation of the above-
mentioned equilibrium requirements as a Linear Progranis fHthnique was coined
Automated Mechanism Desid®, 24] and is advantageous in our setting for several
reasons. First, we will be able to find the budget-optimal, the cheapest, mechanism
while preserving the requirements for truthtelling andwaéry participation. Second,
we can focus on thinking about the requirements while déllega large fraction of
algorithmic considerations to an external solver. Thatardy limits the possibility
of programming mistakes but also allows for an easier atiaptéor more complex
extensions to the model than what would have been feasiltheawhanual formulation
using explicit scoring rules. Nonetheless, it is insightfoalyzing the mechanism’s
behavior with the intuition of strictly proper scoring relécompare chapter 3).

Definition 3. Let A € R™*" be a matrix,h € R™ andc € R™. A Linear Program in
standard fornhas the following form:

min Tz

subjectto Ax >0
x>0

We are looking for the budget-optimal mechanism, i.e. theimization of ex-
pected payments. We already formulated the expected paymequation 3.2 and we
may use it as objective function in our LP. All probabilityloalations are the same as
in chapter 3. The only difference is that otf, -) is no longer defined by an explic-
itly stated scoring rule. Instead, the LP solver will sediahthe optimal assignment.
Please note that the objective function is the expected payworf the honest equi-
librium since this is what we expect the agents to coordinatéafter all, this is the

13



mechanism’s entire purpose). For instructions how to daley(sx| s;), see section
2.2.

The core of the LP consists of the constraints that make batdtie honest signal
announcement is the single best response given an honestingmagent. For every
possible signaD? = s; € S, there existM — 1 dishonest announcement}‘ #*

a;. Given that the reference report is honest, we want the égggmayment of an
honest announcement by ageémd be strictly larger than the expected payment of any
other announcement. More accurately, we want them to kalgtiarger by a margin
A(sj, sh)l, that is,

M M
> gsklsi) T(sirse) = > g(skls;) - T(sn,sk) > Alsj, sn)
k=1 k=1

Vsj, sp €5, 55 # sn
and (in a more compact notation)

M

> g(skls;) (s, sk) = 7(sn, sk)) > Alss, sn).
k=1

Vsj, sp €5, 55 # sp

In our setting, an agent decides whether to participateernrdting process after
experiencing the good (i. e. she knows her own signal) bitawit knowing the signals
received by the other agents. Therefore, weintim IR:

M

Zg(sk| sj)-7(sj,88) >C Vs; €8
k=1

In addition, all payments need to be positive as we have neilpiityy withdrawing
credit from the agents.
The mechanism’s final LP in standard form LP is:

LP 1.
M M
min W = ;Pr(sj) (kz_:lg(sk| sj) - T(Sj,Sk)> ;
M
s.t. k§19(8k| ;) (T(s5,51) — T(sn,58)) > A(s;, 58);

Vsj, sp €5, s # sh

M
> g(sklsj) - 7(sj,85) > C Vs, €5
-1

k
T(sj,s6) >0 Vsj, s € S;

1Remember thaf\ (s, s, ) are possible external benefits from lying (compare chapfigr 2

14



Jurca and Faltings present numerous extensions to thisrssa. They show how
to further lower the budget by using multiple rating repantsl a filtering technique for
reports that are false with high probability (while stillypag these reports) [10]. In
order to incorporate prior beliefs that are slightly diffat from the center’s, they built
a mechanism robust to small changes in these beliefs [12]ngightful presentation
of the expressive abilities entailed in the LP formulati®thie work on colluding agents
and sybil attacks (i. .e one agent controlling several act)y11].

15



Chapter 5

Time-dependent quality changes

So far we have only considered situations where the qudlttyeoproduct is fixed. This
situation is not given very often. Imagine a freemail pr@rithat constantly improves
its services as it is competing for market share (e.g. expagrttie allowed storage
space) or technical products such as television deviceégytaoutdated because of
technological change. Fortunately, these quality chahggpen rather slowly. An
agent rating a television device today can trust with higbbpbility that the signal
received by her reference agent arriving a week later steons the same underlying
type. These slow and constant changes can be taken care ddlimga small constant
to theA(s;, s,) bounds in the LP.

This is different for more complex settings often occuringhline environments.
Imagine a webservice that has a certain probability to baeffbr some time but that
returns to its old quality type after it got fixed. Or—in a sianivein—another webser-
vice might have different loads depending on the numberients it has to serve at the
time. With the fixed-type mechanism we are unable to modealetsituations appro-
priately as we do not have a possibility for near-time repbding correlated stronger
than those further away.

5.1 A Markov Extension to the Base Setting

In order to allow for these time-dependent quality chanbestend the base setting by
introducing a transition matrix modelling quality changesa Markov Process (MP).
Together with the noisy perception of the signals, the tamubktructure is a discrete-
time hidden Markov model (HMM) with a finite set of states.

Besides the fact that selfish agents make the observatialss, éxtend the standard
definition of an HMM to allow for botmull transitionsandmultiple observation§.e.
for eacht, there might be no agent receiving a signal or more than oestagceiving
a signal, respectively).
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The transition matrixP is given with the problem definition and stays the same for
all ¢ (i. e. the MP is time-homogeneous). Given type (i. e. statethe probability to
go to typed; in the next time step i?r(9§-+1| 6!). Please note thaP is a so-called
left stochastic matrix (i. e. theolumnssum up to 1). This is coherent with the format
of the other matrices | use and it allows for a simple way t@daine the probability
of the type vector in a certain time step. Since we will neerhte at least one agent
against aucceedinggent,P is required to be reversible. In addition, we demand it to
be non-singular.

Pr(otth et ... Pr(ett Olo))
P = : :
Pr(b‘fgll |6t ... Pr(@fg|1| Olo))

We assume the agents announce their signals at the timedbelye it. That is,
their strategies do not depend anThis is reasonable in cases where the reputation
system is located at an intermediary, such as expedia.camarzon- Here, agents
cannot lie about the time step in which they consumed theymtoals the reputation
mechanism already knows this from the booking data. A ptessibakness is that the
good’s consumption may be either postponed or brought fahf#hat is beneficial in
the rating process. Yet, | believe that when booking a hglateexpedia it is reason-
able to believe that the time of travel is independent froresfile minor advantages
in the subsequent rating process. However, these issudsecanportant in certain
applications and constructing a dynamic mechanism renfiainse work.

5.2 The Optimal Time-Dependend Payment Scheme

Without loss of generality, let(i) receive her signal at timg while agenti receives
her signal at time,. Let sfg and sz? denote the signals received byi) and agent,
respectively. Slightly abusing the notation, | altgr| -)’s defintion (see equation 2.1)
to incorporate the timing information.

The expected payment to agéis thus:

M .
Zg(sz1 | 83’2) - 7(aj, a;(z)).
k=1

After observing her signalff, agent wants to maximize her expected payment. Thus,
given that her reference ratefi) reports truthfully, her optimal choice is

M
arg m%x Z g(821| S§2) . T(UJ;" a;(z)).
% k=1

1The same holds true for ebay in moral hazard environments
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g(s;'| s7?) can be computed as:

o
s 1s7) =Y Pr(si16;) - Pr(0;| 7). (5.1)
=1

Pr(s}'|0;*) can be simplified t¢f (s;| 0;) as the probability of receiving a signal given
a certain type is independent of when it is received as loriigss1 the same time step
(for reasons of simplicity, | will sometimes omit the timingformation for these cases
in subsequent calculations).

Applying Bayes’ Theorem to equation 5.1 we receive:

Pr(s§-2| ;') - Pr(6j)

Pr(0f] 5'2) = B (5.2)
J
Let
Pr(@l)
PT‘(@Q)
Pr(0) = , (5.3)
PT(9|@‘)

be the vector of prior type probabilities (i.e= 0).
As we know both the topology and the parameters of the HMM;udating the
entire probability vecto#? is straightforward:

Pr(9})
Pr(Ot) _ Pr(63)

Pr(@fel) (54)

= P' x Pr(0)
Please note that in the context of a matrix, the supersceipbtis an exponentiatitin

Pl =Px..xP. (5.5)
———
t

2For the matrix exponentiation | use a simple divide and cenapproach having a runtime of magnitude
O(|©]3 - logt). This mark can possibly be further improved by more soptdstid numerical algorithms
but since the runtime required for the exponentiation isthetlimiting factor of application, I leave this to
future work. Compare section 6.1.2 for details regardirgrtinning time depending an
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Using 5.4, we get:
Kl

=" f(s;160) - Pr(o}). (5.6)

=1

The probability that agentreceives signaéz? given that the type Wa@f1 can be
computed as follows:

19|

r(si?10]") Zf (sj100) - Pr(6%216").

For the probability of a certain type at tinig knowing the type at timé; we need
to distinguish two cases.

® iy >11

Here, we only need a minor change of equation 5.4:
0t =0
Pr(6)6;*) = P> x [ o =1

t_
05 =0

i. e. thelth column of Pt2—11,
o 1ty <11
From Bayes we know

Pr(6;*|02) - Pr(02)

Pr(0%2|6/") =
r(0:°10,") Prd)

and we can calculate tﬁér(e}fl |6!2) analogue to thé, > ¢; case:
07 =0
Pr(@"|02) = Pt x 02 =1

9t2‘_0

In the Linear Program, we needs}’ |s ) for all s}, 3»2 € S. | store this data in
a M x M matrix and extend the calculations of this section to matridtiplications
where possible. Except for the two Bayes transformatiotis;adculations can be
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rewritten in such a way (see Appendix A). The resulting cedeaisier to read, compact
and optimized for use with numerical software, such as NMatiaPython’'s NumPy
package. In addition, the feasibility analysis (sectids) s easier and more intuitive
when interpreting the calculations as linear transforomesti

The resulting Linear Program is:

LP 2.
, M t M i) .t ty .t
min W = j; Pr(s}?) (2_: g(sk1|sj2) . T(sf,skl))
M
s.t. kzlg(s}? | 532) (7(3;2,5}?) — T(sff,s}?)) > A(szg,sﬁf);
Vs?, 322 €S, 832 #+ s’,‘f

M

kz_:lg(sms;z) . T(szz,s?) > VS? es

7(532,5}?) > 0; Vs?, s}? es
5.3 Example

Let us extend the example from section 2.3. As before, we hawdypest; = B
andé, = G emitting two signalss; = [ andsy, = h. The probabilities given by the
base setting ar®r(G) = 0.7, Pr(B) = 1 — Pr(G) = 0.3 and f(h|G) = 0.75,
f(R|B) = 0.35. The transition matrix is

p_ 0.95 0.1 .
0.05 0.9

and agent received a signal @t = 0 while agent received a signal at = 2.

We want to compute the budget-optimal payments for ageiihe first step is to
computeGG. Therefore, we need the unconditional type probabilities andt,. For
t; = 0 this simply is the prior type probability and fos = 2, we compute the vector
by equation 5.4

Pr(6) = P x Pr(9)
_ (09075 0185 ) (03
\ 0.0925 0.815 0.7

[ 0.40175
| 0.59825
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Then, we needd?? > Ast, > t;, this simply isP2—%1 = P!z which we have
already calculated in the preceding equation.
The next step is the calculation of the signalg,atonditional on a type & :

Ast2><0t1 — F x A9t2><0t1
_ (065 025) (09075 0.185
-\ 035 0.75 0.0925 0.815
[ 0613 0.324
~\ 0.387 0.676

Before we can calculatet?’ ¥ using Bayes’ Theorem, we have to compute the
unconditional signal probability &5 which is easily done multiplying” with Pr(0%2):

s'2 = F x Pr(9%?)
_ (065 025\ (040175
~\ 035 0.75 0.59825

[ 04107
| 0.5893

Now we have all data needed to compute the probabilitiesyaatt, given a signal
att, using Bayes’ Theorem (compare equation 5.2) resultifyg in

ot _ (044780197
| 0.5522 0.803

With this result we may finally compute th@& we need for the coefficients of LP 2:

G=F x A" "
(065 0.25 o 0.4478 0.197
0.35 0.75 0.5522  0.803
~( 0.4291 0.3288
~ \ 05709 0.6712
The objective function requires the products of the sigmabpbility at¢> and the
respective entry iity. The respective equations are:

3In the rest of the example, | do some minor rounding but comtithe calculation with higher accuracy.
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Pr(h'2) - g(h'|h'?) = 0.3956
Pr(h'2) - g(I"|n'2) =0.1938
Pr(1*) - g(h" ") =0.2345

Pr(i'2) - g(I"|i'2) = 0.1762

Setting allA(s;|sz) (b # j) to 0.15 andC to 0.1, we can now write down the
entire LP. For reasons of clarity, | further round the valte3 digits after the decimal
point. Furthermore, alt are required to be 0:

LP 3.

min  0.187(1,1) +0.237(l,h) +0.197(h,1) + 0.4 7(h, h);
st 0437(1,0) +0.577(1, h) — 0.437(h, 1) — 0.577(h, h) > 0.15;
—0337(1,1) — 0.677(1, h) + 0.337(h, 1) + 0.677(h, h) > 0.15;
0.437(1,1) + 0.577(1, h) > 0.1;
0.337(h, 1)+ 0.677(h, h) > 0.1:

The optimal payment scheme that is computed by the solvbuss t

r(i)
hoool
. h 186 ] 0
o 1

Please note that the payments are given only for agexrs the setting is no longer
symmetric.

5.4 Choosing the reference rater

I will rate agenti against the announcement of the preceding agent. The ocdpan

to the rule is the first agent who is rated against the secoaddgainst the following)
agent. Besides its simplicity, this procedure has two magiwantages: First, only the
very first agent has to wait for her payments while all otheardg can be scored right
away. Second, the information contained in past signal ancements can be released
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quickly. Generally, we have to keep the current (i. e. updletigoe beliefs undisclosed
as long as the information contained in the updated beliefsrdormative about the
signal announced by the reference agent. The immediatesests this information is
especially important in the Markov setting where types miagnge and information
thus outdates.

Depending on the actual setting, other choice procedurgshaadvantageous.
For example, one might consider rating against the agenistictosest with regards to
the time-steps. Similarily, one may select the neighboaggnt that is the cheapest.
Both of these procedures have the drawback that the mechaieds to withhold its
payments until the reference rater is chosen. Anothertimubbjective is finding the
cheapest rating paits Since most of the time, the center will not know how many
agents will arrive and when, this procedure would requirelime approach. | leave
this for future work.

5.5 Feasible region of the LP

The LP may be infeasible and this section is devoted to thiysinaf these infeasible
configurations. That is, settings in which we are unable tstroct a mechanism.

As is quickly seen, the objective function is bounded if tbastraints are feasible.
All factors are positive or zero and thus have a lower bourmbed which corresponds
to zero costs. The analysis of the feasible region of the ltRaee difficult.

5.5.1 LP feasible= Stochastic relevance

Suppose for a moment we already have the payment matrix éudoyr(-|-) (see Ap-
pendix A). What is the expected payment to agagiven her signal and announcement
(the latter not necessarily truthful)?

Definition 4. Lets§.2 be the signal received by agerdnd leta;, be her announcement.
Thegeneralized expected payménthe expected payment to agégiven that-(:) is
announcing her signal truthfully.

gl s?) - 7(aj, a;”)

NE

E(aﬁl, St2) =

J

E
Il

1

7(ah,al”) - g(st]st?)

Il
M=

>
Il
—

“Note that ’pairs’ are not necessarily symmetric, i. er (if) is the reference agent to agenthis does
not induce that the relation holds the other way round, at wel
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This can be captured in a two-dimensional matrix holdingzH|-):

E(aﬁ,s?) E(aﬁ,sﬁ\})
E =
E(ahy,sy?) .. Elahy,si)
= 7xG

Proposition 5. LP 2 is feasible if and only if the signal observation at timeis
stochastically informative about the signal observatidtimet;

Proof. e "=" | prove themodus tollengquivalent of the expression, i.e. given
the signal observations anet stochastically informative, the LP iotfeasible.

The signal observations are not stochastically inforneatbo that at least two
different columns inG® have the same entries. Without loss of generality, let
g(:|sn) andg(-|s;) be these two colums with equal entries. Multiplyingvith
g(:|sn) andg(-|s;) results in the column&(-, s;,) andE(-, s;), respectively. As

in both multiplications the factors are equal, the resgltolumnsE(-, s;,) and
E(-,s;) are equal, as well. The first constraint group in LP 2 (honesty-
straints), though, is requiring that the expected payméitfitsohonest announce-
ment isstrictly larger than any of the dishonest announcements. In particular:
E(an,sn) > El(a;, sn) = E(aj, s;) > E(an,sj) = E(an, sn) ¢

e "<"To show that LP 2 is feasible if all columns @ are different, | construct a
T that complies with all constraints in LP 2.

Itis simple to scale a that complies with the first group of constraints (honesty)
to comply with the second (participation) and third (noryaéve transfers), re-
spectively. Therefore, | will first elucidate on the honestyistraints.

In chapter 3 | already introduced a way to construct a feasibktrictly proper
scoring rules. Let us construetby applying such a scoring rulg(-|-) to G as
mentioned in section 3.2:

(ah, ;") = R(a;"|a})) (5.7)

Sfor definition of these matrices, | again refer to Appendix A)
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The generalized expected payment is then

M
E(ah,s7) = Y g(sii|s7) - R(a;”]aj) (5.8)
k=1
which is solely maximized by the honest announcement (sapteh3), i. e. the
expected payment of the honest announcement is atdeadi larger than any
announcement with different probability values and thgs atrictly larger than
any of the dishonest announcements fo&?ll

So far, 7 does not necessarily comply with the external benefits froimg|
A(sj,ap). From chapter 3 we know that neither multiplyimgwith a scalar
A nor adding a constant changes its incentive properties. Ripfication with
A results in ar’ whose honesty bounds (i. e. the difference between the hones
and dishonest announcements) are scaled,as well. These honesty bounds
are actually a constraint afi: For every honest announcement we haye- 1
dishonest announcements and the corresponding expectatepe are noted
down in E. So for every column irEE we look at the (expected payment) differ-
ence between the honest announcemgand every dishonest announcement
and divide it to the lower bound it is supposed to conform.te, A(s;, as). If
we pick \ to be the maximum of all these fractions, we receive aonforming
with the external benefits:

E(aj,s;) — E(an, s;)

. 5.9
H;E}IX A(Sja ah) ( )

To maker’ complying with the second group of constraints, i. e. vauypar-
ticipation, we may simply addmin(7(-,-)")| + C to all entries inr’. That way,
all 7(-,-)" are positive, as well.

O

5.5.2 Stochastic relevance

As shown in the preceding subsection, finding the feasildéreof the LP comes
down to analyzing the stochastic relevance of the obsemnstnade by agertand
her reference agenti). Finding an exact description of the stochastically infative
settings is very difficult even in the base case without thekehaProces$ Thus, | will

6Neither MRZ nor Jurca and Faltings fully analyze thesersgsti In fact, while the larger part of Radu
Jurca’s PhD-thesis is about this model, for the infeagjbdnalysis, he simply refers to the original paper by
MRZ who use scoring rules. In addition, the models of MRZ amctd and Faltings slightly differ in that
the latter allow different types to have the same signatibigion and the prior probability types to loe
This not only questions a simple reference but further carags the analysis. On the other hand, in the
final version of MRZ'’s paper, the analysis is substituted lbgfarence to a paper never written (by the same
authors). This technique was coingof by phantom reference
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restrict myself to the somewhat intuitive description aégh settings made by MRZ
[15], give a matrix formulation of it and explain a specigbéyof stochastic irrelevance
that comes with the introduction of the MP.

I will describe the set of parameters thall stochastic relevance. All sets of pa-
rameters that do not fail stochastic relevance obey it afidhuis make the LP feasible.
Letst2 ands with j # h be two signal observations that generate the sgi)eignal
poster|ord|str|but|on i eg (s |s )=g(s;|sp?) forallk € {1,..., M}.

Expanding this gives us:

(stl | st?) — g(st1 | st )=0 Vk
> fskl0) - Pr(6™[s2) = > f(skl6) - Pr(6"]s;) =0
s = (5.10)
> F(skl0) (Pr(0"]s?) — Pr(6™|sj?)) =0 Vk
fcO

Rewriting these calculations as matrix multiplicatioris€br transformations) has
two advantages: First, it is more compact and natural to wé&hlmatrix multiplica-
tions than with arrays of regular calculations and, secarelcan take advantage of
theorems proven in Linear Algebra and apply them to ourrsgtti
Let

Pr(@’ﬁs?)
Pr(64]s'2)
Pr(0t1|s§-2) = 2 ’
Pr(@fé”s;z)

and Pr(0%: |s}?) analogue. In addition, le& denote the difference between the two
type posteriors:

U1

U2

Uje|

= Pr(e" |s§-2) — Pr(6*|s)?).
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Then, the infeasible region is the solution to

Fxu=0 (5.11)

while 0 denotes the null vector (compare equation 5.10).

Therefore, there are two cases that can make LP 2 infeasible:

1. F is such that for two different type distributions, it gertesathe same (poste-
rior) signal distribution.

2. The (posterior) type belief &t is the same for two distinct signal observation at
to.

According to MRZ it is straightforward to show that thesetrietions are only satis-
fied non-generically and that the set of distributidisand @ that satisfy them have
Lebesgue measure zero. Note that if only one condition, féiks LP becomes infea-
sible. Despite this being a strong limitation from a mathgca&point of view, MRZ
argue that these cases are rare in practical implemengadioth even small perturba-
tions of the believes make the setting stochastically métive again.

Intuitively, the first restriction should not be given verftem if different types
generate different probability distributions (as we dedet). If F' is quadratic (i. e.
M = |©]), this only is the case for (non-invertible) matrices wigmk strictly smaller
than/.

The second situation is especially interesting with regéodhe Markov Process:
First, P may may have a format, such that it loses information in betwie/oneigh-
boring time steps and, secon®’ may converge to a steady state, i. e. the MP forgets
where it came from resulting in type posteriors that—aftenet—are identical in
their floating point representation. Regarding the lattexfer to section 6.2.2.

From equation 5.4 we know how to compute the unconditiornd typdate, i. e. the
change in type belief that occurs simply through the timesipasby without any ad-
ditional information through signal announceménts P is such thagfter the update
information about the type beliekeforethe update is lost)? cannot be stochastically
informative aboutD” (V) and the LP will thus be infeasible, as well.

"How to update the type beliefs taking into account signabangements, see section 7.

27



The analysis is similar to that of equation 5.11. kedie the difference of two type
vectors at; andt,, respectively:

U1

U2
Yie|
= Pr(6%) — Pr(6*™).

Then, the MP breaks the stochastic connection between tighlharing time steps if
and only if forv # 0 it holds that
P xv=0. (5.12)

SinceP is quadratic by definition, this is given if and onlyt has rank lower thaf®|.
This is why the setting demands th&tis non-singular which in the case of quadratic
matrices is an equivalent statement.
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Chapter 6

Experimental Results

If not stated otherwise, the parameters for the experinheatings are created as de-
scribed in Appendix B.

6.1 Running Time

Linear Programs can be solved in weakly polynomial runnimgt For example, the
Ellipsoid algorithm finds the optimal solution (or techrllga very good approxima-
tion of it) in O(n*L) wheren is the number of variables\{? in our setting) and. is
the number of input bits (i. e. the number of bits needed t@dacthe LP).

While having an exponential worst-case running time, tmex method usually
performs better in practice. Thus, in order to tell whether feedback mechanism is
applicable in real-world settings, | empirically evalu@t®n a customary Notebook
with Intel Core2Duo (1.6GHz) and 2GB of RAM running Window®XThe solving
process is essentially twofold: First, a small Python 2d&gpaim computes all condi-
tional probabilitiesy(s}! | 53.2) that are needed to build LP 2 while in the second step,
the LP is composed and passed to an external solvesofie 5.5.10 via its Python
API).

6.1.1 Running time dependent on\/

Figure 6.1 shows the running time for different values\éf | used gnuplot 4.2.3 to
make a least-square-fit against the runtime data. The fitteced(x) corresponds to
0.02353692%—0.1862072241.190752+0.274942 and fitting curves with a polynomial
of order lower thar results in bad approximations.
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Figure 6.1: Running time for different values bf

6.1.2 Running time depending om\(¢)

We are also interested in the runtime that comes with theditttion of the MP. Let
the unaryA(t) denotet, — t;. Figure 6.2 shows the running time depending on the
time steps that lie in between the two agents whil¢) = 0 corresponds ta00*.

Interestingly, the runtime not only grows witk(¢) but becomes larger for larde
as well. This is due to the matrix exponentiation algorithhose runtime i) (|©| -
log t) while in our settings|©| equalsM andt corresponds td\(¢). For largerA(t),
the factor|©|> = M gets more influence on the running time if only multiplied by
logt.

Nonetheless, the running time of the Markov Process is alylito be the limiting
factor for application. Values foAA(¢) will rarely be much higher thad0 so that the
slowdown will be within 10% even for settings with a largersagjset. Secondly, for
someP, the setting may be infeasible by then (compare figure 6.4)faally, the
expected costs we aim to minimize are growing at a higher pétbeevery time step
in between the two ratings (compare figure 6.3).

6.2 Payment behavior

6.2.1 Expected Costs

What are the expected costs depending\gn)? Figure 6.3 shows the expected costs
for different values of stochastic movement inherenPifas reflected by (see Ap-

1please note that fab/ = 5 | took 10000 settings instead of 1000.

2For the expected payment analysis | focus on the behaviardig A (¢) and P. Simply applying the
random setting as described in Appendix B to compare thevimhfar different values of\/ and|©| may
lead to wrong conclusions. This is due to the fact that theentevel of F* and P does not naturally extend
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pendix B for a description of the random setting).

As expected, the more time lies in between the two ratinghitjieer are the mech-
anism’s cost. A larger corresponds to more type perturbations through the MP (also
see section 6.2.2). For largax¢) the probabilities for a certain type &t conditional
on the types at; become more alike as the Markov Process converges to itdystea
state and so do the columns @f. As these are the coefficients of the LP and they
are getting closer, the solver needs largeo separate the honest from the dishon-
est announcements. Note that our external benefits frony e constant and thus
independent oA (t).

6.2.2 Stochastic Relevance

As mentionend in section 5.5, I is non-trivial (i.e. it adds uncertainty to the set-
ting), largeA(¢) may break the stochastic connection between the signahatigms
because of floating point inaccuracies. That s, the LP besdnfeasible because two
minimally different vectors inGG are represented by the same floating point numbers
resulting in a stochastically irreleva6t.

The point at which a setting becomes infeasible obviousfyedds on the mag-
nitude of stochastic movement. Figure 6.4 shows the fraatioinfeasible settings
depending on\(¢) for different values ot and 5000 settings. As one would expect,
higher perturbations on the type vectors result in quickerergence o6.

to different numbers of types or signals.
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6.2.3 Convergence

Since we usually rate every agent against her preceding é&gempare section 5.4),
ourt; is mostly set td) (also compare Appendix B for the description of the random
settings), so thaf\(¢) corresponds to the interval frotto ¢, and is thus fixed. For
other pairing methods, though, it is insightful to study tehavior for fixedA(¢) at
different positions for, . Figure 6.5 shows the costs in both expectation and range for
differentt;.

One can see that the payments rapidly converge. The lewekthme/erge to cor-
responds to the payments that are computed for the steadytybe vector for fixed
A(t). Most transition matrice® that are applicable in our setting have a unique steady
state (they are irreducitfl@nd aperiodi¢[13]). The intuition is that seen from= 0
(i.e. the mechanism’s position) the type beliefs;atindt, with fixed A(t) become
more alike for large, t5. In fact, as the MP perturbes them, they become closer to
the steady state vector so that the mechanism computes pty/that are converging
to these steady state payments. For further explanatiossealy states in Markov
processes, | referto [13, p. 194-216].

3For some reasonATeX had problems including an eps graphic with gnuplot’s draos, so that | used
pointlines instead.

4it is possible to get to any state from any state

5A stateg; has periodk if any return to state; must occur in multiples of time steps. Ifc = 1, then
the state is said to be aperiodic. If all states are aperitiaicMP is said to be aperiodic.
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Chapter 7

Updating the Type Beliefs

7.1 Motivation

Up to this point, we have constructed payments that indueatadgo give honest feed-
back about the signals they receive. What is supposed to flesped, though, is the
probability that the product has a certain type.

The literature on hidden Markov modéldescribes three basic algorithms answer-
ing the following questions:

1. What is the probability of a certain signal sequence gitilermodel?
2. Given a signal sequence, what is the most likely hiddenesecg of states?

3. Given only the topology of the model, what are the pararsdteat maximize
the probability for the observed signal sequence?

Unfortunately, none of these match our situation. Note tivaimost likely hidden
sequence of states is not what we are looking for. Potenigtbmers are only inter-
ested in the quality the product has right now (or in the feiftout not in the quality the
product most likely once had. Given the topology and the rhadlde future of the MP
only depends on the most recent state. Thus, what we aresteelrin is the probability
distribution of the most recent state given the signal segei@nnounced by the agents.

Note that simply taking the last state of the most likely leiddequence of states
will not help us for two reasons: First, it only gives us a $&gfate and not a probability
distribution. Second, it may well be that the most likelytlsate is not at the end of
the most likelysequencef states.

Let N = |©| be the number of states afitithe most recent time step. The naive
approach goes through &I” +! possible state sequences (the index begins@yi#md

1see for example [7, p.409-429]
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is thus infeasible for larg&. However, we can use Dynamic Programming to come up
with an algorithm linear iry".

7.2 One Announcement per Time Step

Let us first consider a setting with exactly one observatmrtime step. In a next step,
we will extend this to incorporate bottull transitionsandmultiple observations

The outer part of the algorithm consists of computing thed@ttional probability
that the most recent stage is 0 given the vector of signal announcemektsExtend-
ing this conditional probability gives us

Prigr =6NY)

Pr(gr =0Y) = Pr(Y)

(7.1)

We begin with iteratively calculatind®r(¢r = 6 N'Y). Let s® denote the signal
announcement at time stepvhile Yt = (s°, 5!, ... st) is the timely-ordered vector
of all these signals up to time stepCalculating the base case- 0 is straightforward:

Pr(go =0ns% = Pr(d) - f(s°|0). (7.2)

Computing the joint probability at timeé+ 1 can be reduced to computing joint
probabilities at time:

N
Pr(ga =0NY* ) = f(s"710) - > [Pr(g: = 0; N Y") - Pr(; — 0)] (7.3)
=1

What is left, is the denominator of equation 7.1. Followihg taw oftotal probability,
summing up all joined probabilities at= T for all 6 € © suffices and we receive

N
Pr(Y)=> Prigr=6;,nY). (7.4)
=1

Extending equation 7.1 results in:

Pr(gr =0NY)
~ .
> Prigr=6;nY)
i=1

Pr(qgr =0Y) = (7.5)

The runtime of the algorithm i©(N?2T'). Please see section 7.3.1 for a detailed dis-
cussion of the runtime.
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7.3 Multiple Announcements per Time Step

Since the agents do not necessarily arrive one every tirpg\wsteneed to incorporate
bothnull transitionsandmultiple observationd will first interpret the announcements
made in a single time step as a vector. Thereafter, | will show compute the condi-

tional probability that interprets the announcements imgle time step as a set (i. e.
without ordering inside a single time step). We will see thatresults are equal.

7.3.1 Ordered Tuple Case

Let o* denote theordered tupleof signal announcements in time stegnd Ot =
(0%, 0%, ..., ot the timely-ordered tuple of these announcement tuples timeostep
t. Then,h(o?|0) is the probability ofo? conditional on staté.

\ 1, if [ot] =0
h(o™|6) = [T f(sl6), else. (7.6)

s€ot

Analogue to equation 7.2, the base case is:

Pr(qo = 60N 0°) = Pr(9) - h(o°|0) (7.7)

Adapting the iteration step (equation 7.3) yields:
N
Pr(gis1 =000 =h(o"t0) - [Pr(g =0, 1 O") - Pr(6; — 0)] . (7.8)
=1

Similar to equation 7.5, the outer equation for the ordeesids

Pr(gr =6n0)
Pr(0O)
Pr(gr =6N0) (7.9)

N
> Pr(gr =0,N0)
=1

Pr(gr = 0|0) =

Running time

The computation ofi(ot|6) for a singled in a single time step is iW(|o?|). It needs
to be computed for alt in all time steps, resulting in

N-10°|+N-[o'+ -+ N-|oT|=N-(|o° + |o'|+ -+ |oT]) = N - |OT|

(T+1)x
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for this part. Note that thé(o?|#) can be computed independently of the Dynamic
Programming part.

The runtime of the latter is the same as that of section 7.2. bEse case has one
multiplication for everyN while every iteration ha®/ multiplications for every of the
N types. For this part, this results in a runtime@fN? T'). Putting together the two
parts results in a runtime of

O(N2T + N |OT)). (7.10)

7.3.2 Unordered Tuple Case

In this part, | am going to interpret the announcements made single time step
as anunorderedtuple as this is closer to our setting’s intuition that anmoements
are made concurrently. Fortunately, we can reduce the ctatipuoi of the conditional
probability in the unordered case to the respective contipatan the ordered case. In
fact, the values are identical.

Slightly abusing the notation, lat be the unordered tuple representing the signal
announcements in and letYt = (s°,s1,..., s*) now denote the timely-ordered
vector made up of the unordered tuples up to time &tep

Proposition 6. The conditional probability in the unordered multiset caBe (¢ =
0|Y"), equals the conditional probability in the ordered tupleseaPr(¢r = 6|0).

Proof. The difference to the ordered case is that the joined préibebifor ordered
tuples need to be multiplied with the number of possible ondgs for st. The number
of possible orderings in time steps computed by the multinomial coefficient:

m(st) = ( [5°] > - [5°1! (7.11)

|s1 € st],... s €8t]) |sp€st]l-...[sy € st

The base case using equation 7.7 is:

Pr(go = 0N 8% =m(s%) - Pr(go = 6N o°). (7.12)

Similarily, the iteration refers to equation 7.8:
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Pr(g1 =600 Yt+1) = m(3t+1) : h(0t+1|9) :

-

@
Il
A

[Pr(g; =0; N Y*)- Pr(6; — 6)]

t
( t+1 t+1|9 H

(7.13)

-

Il
A

[Pr(g; =60; N O") - Pr(6; — 0)]

3

t+1 )
= h(o*j0) - [ m(s?)-

-

[Pr(q = 60; N o). Pr(6; — 0)]

=1

Putting together the outer calculation (similar to equaffal), we see that the multi-
nomials can be cancelled out (also compare equation 7.8.8jd 7

Pr(gr=0NnY)
N
> Prigr=60:NY)
k=1

Pr(gr =0|Y) =

N
)y [Pr qr-1 =0; NOT~1) . Pr(0; — 9)}
1 =1

:]’ﬂ

h(oT0) -

J

h(oT|0y) - ]Z[ m(s?) - ﬁv: [Pr(gr—1 =6; NOT—1). Pr(6; — 6)]

7j=1 1=1

M=

el
Il
—

T|9

EMZ

[PT (qr—1 =0, N OT=1). Pr(6; — 9)}

h(o™|0y) - % [Pr(gr—1 = 0; NOT=1) - Pr(6; — 0)]

=1

Mz

el
Il

1
Pr(qr = 0|0)
(7.14)

O

Thus, if we need to compute the updated type probabilititis multiple observa-
tionsandnull transitionsand we have the announcements per time step in an unordered
tuple, we can spare computing multinomials and use thereasiered tuple case of
section 7.3.1.
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7.4 Example

| continue with the example from section 2.3 and its extam$éiom section 5.3. As
before, we have two typés = B andf, = G emitting two signals; = [ andss = h.
The probabilities given by the base setting &€ G) = 0.7, Pr(B) =1 — Pr(G) =
0.3 andf(h|G) = 0.75, f(h|B) = 0.35. The transition matrikis

0.95 0.1
P =
( 0.05 0.9 )

and | will refer to the transition probabilities as exemplifiby pos = Pr(G —
B) = 0.1. Furthermore, we are in = 2 and the agent announcements afe=

({3 {3 AL 1))

What is the updated type belief ih = 2 givenY ? From the previous section we
know that it is sufficient computing

Pr(g2 = 0]Y) = Pr(q2 = 0]|0)

with O = ((h), (), (I, h)), i.e. Y in a fixed (but arbitrary) order. Please note, that |
will omit some of the vector brackets for better readabhility

We begin with computing the base cases:

Pr(go=Gnh) = Pr(G)-h(h|G)
= Pr(G)- f(h|G)
= 0.7-0.75
= 0.525

Pr(qo=Bnh) = Pr(B) h(h|B)
= Pr(B)- f(h|B)
= 03035
= 0.105

2remember that we useleft stochastic matrix, see 5.1
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Pr(gy =GN () = h(0IG) - (Pr(a = GNA) - poa
+ Pr(qo=BNh) -pBG)
~1. (0.525 £0.9+0.105 - 0.05)
~ 0478

Prigy = BN (h,()) = h(OIB) - (Prigo = G R - pan
+PT‘((]0=Bﬂh)'pBB>
—1. (0.525 0.1+ 0.105 - 0.95)

~ (0.152

Pr(g2 = G N ((h),(), (1, R))) = h((l,h)|G) - (Pr(fh =GN (h () rcc
+ Prigs = BN (h,0) - pec)
~0.25-0.75 - (0.478 0.9+ 0.152 - 0.05)

~ (0.188-0.438
~ 0.082

Pr(g2 = BN ((h),(), (I, h))) = h((l,h)|B) - (Pf“(fh =GN (h () rcs
+ Prg = BN (h,()) - pez)
~0.65-0.35 - (0.478 0.1 40.152 - 0.95)

~ (0.228 - 0.192
~ (0.044

Before we are able to put the outer part together, we needtpatePr(O):

Pr((h), (), (I, h)) = Pr(gz = GN((h), (), (I,h)) + Pr(g2 = BN ((h), (), (I, 1))
~ 0.082 + 0.044
~ (0.126
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Eventually, we can compute the (conditional) probabilitatty? = G and? = B,

respectively:

Pr(gz = G|((h), (), (I, h)))

Pr(g2 = B|((h), (), (I, h)))

1R

1
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Pr(gz =GN (M), 0, 1))
B0, (1)

0.082

0.126

0.651

Pr(gz = Bn((h),(), (1))
Pr((h), (), (L, h))

0.044

0.126

0.349



Chapter 8

Conclusion & Discussion

Adverse selection repuation mechanisms are a way to creatéght incentives for
agents giving feedback. | introduced an extension to theenoidJurca and Faltings
[11, 12, 9, 10] that is able to cope with scenarios in whichghelity of the product
changes over time. To model the change, | used a Markov Proseshat the result-
ing structure includes hidden Markov models (HMM) as speases (i.e. those in
which there is exactly one observation every time step). A8vs have found wide
application in diverse areas, such as Robotics, PatterogRéwn, Bioinformatics and
Finance, it may well be that similar applications of the madbm can be found in
these areas, as well.

Depending on the actual application at hand, there may bedfoe further exten-
sions. For example, there are settings in which a singletagakes multiple obser-
vations at possibly different points in time. In order to eapith these scenarios, one
could probably adapt the technique described by Jurca altiddg=[11] for making
the mechanism robust against colluding agents. In othéngst some or all of the
probability data may be either unknown or only known withigeatain range. This
situation may especially arise in the setting describetimwork. For most applica-
tions, the assumption that the center perfectly knows #resttion matrix is too strict.
Instead, he may have an approximate estimation of it. Jurddaltings [12] provided
a formulation of LP 1 as a robust optimization problem. Tlaadily extends to the
setting described in this work but it only addresses demiativith regards to the signal
posteriors that make up the coefficients of the final LP @Qr This approach has
the disadvantage that one cannot precisely control thestnbss level of the different
probabilistic parameters given with the setting. If, foamyple, the general probabilis-
tic setting is well known (and the center’s believe is shdngthe agents) but one wants
to incorporate noisy perceptionp to a certain levelthis does not simply translate to a
robust optimization problem. Rather, one would have to pgage these noise intervals
through the entire sequence of calculations to see howéfflisated in the coefficients
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of the LP.

Instead of rewriting the LP into a robust optimization pexl one may also try to
truthfully elicit the probabilistic parameters. If—as inirosetting—the center knows
when an agent perceives her signal because he acts as anediary, the truthful
elicitation of prior beliefs should be possible. | am thimgtiof a three-step process in
which the rating agent first announces her belief about fhedystribution, receives her
signal and then makes a signal announcement to the center, the agent receives two
scores, one depending on how good her prior announcemectiesawith the reference
agent’s signal and the other for her actual signal annouanenT he tricky part is to
scale the first score in such a manner that the expected prafithn be gained by a
false prior announcement (the second score is computedhdtannounced priors) is
dominated by the expected profit of an honest prior annouanénio the best of my
knowledge this has not been done so far and | believe this iataresting field for
future work.

Similarily, the non-probabilistic parameters given witle setting may be unknown
by the center. While it will be difficult to truthfully elicithe external benefits from
lying, the costs of participatiof; may be a different thing. Depending on the certainty
level the center requires with regards to the product’s,tgody a limited number of
agents are needed to give feedback. If the center’s infoomablely depends on the
numberof agents while he is indifferent abowhois giving it (as it was assumed so
far), it is reasonable to only let the agents with low€stdo the rating. In order to
achieve this, it may be possible to applyastending reverse auctiavith sealed bids.
The auction starts at the level of expected payment thatasagieed by the honesty
constraints and the level is raised until the needed (updiaype belief accuracy is
reached and the auction ends. The online environmenttédesi the application of
sealed bid auctions.

Depending on the context, the processaofjuiring the information may require
costly effort. Right after buying a product or service, tigeat might not have a precise
idea about its quality. Instead, she must invest time toitéisbroughly and compare
it to other products. If not factored into the mechanism appately, an agent might
therefore be better off sparing this investment and simghort some random signal.
Zohar and Rosenschein [27] discuss these constraints in-aeputation setting for a
single agent.

As we have seen, the mechanism presented in this work mayninaitiple equilib-
ria, some of which correspond to higher payoffs for the festtbgiving agents. This
leads us to the topic of equilibrium selection. It is not claad depends on the ac-
tual situation which equilibrium is chosen [8, p. 18-23]. /entioned, MRZ argue
that the honest equilibrium is a focal point and will thus b®sen. Unfortunately,
this is far from being certain. On the contrary, there is oga® believe that human
agents coordinate on a pareto-optimal lying equilbriunpeeglly if it is composed
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by symmetric pure strategies as it is mostly the case in theicea induced by our
mechanism. Ironically, through the introduction of paynseme may actually receive
a worse outcome than in a system without any payments in vdunie selfish agents
(those whose external benefits are low compared to theicjpation costs) may not
engage in the process at all.

However, | believe the presented mechanism can be applisdftovareagents.
Reputation issues arise in distributed systems—such asTBeReer networks—and
the standard software is usually provided by the same ataatso develops the pro-
tocol. In this scenario, the goal of the mechanism or prdtdesigner is to construct
a network that is robust against modified programich allow free-riding on the
cost of users of the standard software. If the standard aoétean be programmed on
playing honestly, most users will begin using this honeftixsre. Therefore, the ob-
jective would be to maximize the fraction of modified softe/éinat is needed to make
dishonest play a best response. Potentially, an evolutidreanework with a protocol
implementing an honest evolutionary stable strategy (areecplization thereof) may
prove useful. In addition, for two reasons the prior elitbita outlined above is espe-
cially interesting for distributed networks made up of s@fte agents: First, the prior
beliefs may differ vastly depending on the locality of thewark node and, second,
it is much easier for a software as opposed to a human ageeato &nd announce
probability distributions.

Except for a single work by Dellarocas [4] that ignores thedteack part, all repu-
tation mechanisms are either combattattyerse selectioar moral hazardout cannot
cope with combined scenarios. Real-world applicationshencontrary are made up
mostly by the latter, i. e. the perceived quality dependsath the selling agentabil-
ity andwill. In a P2P network, for example, the speed of a file transfegni@épon both
the physical connection between the agents and the shamgeters at the sender’s
side (i.e. how much bandwith is open for upload). A similaguanent can be made
for auction sites of all kind. Creating such mechanismsahatable to cope with both
moral hazardandadverse selectioremains an important part of future work.

1depending on the type of network one may need a distributexhamésm
2such as BitThief in the BitTorrent network or Kazaa Lite i tiazaa network

44



Appendix A

Probability Calculations by
Matrix Multiplication

( 7(s1,81) ... T(s1,8Mm) )

T(snmy81) oo T(Snm,SM)
f(s1]61) ... f(s1]0)e))

F o= ST
f(SM|91) f(SM|9|@‘)

g(sPs) .. (st sy)
G = L
g(shyls®) .o g(shylsy)

= FxA"x"

45



Pr(sy)

St =
Pr(sy)
= Fx6'
2 Pr(s?|07) ... Pr(s§2|6“%|)
Ast x 01 .
Pr(sig| ) ... Pr(st|0f)
= FxA”x"
Forty > t1:
. Prgye|6y) ... Pr(62]6))
A x 0t _ : . .
Pr(6ig67) ... Pr0g|6)
— ptz—t
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Appendix B

Random setting

Since every agent but the first is rated against her precedjegt and the types are
updated immediately, | st = 0 andt, > ¢; (which is the case for all but the first
agent). Furthermore, | consider settings in which everg typrresponds to a signal,
i.e. M = |0©|. DefaultisM = 5.

The observation matri¥' is set according to the routine also used by Jurca and
Faltings [10]:

1—¢ m=1
f(sml0) = { (B.1)
e/(M—-1) m=#l
Similarily, P is generated:
1—e¢ j=1
{e/<|®| —1) j#i

For bothF and P, | takee = 10%.
The type vector at = 0 is uniformely distributed, all\(s;|s;,) (b # j) are set to
0.15andC is set to0.1. | averaged over 1000 randomly generated settings.
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