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Set functions

3

cost/loss of picking 
items together, or

utility, or
probability, …

V =

( ) =F

F : 2V ! R

We will assume:
• .
• black box “oracle” to evaluate F
F (;) = 0

ground set



variables to observe
“information”

V =
F (S) =

seed nodes
“spread”

V =
F (S) =

Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN )

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S  S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(S⇤

). For easy score interpretation, we normalize it according to
sc(S⇤

) = (r(S⇤
) � R)/(H � R), where R is the average V-ROUGE score of random summaries

(computed from 1000 summaries) and where H is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S⇤

) is smaller than zero if S⇤ scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective ffac.loc.(S) alone;
FLpen the facility location objective mixed with a �-weighted penalty, i.e. ffac.loc.(S)+�fdissim.(S);
MMR Maximal marginal relevance [3], using � to tradeoff between relevance and diversity;
GCpen Graphcut mixed with a �-weighted penalty, similar to FLpen but where graphcut is used in

place of facility location;
kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at

random. As a dissimilarity score between images i and j, we used 1� si,j . Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.
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images (sentences, …)
“representation”

V =
F (S) = maximize  

coverage, spread,
diversity

Dictionary learning, matrix approximation, object detection,…



maximize  
coherence, 
smoothness       

data points
“coherence/separation”

V =
F (S) =

pixels
“coherence/matching”

V =
F (S) =

coordinates (variables)
“coherence”

V =
F (S) =



Convex functions (Lovász, 1983)

• “occur in many models in economy, engineering and other 
sciences”, “often the only nontrivial property that can be 
stated in general”

• preserved under many operations and transformations: 
larger effective range of results

• sufficient structure for a “mathematically beautiful and 
practically useful theory”

• efficient minimization

“It is less apparent, but we claim and hope to prove to a 
certain extent, that a similar role is played in discrete 
optimization by submodular set-functions“ […] 
they share the above four properties.



Outline

1. What is Submodularity?
Examples, connections

2. Submodular minimization

3. Submodular maximization

4. Advanced Topics
submodularity in deep learning, probabilistic inference,
active learning, bandits, …

TOMORROW



Diminishing gains

B

1

placement	A	=	{1,2}

A

Big	gain

2

ss

placement	B	=	{1,2,3,4}

1 2

3
4

small	gain

A ✓ Bfor	all
and	s	not	in	B

F (A [ s)� F (A) � F (B [ s)� F (B)



Diminishing costs: economies of scale
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extra cost: 
one drink

|{z}

extra cost: 
free refill J

.| {z }

F (A [ s)� F (A) � F (B [ s)� F (B)

BA

A ✓ B



Submodular set functions

• Diminishing gains:  for all

• Union-Intersection:  for all 

A B+    e +    e

A ✓ B

F (A [ e)� F (A) � F (B [ e)� F (B)

S, T ✓ V

F (S) + F (T ) � F (S [ T ) + F (S \ T )



Example: modular function
each element              has a weight

F (S) =
X

e2S

w(e)

F (A [ e)� F (A) = w(e)

A ⇢ B

F (B [ e)� F (B) = w(e)=

submodular and supermodular!



Example: coverage

F (S) =

�����
[

v2S

area(v)

�����

F (A [ v)� F (A) F (B [ v)� F (B)�

= all possible sensor locations
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Example: Diversity in recommender systems (FLID)
[Tschiatschek, Djolonga, K, AISTATS 2016]

D(S) =
kX

d=1

h
max

i2S
Wi,d �

X

i2S

Wi,d

i



Example: sensing

• = random variables we can possibly observe
• Utility to have sensors in locations A:

F (A) = H(Y) � H(Y | XA)

Uncertainty
about	temperature	Y
before	sensing

Uncertainty
about	temperature	Y
after	sensing

= I(Y;XA)

X1



Example: entropy

F (S) = H(XS) = joint entropy of variables indexed by S

discrete random variablesX1, . . . , Xn

H(XA[e)�H(XA) = H(Xe|XA)

 H(Xe|XB)

= H(XB[e)�H(XB)

“information never hurts”

A ⇢ B

discrete entropy is submodular!

�



Submodularity and independence
discrete random variablesX1, . . . , Xn

Xi, i 2 S statistically independent
H(XS) =

X

e2S

H(Xe)ó H is modular/linear on S

Similarly: linear independence

V =

F(S) = rank( )

vectors in S linearly independent
ó F is modular/linear on S: 

F(S) = |S|



Example: graph cuts

cut for one edge: vu

F ({u, v}) + F (;)

vuvu vu vu

�

0 0

• cut of one edge is submodular!
• large graph:  sum of edges

sum of submodular functions is submodular

F (S) =
X

u2S,v/2S

wuv
F ({u}) + F ({v})

wuvwuv



Closedness	properties
F1,…,Fm submodular functions	on	V	and	l1,…,lm >	0
Then:	F(A)	=	åi li Fi(A) is	submodular

Submodularity closed	under	nonnegative	linear	
combinations!

Extremely	useful	fact:
– Fq(A)	submodularè åq P(q)	Fq(A)	submodular!
– Multicriterion optimization
– A	basic	proof	technique!	J
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Other closedness properties
• Restriction: F(S) submodular on V, W subset of V

Then is submodular 

19

S
WV

F 0(S) = F (S \W )



Other closedness properties
• Restriction: F(S) submodular on V, W subset of V

Then is submodular 

• Conditioning: F(S) submodular on V, W subset of V
Then is submodular

20

S
WV

F 0(S) = F (S [W )

F 0(S) = F (S \W )



Other closedness properties
• Restriction: F(S) submodular on V, W subset of V

Then is submodular 

• Conditioning: F(S) submodular on V, W subset of V
Then is submodular

• Reflection: F(S) submodular on V
Then is submodular

21

F 0(S) = F (S [W )

F 0(S) = F (S \W )

SV

F 0(S) = F (V \ S)



Submodularity …

discrete convexity ….

… or concavity?

22



Convex aspects

• convex extension
– duality
– efficient minimization

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

But this is only 
half of the story…

23



Concave aspects
• submodularity:

• concavity:
A +    s B +    s

F (A [ s)� F (A) � F (B [ s)� F (B)
A ✓ B, s /2 B :

a  b, s > 0 :

|A|

F(A) “intuitively”

1

s

⇣
f(a+ s)� f(a)

⌘
� 1

s

⇣
f(b+ s)� f(b)

⌘
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Submodularity and concavity
• suppose                                andg : N ! R F (A) = g(|A|)

g(|A|)

|A|

F (A) submodular if and only if   …g is concave

25



Pixels in a superpixel should have the same label

Application: higher-order potentials

26

φ(|S|)

�
max

concave function of cardinality  è submodular J



Deep Submodular Functions

concave, increasing and weights nonnegative

(Dolhansky & Bilmes 16)
x 2 {0, 1}n



• Lattices and continuous functions

subclass: diminishing returns (DR) – submodular fn’s

• Many optimization results generalize

Submodularity more generally

(Milgrom-Shannon 94; Topkis 98; Murota 03; Kapralov-Post-Vondrak 10; Soma et al 2014-16; Bach 2015; 
Ene & Nguyen 2016; Bian-Mirzasoleiman-Buhmann-Krause 16) 



Origins and history

submodular
functions

electrical	
networks
(Narayanan	

1997)

graph	
theory

(Frank	1993)

game	
theory

(Shapley	1970)

matroid
theory

(Whitney,	1935)
stochastic	
processes
(Macchi 1975,	
Borodin	2003)

information
theory

(Fujishige 1978	)

machine	
learning

G. Choquet J. Edmonds

L.S. Shapley
L. Lovász



submodular	set	functions
convexity:	 dim.	returns:	
minimization maximization
max.	coherence max.	diversity

nonconvex	optimization
lattice	/	continuous	submodularity
many	optimization	&	duality			
results	generalize

many	examples:

• linear/modular	functions													
• entropy
• mutual	information
• rank	functions

• coverage
• diffusion	in	networks	
• volume			
• graph	cut	…

probability	measures
log-supermodular (			positive	assoc.)
log-submodular			(			negative	assoc.)
sampling,	mode,	
approx.	partition	function



Submodular minimization

“maximize coherence”

Idea: relaxation

min
S✓V

F (S)

min
x2{0,1}n

F (x) min
x2[0,1]n

f(x)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

F ({a})F ({b})

F ({a, b})



Lovász extension
• expectation:

• sample threshold                 uniformly 
•

f(x) = E
✓⇠x

[F (S
✓

)]

0.5

1.0

0.2

0.2

0.5

✓ e.g. ✓ = 0.4



Lovász extension: example

330

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

A F(A)
{} 0
{a} 1
{b} .8
{a,b} .2

F({a})
F({b})

F({a,b})

F({})



Alternative characterization

Theorem (Edmonds 1971, Lovász 1983)
Lovász extension is convex F is submodular.,

f(x) = max

y2BF

y

>
x

if F is submodular, this is equivalent to:

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

f(x) = E
✓⇠x

[F (S
✓

)]



Submodular polyhedra
submodular polyhedron:

PF
1

2

�1�2

sb

sa

BF

yb

ya

A F (A)
; 0
a �1
b 2

{a, b} 0

PF =

n

y 2 Rn |
X

a2A

ya  F (A) for all A ✓ V
o

Examples:
• probability simplex
• spanning tree polytope
• permutahedron

base polytope:



Base polytopes

PF
1

2

�1�2

sb

sa

BF

3s

s2

s1

P(F)

B(F)

2D  (2 elements) 3D  (3 elements)

yb

ya

ya

yb



The magic of base polytopes

• Linear optimization over the base polytope?
exponentially many constraints (one for each subset)

• Edmonds 1971: greedy works J

1. sort cost vector
2. gives sets 
3. Set

Implications: can compute
• Lovász extension
• subgradients of Lovász extension

f(x) = max

y2BF

y

>
x

x⇡(1) � x⇡(2) � . . .

y⇡(i) = F (Si)� F (Si�1)
Si = {⇡(1), . . . ,⇡(i)}

= max

y2BF

X
i
yixi



Putting things together

1. relaxation: convex optimization 
computable subgradients

2. relaxation is exact!
pick elements with positive coordinates

è submodular minimization in polynomial time!
(Grötschel, Lovász, Schrijver 1981)

0.5

1.0

0.2

0.2

0.5

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

3s

s2

s1

P(F)

B(F)

min
S✓V

F (S) min
x2{0,1}n

F (x) min
x2[0,1]n

f(x)==

S

⇤ = {e | x⇤
e > 0}

many ways to do Step 1



Submodular minimization
convex optimization

• ellipsoid method
(Grötschel-Lovasz-Schrijver 81)

• subgradient method …
(…, Chakrabarty-Lee-Sidford-Wong 16)

• minimum-norm point / 
Fujishige-Wolfe algorithm
(different relaxation)

(Fujishige-Isotani 11)

• …

combinatorial methods

• first polynomial-time:
(Schrijver 00, Iwata-Fleischer-
Fujishige-01)
…

• (Iwata 03)

(Orlin 09)
O(n4T + n5

logM)

O(n6 + n5T )

Latest: O(n2T log nM + n3
log

c nM)

O(n3T log

2 n+ n4
log

c n) (Lee-Sidford-Wong 15)



Different relaxation

• dual problem: minimum norm point of base polytope

• optimization:
Frank-Wolfe, 
Wolfe’s algorithm

min
x

f(x) + 1
2kxk

2

min
S✓V

F (S) + ↵|S|
solves

for all ↵

threshold optimal solution      at

PF
1

2

�1�2

sb

sa

BF

yb

ya

A F (A)
; 0
a �1
b 2

{a, b} 0



Minimum norm point



Empirically

Simulations on standard benchmark
“DIMACS Genrmf-wide”, p = 430

• Submodular function minimization

– (Left) optimal value minus dual function values (st)−(V )
(in dashed, certified duality gap)

– (Right) Primal function values F (At) minus optimal value
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Simulations on standard benchmark
“DIMACS Genrmf-wide”, p = 430

• Submodular function minimization

– (Left) optimal value minus dual function values (st)−(V )
(in dashed, certified duality gap)

– (Right) Primal function values F (At) minus optimal value
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Simulations on standard benchmark
“DIMACS Genrmf-wide”, p = 430

• Submodular function minimization

– (Left) optimal value minus dual function values (st)−(V )
(in dashed, certified duality gap)

– (Right) Primal function values F (At) minus optimal value
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(Figure from Bach, 2012)

convergence of relaxation convergence of S

min-norm point



Submodularity and convexity
• convex Lovász extension

– easy to compute: greedy algorithm (special polyhedra!)

• submodular minimization via convex optimization: exact
• duality results

• structured sparsity (Bach 10)

• decomposition & parallel algorithms 
(Komodakis-Paragios-Tziritas 11, Stobbe-Krause 10, Jegelka-Bach-Sra 13, 
Nishihara-Jegelka-Jordan 14, Ene-Nguyen 15)

• variational inference (Djolonga-Krause 14)

• …



Structured sparsity and submodularity

Submodularity (almost) everywhere
Structured sparsity - I

Submodularity (almost) everywhere
Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem

Submodularity (almost) everywhere
Structured sparsity - II

raw data Structured sparse PCA

• Submodular convex optimization problem

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input ℓ1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background ℓ1-norm Structured norm

Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background ℓ1-norm Structured norm

y = Mx+ noise

min
x

⇥y �Mx⇥2 +�⌦(x)



Sparsity

45

min
x

⇥y �Mx⇥2

Optimization: submodular minimization (min-norm)

+�⌦(x)

⌦(x) = kxk0 = |S| ⌦(x) = F (S)

⌦(x) = f(|x|)⌦(x) = kxk1

(Bach2010)

• x sparse • x structured sparse

submodular function

è Lovász extension

discrete regularization on support S of x

relax to convex envelope



Submodular min: special cases

• “Graph-representable”:  reduction to minimum cut
(Billionet & Minoux 85, Kolmogorov-Zabih 04, Freedman & Drineas 05, Živný
09, Živný & Jeavons 10, ...)

• Decomposable functions
(Stobbe-Krause 10, Komodakis-Paragios-Tziritas 11, Kolmogorov 12, Jegelka-
Bach-Sra 13, Nishihara-Jegelka-Jordan 14, Ene-Nguyen 15, Fix-Joachims-Park-
Zabih 13, Fix-Wang-Zabih 14)

• Symmetric functions
(Queyranne 98)



submodular	set	functions
convexity:	 dim.	returns:	
minimization maximization
max.	coherence max.	diversity

nonconvex	optimization
lattice	/	continuous	submodularity
many	optimization	&	duality			
results	generalize

probability	measures
log-supermodular (			positive	assoc.)
log-submodular			(			negative	assoc.)
sampling,	mode,	
approx.	partition	function

many	examples:

• linear/modular	functions													
• entropy
• mutual	information
• rank	functions

• coverage
• diffusion	in	networks	
• volume			
• graph	cut	…



Outline

1. What is Submodularity?
Examples, connections

2. Submodular minimization

3. Submodular maximization

4. Advanced Topics
submodularity in deep learning, probabilistic inference,
active learning, bandits, …

TOMORROW



Submodular Maximization

• ground set V

• submodular function

F : 2V ! R+

S ✓ V
max F (S)

Often s.t. to some constraints

Survey: Krause & Golovin (2014) “Submodular Function Maximization”



Application: Information Gathering

50

• where put sensors?
• which experiments?
• which labels?

F (S) = “information”

(Krause & Guestrin ‘05, Hoi-Jin-Zhu-Lyu ’06, Das & Kempe ’08, …)



Application: Data Summarization

• which text, images, videos?
• which data points for training? 

Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN )

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S  S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(S⇤

). For easy score interpretation, we normalize it according to
sc(S⇤

) = (r(S⇤
) � R)/(H � R), where R is the average V-ROUGE score of random summaries

(computed from 1000 summaries) and where H is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S⇤

) is smaller than zero if S⇤ scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective ffac.loc.(S) alone;
FLpen the facility location objective mixed with a �-weighted penalty, i.e. ffac.loc.(S)+�fdissim.(S);
MMR Maximal marginal relevance [3], using � to tradeoff between relevance and diversity;
GCpen Graphcut mixed with a �-weighted penalty, similar to FLpen but where graphcut is used in

place of facility location;
kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at

random. As a dissimilarity score between images i and j, we used 1� si,j . Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.

7

(El-Arini et al ‘09, Yue & Guestrin ‘09, Gomes & Krause’10, Lin & Bilmes ‘11, …)

F(S) = “relevance, diversity, …”



More maximization …

...
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Figure 3. An example of cosegmentation on MSRC cow images
(M=3, K=4). (a) Input images. (b) Likelihood of each segment
from white (high) to black (low). (c) Color-coded cosegmentation
outputs. (d) The 3rd and 4th segments from input images.

ranking and single-image segmentation, we compute the ex-
act solution for this step. However, we use belief propaga-
tion, which is an approximate maximization, for a large-
scale cosegmentation with full dependency. In most cases,
this relaxed solution is good enough to obtain a high-quality
segmentation result.

A more scalable setting: In practice, a large-scale im-
age set is likely to contain various noisy information as well.
If heterogeneous images are cosegmented, then the results
would be worsen than those of individual image segmen-
tation. Thus, one can first decompose I into disjoint sets
I = I1 [ · · ·[ IO so that each subset Io consists of similar
images. Then, Algorithm 1 can be applied to each Io sep-
arately. This decomposition can be done by the proposed

diversity ranking and clustering of Eq.(4) on the similarity
graph of I, which can be constructed by applying Gaussian
similarity to image descriptors (e.g. dense SIFT or GIST).

4. Experiments
We evaluate our approach with two different experi-

ments: (1) figure-ground segmentation with a pair of im-
ages (M=2 and K=2), and (2) scalability tests with a large
number of images (M⇠1000). The figure-ground tests are
performed to quantitatively compare our method with other
state-of-the-art cosegmentation techniques that are only ap-
plicable in this setting. The scalability tests evaluate how
well our algorithm works with real-world data.

Our Matlab toolbox including diversity ranking, single-
image segmentation, and cosegmentation, can be found at
http://www.cs.cmu.edu/⇠gunhee.

4.1. Evaluation on Figure-ground Cosegmentation

In the figure-ground tests, we use MSRC dataset [17],
which provides 30 pixel-wise labeled images per object.
Two recent cosegmentation methods, [6] and [7], are com-
pared using their implementation with the default parameter
setting8. We run [6], [7], and our method on randomly gen-
erated 100 pairs in each class.

Unlike the others, the method of [6] requires priori la-
bels of foreground (fg) and background (bg) RGB colors.
In order to obtain labels, we fist identify the fg and bg re-
gions of each image from the ground truth. Then, we apply
K-means to the RGB space of fg and bg pixels to compute
three cluster centers each, which are used as labels (i.e. total
6 fg and 6 bg RGB labels in each pair). These labels can be
regarded as strong supervision, but they were used because
the performance of [6] was highly sensitive to the labels.

Since our method is not designed to aim at figure-ground
segmentation, we add an additional step to generate the bi-
nary segmentation results. Our approach iteratively chooses
large and coherent regions across input images in a bottom-
up way. Thus, if the foreground object consists of several
distinct regions, it is likely to segment them into multiple
regions. For binary segmentation, we first safely coseg-
ment a pair of images with a large K (K=8 in our ex-
periments). Then, we apply Normalized cuts to the sim-
ilarity graph of eight pairs of cosegments to obtain two
balanced and discriminative partitions. We observed that
our approach showed excellent performance for detecting a
moderate number of cosegments but the final figure-ground
segmentation accuracy was dependent on this binarization.

Table 2 summarizes the segmentation accuracies on the
random test pairs of MSRC dataset. The accuracy is mea-
sured by the intersection-over-union metric that is a stan-
dard in PASCAL challenges (i.e. For each image, Ac =

8Codes are available at [6]: http://www.biostat.wisc.edu/⇠vsingh/, [7]:
http://www.di.ens.fr/⇠joulin/.
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(M=3, K=4). (a) Input images. (b) Likelihood of each segment
from white (high) to black (low). (c) Color-coded cosegmentation
outputs. (d) The 3rd and 4th segments from input images.

ranking and single-image segmentation, we compute the ex-
act solution for this step. However, we use belief propaga-
tion, which is an approximate maximization, for a large-
scale cosegmentation with full dependency. In most cases,
this relaxed solution is good enough to obtain a high-quality
segmentation result.

A more scalable setting: In practice, a large-scale im-
age set is likely to contain various noisy information as well.
If heterogeneous images are cosegmented, then the results
would be worsen than those of individual image segmen-
tation. Thus, one can first decompose I into disjoint sets
I = I1 [ · · ·[ IO so that each subset Io consists of similar
images. Then, Algorithm 1 can be applied to each Io sep-
arately. This decomposition can be done by the proposed

diversity ranking and clustering of Eq.(4) on the similarity
graph of I, which can be constructed by applying Gaussian
similarity to image descriptors (e.g. dense SIFT or GIST).

4. Experiments
We evaluate our approach with two different experi-

ments: (1) figure-ground segmentation with a pair of im-
ages (M=2 and K=2), and (2) scalability tests with a large
number of images (M⇠1000). The figure-ground tests are
performed to quantitatively compare our method with other
state-of-the-art cosegmentation techniques that are only ap-
plicable in this setting. The scalability tests evaluate how
well our algorithm works with real-world data.

Our Matlab toolbox including diversity ranking, single-
image segmentation, and cosegmentation, can be found at
http://www.cs.cmu.edu/⇠gunhee.

4.1. Evaluation on Figure-ground Cosegmentation

In the figure-ground tests, we use MSRC dataset [17],
which provides 30 pixel-wise labeled images per object.
Two recent cosegmentation methods, [6] and [7], are com-
pared using their implementation with the default parameter
setting8. We run [6], [7], and our method on randomly gen-
erated 100 pairs in each class.

Unlike the others, the method of [6] requires priori la-
bels of foreground (fg) and background (bg) RGB colors.
In order to obtain labels, we fist identify the fg and bg re-
gions of each image from the ground truth. Then, we apply
K-means to the RGB space of fg and bg pixels to compute
three cluster centers each, which are used as labels (i.e. total
6 fg and 6 bg RGB labels in each pair). These labels can be
regarded as strong supervision, but they were used because
the performance of [6] was highly sensitive to the labels.

Since our method is not designed to aim at figure-ground
segmentation, we add an additional step to generate the bi-
nary segmentation results. Our approach iteratively chooses
large and coherent regions across input images in a bottom-
up way. Thus, if the foreground object consists of several
distinct regions, it is likely to segment them into multiple
regions. For binary segmentation, we first safely coseg-
ment a pair of images with a large K (K=8 in our ex-
periments). Then, we apply Normalized cuts to the sim-
ilarity graph of eight pairs of cosegments to obtain two
balanced and discriminative partitions. We observed that
our approach showed excellent performance for detecting a
moderate number of cosegments but the final figure-ground
segmentation accuracy was dependent on this binarization.

Table 2 summarizes the segmentation accuracies on the
random test pairs of MSRC dataset. The accuracy is mea-
sured by the intersection-over-union metric that is a stan-
dard in PASCAL challenges (i.e. For each image, Ac =

8Codes are available at [6]: http://www.biostat.wisc.edu/⇠vsingh/, [7]:
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co-segmentation
by maximizing
anisotropic diffusion
(Kim-Xing-Fei Fei-Kanade ‘11)

Influence maximization
(Kempe, Kleinberg, Tardos ’03)

weakly supervised
object detection
(Song-Girshick-Jegelka-Mairal-
Harchaoui-Darrell ‘14)

max F (S)

inferring networks
(Gomez Rodriguez et al 2012)

diverse
recommendations
(Yue & Guestrin ’11)



Monotonicity

if S ✓ T then F (S)  F (T )

3 5 1



Maximizing monotone functions

• NP-hard
• Approximation: Greedy algorithms

max

|S|k
F (S)

if A ✓ B then F (A)  F (B)



Maximizing monotone functions

max

S
F (S) s.t. |S|  k

Greedy algorithm:

for i = 0, …, k-1
S0 = ;

e⇤ = arg max

e2V\Si

F (Si [ {e})

Si+1 = Si [ {e⇤}

How “good” is          ?Sk



How good is greedy? in practice…
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How good is greedy? … in theory

max

S
F (S) s.t. |S|  k

Theorem (Nemhauser, Wolsey, Fisher ‘78)

F monotone submodular,         solution of greedy. ThenSk

F (Sk) �
⇣
1� 1

e

⌘
F (S⇤)

in general, no poly-time algorithm can do better than that!

optimal solution



Proof Sketch
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Key lemma (“Rate equation”)
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e
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Appliction: Network Inference
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

Given traces of influence, wish to infer sparse
directed network G=(V,E)
è Formulate as optimization problem

59

1

2

3 5

4 13

4 2

Given: Want:

E⇤
= arg max

|E|k
F (E)



Estimation problem

• Many influence trees T consistent with data
• For cascade Ci, model P(Ci| T)
• Find sparse graph that maximizes likelihood for all 

observed cascades
è Log likelihood monotonic submodular in selected edges
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F (E) =

X

i

log max

tree T✓E
P (Ci | T )



Evaluation: Synthetic networks

• Performance does not depend on the network structure:
– Synthetic Networks:  Forest Fire, Kronecker, etc.
– Transmission time distribution:  Exponential, Power Law 

• Break-even point of > 90%

61

1024	node	hierarchical	Kronecker	
exponential	transmission	model

1000	node	Forest	Fire	(α =	1.1)	
power	law	transmission	model
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Blogs
Mainstream media

Diffusion Network
[Gomez	Rodriguez,	Leskovec,	Krause	ACM	TKDE	2012]

Actual	network	inferred	from	172	million	
articles	from	1	million	news	sources



Questions
• What if I have more complex constraints?

• Greedy takes O(nk) time. What if n, k are large?

• What if my function is not monotone?



More complex constraints:   budget

1. run greedy:
2. run a modified greedy:

3. pick better of        ,             

è approximation factor:

max F (S) s.t.

X

e2S

c(e)  B

Sgr

S
mod

Sgr S
mod

(Leskovec-Krause-Guestrin-Faloutsos-VanBriesen-Glance ’07)

even better but less fast:
partial enumeration
(Sviridenko, ’04) or
filtering (Badanidiyuru &
Vondrák ‘14)

1� 1p
e

e⇤ = argmax

F (Si [ {e})� F (Si)

c(e)e



Relax: Discrete to continuous
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f(x)

max

S2I
F (S) max

x2conv(I)
f

M

(x)

(Vondrák ’08; Calinescu-Chekuri-Pal-Vondrák ‘11; Kulik-Shachnai-Tamir’11)

Algorithm:
1. approximately maximize fM over 
2. round to discrete set

P = conv(I)

P



Multilinear extension
sample item e with probability xe

= E
S⇠x

[F (S)]fM (x) 0.5

1.0
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x

p(1) =

p(2) =

p(3) =
fM (x) =

X

S✓V
F (S)

Y

e2S

xe

Y

e/2S

(1� xe)



• convex

• computable in O(n log n)
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• concave in certain directions, 
convex in others

• approximate by sampling

Ø Submodular maximization
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[F (S)]fL(x) = ES⇠✓ [F (S)]

Ø Submodular minimization



P

Illustration of Continuous Greedy

xa

xb

x0

V = {a, b}

g0 = rfM (x0)

xT

S

argmax

x2P
x

T
g

0

v1 =

x1= x0 + �v1

v2 = argmax

x2P
x

T
g1

x2= x1 + �v2

� =
1

T



Continuous submodular maximization

• Continuous Greedy (~Frank Wolfe) “works” for any
– downward closed solvable polytope P

(Calinescu-Chekuri-Pál-Vondrák’11)

– monotone continuous “DR-submodular” function (beyond 
multilinear extension) (Bian-Mirzasoleiman-Buhmann-Krause’16)
è Non-convex optimization with guarantees

• ”works” means (1-1/e) approx. for continuous problem
• Rounding strategy depends on constraints

– Pipage rounding for matroids (Ageev, Sviridenko ’04)

– Contention resolution for more general P 
(Chekuri-Vondrák-Zenklusen’11)



Questions
• What if I have more complex constraints?

– budget constraints
– Downward closed constraints 

(matroids, p-systems, knapsacks, their intersections, …)

• Greedy takes O(nk) time. What if n, k are large?

• What if my function is not monotone?
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Scaling	up	the	greedy	algorithm	[Minoux’78]
In	round	i+1,	
– have	picked	Ai =	{s1,…,si}
– pick	si+1 =	argmaxs F(Ai ⋃ {s})-F(Ai)
I.e.,	maximize	“marginal	benefit” Δ(s	|	Ai)

Δ(s	|	Ai)	=	F(Ai ⋃ {s})-F(Ai)

Key	observation: Submodularity implies	

i ≤ j	 => Δ(s	|	Ai)	≥ Δ(s	|	Aj)

Marginal	benefits	can	never	increase!

s

Δ (s | Ai) ≥ Δ(s | Ai+1)
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“Lazy” greedy	algorithm	[Minoux’78]

Lazy	greedy	algorithm:
§ First	iteration	as	usual
§ Keep	an	ordered	list	of	marginal	
benefits	Δi from	previous	iteration

§ Re-evaluate	Δi only	for	top	
element

§ If	Δi stays on	top,	use	it,
otherwise re-sort

a

b

c

d

Benefit Δ(s | A)

e

a

d

b

c

e

a

c

d

b

e

Note:	 Very	easy	to	compute	online	bounds,	lazy	evaluations,	etc.
[Leskovec,	Krause	et	al.	’07]



Lazier than lazy greedy

for i=1…k:

• randomly pick set T of 
size

• find best a element in T 
and add 

max

S
F (S) s.t. |S|  k

n

k
log

1

✏

Si  Si�1 [ {ai}

ai = argmax

a2T
F (a|Si�1)

(Mirzasoleiman et al 2014)

S
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Figure 1: Performance comparisons. a), d) and g) show the performance of
all the algorithms for different values of k on a set of 10,000 Tiny Images,
Parkinsons Telemonitoring, and a set of 50,000 Tiny Images respectively. b), e)
and h) show the cost of all the algorithms for different values of k on the same
datasets. c), f), i) show the utility obtained versus cost for a fixed k = 200.

Lemma 2. Given a current solution A, the expected gain of Rand-Greedy

in one step is at least 1−ϵ
k

∑

a∈A∗\A ∆(a|A).

Proof. Let us estimate the probability that R∩ (A∗ \A) ̸= ∅. The set R consists
of s = n

k
log 1

ϵ
random samples from V \A (w.l.o.g. with repetition), and hence

Pr[R ∩ (A∗ \A) = ∅] =

(

1−
|A∗ \A|

|V \A|

)s

≤ e−s
|A∗\A|
|V \A|

≤ e−
s
n |A∗\A|.

Therefore, by using the concavity of 1 − e−
s
nx as a function of x and the fact

that x = |A∗ \A| ∈ [0, k], we have

9

stochastic
greedy

“Lazy greedy”

faster
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Distributed greedy algorithms

greedy is sequential.
pick in parallel??

pick k elements 
on each machine.

combine and run
greedy again.

Is this useful?



GREEDI

pick in parallel
from m machines

Is this useful?

New approximation factor:

1
2 (1�

1
e )

Approximation factor:

better with geometric 
structure

1
min{

p
k,m}

Pick the best of m+1 solutions

(Mirzasoleiman-Karbasi-Sarkar-Krause’13, da Ponte Barbosa-Ene-Nguyen-Ward’15)



Empirical Performance

T

(Mirzasoleiman-Karbasi-Sarkar-Krause ’13)



Questions
• What if I have more complex constraints?

– budget constraints
– Downward closed solvable polytopes

• Greedy takes O(nk) time. What if n, k are large?
– Lazy greedy, lazier than lazy greedy

(Minoux’78, Mirzasoleiman-Badanidiyuru-Karbasi-Vondrák-Krause’15)

– filtering / streaming / multi-stage (Badanidiyuru & Vondrák 2014; 
Badanidiyuru-Mirzasoleiman-Karbasi-Krause’14, Wei-Iyer-Bilmes’14)

– Distributed (Mirzasoleiman-Karbasi-Sarkar-Krause’13, Kumar-
Moseley-Vassilivitskii-Vattani’13)

• What if my function is not monotone?



Non-monotone functions

if S ✓ T then F (S)  F (T )

3 5 1



F (A) = 95

optimal solution
F (A) = 40
greedy solution:

Greedy can fail …

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor 1 sensor 2 sensor 3 sensor 4

coverage: 100
cost:          -60
gain            40

coverage:   30
cost:          - 1
gain            29

coverage:   30
cost:          - 1
gain            29

coverage:   40
cost:          - 3
gain            37

S1 = ; [ argmax

a2V
F (a)S0 = ;



Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for  i=1, …, n //add or remove?

• gain of adding (to A):

• gain of removing (from B):

P(add) = �+

�+ +��

coverage: 100
cost:          -60

�+ = 40

�� = 60

= 40%

add with probability

�+ = [F (A [ ai)� F (A) ]+

�� = [F (B \ a)� F (B) ]+



Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for  i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage: 100
cost:          -60

�+ = 40

�� = 60

add with probability

add to A or  remove from B



Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for  i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage:   30
cost:          - 1

add with probability

add to A or  remove from B

�+ = 29

�� = [�29]+ = 0

=
29

29



=
29

29

Double (bidirectional) greedy

V

A

B

A = ;, B = VStart:

for  i=1, …, n //add or remove?

P(add) = �+

�+ +��

coverage:   30
cost:          - 1

add with probability

add to A or  remove from B

�+ = 29

=
37

40

�� = 0



Double greedy

Theorem (Buchbinder, Feldman, Naor, Schwartz ‘12)

F submodular,         solution of double greedy. Then

optimal solution

Sg

max

S✓V
F (S)

E[F (Sg)] � 1
2F (S⇤)



Non-monotone maximization
• Generally inapproximable unless F is nonnegative

• Unconstrained maximization:
– Local search (Feige-Mirrokni-Vondrák’07)

– Double greedy: Optimal ½ approximation
(Buchbinder-Feldman-Naor-Schwartz’12)

• Constrained maximization: 
– Cardinality constraints: randomized greedy 

(Buchbinder-Feldman-Naor-Schwartz’14)

– Filtering based algorithms (Mirzasoleiman-Badanidiyuru-Karbasi’16)

– More general constraints: Continuous local search via 
multilinear extension (Chekuri—Vondrák-Zenklusen’11)

• Distributed algorithms? yes!
– divide-and-conquer as before (de Ponte Barbosa-Ene-Nguyen-Ward ’15)
– concurrency control / Hogwild (Pan-Jegelka-Gonzalez-Bradley-Jordan ’14)



Submodular maximization: summary

• Many applications: diverse, informative subsets
• NP-hard, but variants of greedy / local search work
• Distinguish monotone / non-monotone
• Can handle several types of constraints
• Scalable algorithms for solving massive problems



Summary: Submodular Optimization

Minimization Maximization
Unconstrained SFMin
tractable, constrained 
SFMin generally hard

SFMax generally hard
distinguish montone & 
non-monotone

Combinatorial and 
continuous algorithms

Greedy-like and 
continuous algorithms

Convex Lovász extension Nonconvex multilinear 
extension

Faster algorithms for 
special cases

Fast distributed/ 
streaming algorithms


