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Submodularity and
probabilistic inference



From optimization to distributions

Instead of optimization, we take a probabilistic approach
optimize F(S) = P(S) = %exp(:F(S))
Log-s_u;modular Log-submodular
P(S) = 2 exp(~F(S)) P(S) = 2 exp(F(S))

Equivalent to distrib. over binary vectors X; € {0,1} Vic V

Potential benefits?
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Use case: learning from data

Observe sets S;

51 v ( ‘/ Learn P(S)

~

M . F

And SO O1l... s.t. S; likely

under P(S5) o exp(F(S))
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ETH
Example: Log-supermodular distributions

Attractive Ising model, Higher-order potentials
[c.f., Boros & Hammer '02, Taskar et al ‘04, Kohli et al ‘09]

P(S) exp(— Zvi — Z Wi 5 — ZW(\S 2 CED)
¢

icS i€S,j¢S
unary pairwise higher-order
(modular)  (cut function) (concave over
cardinality)

\ J
|

Log-supermodular =» Marginals?




“™MExample: Log-submodular distributions

Determinantal point processes [Macchi '75; Kulesza & Taskar '12]
pos. definite kernel

P(S) x explog |Kg ]

Submodwar

/k(ll,ll) (21,Z|S|)\

\k(’i|s.|,i1) (7;|S|7.7;|S|)/

(Macchi 75, Feder-Mihail 82, Borodin 02, Deshpande-Rademacher-Vempala-Wang 06, Borcea-Branden 09,
Borcea-Branden-Liggett 09, Kulesza-Taskar 12, Anari-Oveis Gharan-Rezaei 16, Li-Jegelka-Sra 16, ...)



Relation to other discrete prob. models

General discrete probabilistic models

Log-supermodular
?

Log-submodular

(

Log-modular

Representable as product of log-sub- an log-supermodular distribution




Key challenge:

Compute normalizing constant (partition function)

P(S) = 2 exp(£F(S))

Z = Z exp(+F'(5))

#P-hard for both log-sub/supermodular distributions

Hard to approximate in both cases as well
[Goldberg & Jerrum '07, Sly & Sun’12]
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Ple€S)= ) P(S)

S:eeS
_ D s.ecs exp F(5)
s exp F(S)
B ZS,QV\{G} exp F'(S") 7
N ngv exp F'(S) Z

F'(S)=F(Su{e}) F .2Vt LR



Existing approximate approaches

For low-order models (| C;| small, typically = 2),

) x exp(— ZF (SnCy)) =PX) o] 2:(Xe,)

many heuristics for approximating Z:
— Mean-field and variants
— Belief propagation / sum-product and variants

Running time exponential in model order (max; |C;|)
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Variational Inference

Tractable family Q

All distributions

[Djolonga]



Approximate Inference in General PSMs

Variational approach to inference in log-sub/supermodular
distributions and beyond

— Tractable optimization independent of model order
— Provides upper and lower bounds on Z
— Some guarantees on accuracy of log Z

— For log-supermodular distributions, shares mode
(i.e., preserves MAP configuration)

14




Our workhorse: modular functions

e Additive submodular functions:

m(S) =3 mi

€S
* Correspond to completely factorized distributions,
with marginals

P(i € S) = (1 exp(—mi))_l — o(m;)

and analytic partition function 3 1Og(1 n eXp(mi))

One number (weight) per element in V




Sub- and superdifferentials

e Similar to convex functions, submodular functions have
subdifferentials [c. Fujishige 91

* But they also have superdifferentials [cf Iyer, Jegelka, Bilmes’| 3]
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Semigradient polyhedral structure

(0,0)f

(D)

Use in optimization: [Jegelka & Bilmes 11, lyer etal. ICML " 13]

Courtesy: Jeff Bilmes



Key idea
Elements from the sub/superdifferentials bound F
x(A) <HA) <y(A)
and hence yield bounds on the partition function
> acy eXPHX(A)) < X acy exp(+F(A)) < X acy exp(+y(A))
> AcveXP(=x(A)) >} xcy exp(=F(A)) > ) sy exp(—y(A))

We optimize over these upper and lower bounds



Sub- and superdifferentials




Subgradients of submodular functions

Or(X)={scR" | VY CV: F(Y) > F(X) +s(Y) — s(X)}.

1S¢b3 HS)
2
0
Or (D) 1 {{j} 4
> {b} 2
B 1 0 1 bl |0
{a}

* Exponential-size description ®
» Efficient O(n log n) linear optimization © [Edmonds/Fujishige]
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Optimizing over subgradients

Forany X, and any s € 0r(X) , get a bound on Z:

N exp(-F(A) < Y exp(—s +s(X) — F(X))

ACV ACV |

Z3(s)

Efficiently computable

To get best bound, need to optimize over X and s € O (X)

Looks like a difficult mixed discrete-
continuous problem ®

21



Recall: Lovasz extension

(ta}) F(A)

F(ib)

i
{a}
{b}
{a,b}

o o P O

a Yy € O(0)
00 | f(Y):fgy

O(O) — {y - Yo (n) < Yo(n—1) < - < ya(l)}

folo@y = £F(0(i) [10(1),...,0(i = 1)) .



i Theory: Variational inference in
log-supermodular distributions

Theorem [Djolonga, K ‘15]: The following are equivalent:
min 2+ (s
X,s€0r(X) X( )

|
Minimize upper bound on partition function

\ J

| T o 1
y* = argmin f(y) + =||y for Q*(2) =
argmin £(3) + 5lIvI} for Q") = g
|

Regularized Lovasz extension f (aka min-norm-point)

s P(S
¥ =g D 19) for (71 =yt i

|
Minimize Renyi divergence




ETH
lllustration: Renyi divergence

Inclusive

Do (P || Q) =log maxxex P(x)/Q(x)  Doo(Q | P) = log maxyex Q(x)/IP(x)

Exclusive

Minimizer of D (P | Q,) Minimizer of D.(Q, || P)

0.0 0.2 0.4 0.6 0.8 1.0 0.0

[Djolongal]



Proof sketch (i) < (ii)

Can show: Min. of min
X,s€0r (X)

and s restricted to
base polytope B,

For the resulting problem:

Z(s) attained at X =90,

IBO!
Br
Or(0) 1
2 ]I o 1
S{a}

argmin Z, (s) = argmin Z log(1 + exp(s;))

scBr scBr

[c.f. Nagano ‘07]

= argmin f(x)

[c.f. Bach ‘I I] scR”

eV
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Connection to min-norm point (IMINP) problem

Optimizing variational bound = Min-norm-point problem!

Algorithmic implications:
— Solvable in strongly polynomial time via poly. many

SFMin, or pseudo-polynomial time via Fujishige-
Wolfe’s algorithm [Chakrabarty et al “14]

— In practice fast algorithms based on convex

optimization, exploiting special structure
[e.g., Jegelka et al ’| 3, Nishihara et al "14]

Corollary: Thesholding the solution at /2 gives a
MAP configuration (i.e., approximation shares mode)

26




ETH

...-‘ - ,4
%

Application: Image Segmentation

[Zhang, Djolonga, Krause, ICCV’15; MSRC-21 data]
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>

Prediction accuracy (larger is better)

Model comparison:
Product recommendation task

[data from Gillenwater et al.’14]

40

Independent

DPP

30
FLID

(only repulsive)

FLDC
(attractive and
repulsive)

safety strollers furniture carseats
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Submodularity and
Deep Learning



Data-driven decision making

Data j> Model j> Decision

A

Ti,-.-,%n 6 = argmax P(x1., | 0) S = argopt F(S | 6)
Z Sez

30



Data-driven decision making

Data [ > Model [ > Decision

A

Ti,-.-,%n 6 = argmax P(x1., | 0) S = argopt F(S | 6)
Z Sez

How can we reason about
making complex (combinatorial)
decisions from data?

31
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Motivation: Structured prediction
[Lafferty et al ‘01, Collins ‘02, Taskar ‘04, Tsochantaridis et al ‘05, ...]

j‘>m S —argmmF(S|Xz, 0)

E.g., minimum cut

F(S) Z Z Wi,

€S 1€S,j¢S

>

32



Motivation: Attention / Interpretability

Task: Given text T and hypothesis H predict
whether

— T = “A band is playing on a stage at a concert and the
attendants are dancing to the music”

— H = “No one is dancing”

Want “Interpretability”: Besides predicting the answer, tell
me which of input is :

— Rationale: “attendants are dancing”



Attention = input dependent sparsity

Sparse
estimation

X — g(xg;0)

‘Attention” X F=2 g(XS(x;91)§ (92)

34
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Differentiable Discrete Optimization

"h
i)

e.g., min-cut, MST, etc.

<||lnl @l
9 N\

Differentiable! ©

=>» Train model end-to-end (via backpropagation and SGD)

35



ETH
Smoothing via probabilistic modeling

1

minignize F(S|0) > P(S|0) = = exp(—F(S | 9))
E.g., submodular minimization Log-supermodular distribution

* Log-likelihood of S provides differentiable objective! ©
» Key challenge: Normalizer £'is typically intractable! ®

 Can we leverage structure of the discrete problem to
obtain efficiently computable differentiable objectives?

36



Differentiable learning of Submodular Functions
[with Djolonga, NIPS 2017]

Givendata D = {(x1,51),...,(xn,Sn)} and
parametrized family of functions, F'(S | x,60) want

0" = arg m@axz log Q7 (S;)

s.t. Q) = argménDoo (P( | X¢,9)|’Q>

Want to learn parameters to maximize a posteriori
probability under variational approximation Q

We show how to compute gradients of this
objective

37
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Variational inference in PSMs

y* = argmin f(y) + §HY\|§ argmin fly + _HYH2

yeR™ o,y€O (o)
T 2
= argmin [|f; + y|l5
o y€O(o) |
, . .
[cf Bach "11] Isotonic regression

Key challenge: Argmin differentiation of isotonic regression!



Isotonic Regression

0 5 1lo 115 o 20
sk .
y" = argmin ||y — x|
yeO
where O ={y:y1 < - < yp}

- 39



Isotonic Regression y* = argmin ||y — x||?

yeO

= A(y™) = blockdiag(C g, |, - .

oy ™
0x

°7C|Bm|)

40



Differentiable learning of PSMs

Theorem: If VyF (A | 0)existsforall A CV,
then the approximate Jacobians

0
J, = 59 argmin ||f, (6 )T |3
yeO(o)

are independent of 0. Can multiply in linear time.

Theorem: Under some conditions* the approximation
IS exact!

Theorem: For mixtures £'(S | 0) 26’ (S

can* compute the exact Jacobian in polynomlal time

*see paper,,




Application: Segmentation
without with SFMin layer

Trained on only 0.1%
‘h of labeled pixels!
1\ CNN+
SFMin
Acc. 81 91

NLL .39 27

42




Application: Textual entailment

 Fusedmax attn. mechanism of Niculae and Blondel
IS a special case, obtained by concatenating 2
SFMin layers

* Task: Does sentence T entail hypothesis H
(here H="no one is dancing”)

softmax
0.2 *

0.1+

o,oqu'rT..r..T.l..TT

A band is pla)'/ing on stége ata concert and the attendants are dan'cing to the music.

0.3 1
0.2+
0.1+
0.0-

R

fusedmax

?

?

[,

A band is playing on stage ata concert and the attendants are dancing to the music. 49



Differentiable submodular maximization

 Similar results for submodular maximization
[with Tschiatschek, Sahin, [JCAI'18]

* Key idea: Directly define a distribution over sets
through the (double) greedy algorithm

 Tractable, differentiable likelihood
=» Gradient-based learning!

* Applications to recommender systems and image
collection summarization



Submodularity and
Interactive Learning



Learning to optimize submodular functions

* Online submodular optimization

— Learn to pick a sequence of sets to maximize a
sequence of (unknown) submodular functions

— Application: Making diverse recommendations

* Adaptive submodular optimization

— Gradually build up a set, taking into account
feedback

— Application: Experimental design / Active
learning / Active Teaching / ...

46




News recommendation

YAaHOO!, NEWS

HOME U.S. WORLD BUSINESS ENTERTAINMENT SPORTS TECH POLITICS SCIENCE HEALTH

Top Stories ABC News Latest News Slideshows AP Reuters AFP

Everest weekend death toll reaches 4 4p -2 hrs 7 mins ago

Climbers have reported seeing another body on Mount Everest, raising the death toll to
four for one of the worst days ever on the world’s highest mountain. More »

Colombia Secret Service prostitution scandal spreads to DEA 48C News -8
hrs ago

The Drug Enforcement Administration announced that at least three of its agents are
under investigation for allegedly hiring prostitutes in Cartagena. More »

Obama: U.S. can’t wait for Afghanistan to be 'perfect’ The Ticket - 7 hrs ago

President Obama acknowledged "risks" in his decision to withdraw U.S. combat forces
from Afghanistan by the end of 2014 but said war-weary Americans can't wait for that
strife-torn country to be "perfect.” More »

Why ex-Rutgers student got 30-day sentence in spycam case Christian Science
Monitor - 8 hrs ago

A former Rutgers University student was sentenced to serve 30 days in jail in a case of
webcam spying that drew national attention to issues of online privacy, suicide, and

aumdi mene ol oe Maes




Application: Diverse Recommendations

“US tech firms push for govt transparency on securityReuters”

“Internet Companies Call For More Disclosure of Surveillance”

“NSA scandal: Twitter and Microsoft join calls to disclose data requests”
“NSA Secrecy Prompts a Pushback”

% “Google to DOJ: Let us prove to users that NSA isn't snooping on them”

% “Google to DOJ: Let us prove to users that NSA isn't snooping on them”
“Storms Capable of Producing Derecho Possible in Midwest Today”

“Ohio kidnap suspect pleads not guilty”

“Five takeaways from Spurs-Heat in Game 3 of the NBA Finals”

“Samsung Unveils Galaxy S4 Zoom With 16 MP Camera”

Prefer recommendations that are both relevant and diverse



Simple model

We're given a set of articles

Each round:

— A user appears, interested in a subset S; of the articles
— We recommend a set of articles A,

— The user clicks on any displayed article that she is
Interested in

Ft(At) — m1n(|At f St‘, 1)

Goal: Maximize the total #of clicks ~ » ~ Fy(4,)
Challenge: t
— We don‘t know which articles the user is interested in!



Online maximization of submodular functions
[Streeter, Golovin NIPS ‘08]

Pick sets A, A, A, Observe e/ther
x x x x / ., oronly F.(A
SFs F, F, Fs .
\ \ \
Reward r=F/(A;) r, ;.. rT Total: 2, r, = max
> Time

Goal: Want to choose A,,...A; s.t. the regret
T T

Rt = Fi(A) — Fi(A
T |If£l|aé}§ft1 t() Zt( t)

t=
grows sublinearly, i.e., Rr/T — 0

For k=1, many good algorithms known! ©
But what if k>17

50



Online Greedy Algorithm

[Streeter & Golovin, NIPS "08]

Replace each stage of greedy algorithm with a
multi-armed bandit algorithm.

7

.

Select {a,,

r

Feedback to Ej for action a; is (unbiased est. of)
Fi{ay, @y, -5 814, @) - Fi({ay, @y, -y @14))




Online maximization of submodular functions
[Streeter, Golovin NIPS ‘08]

Theorem
Online greedy algorithm chooses A,,...,A; s.L.
for any sequence F,...,F;

ZFt(At) > (1 —1/e) max Fy(A) — O(nT2/3>

[A[<E
t=1

Can get ‘no-regret’ over greedy algorithm in hindsight
l.e., can learn enough” about F to optimize greedily!

52




Stochastic linear submodular bandits

[Yue & Guestrin ‘11]
* Basic submodular bandit algorithm has slow convergence

 Can do better if we make stronger assumptions
— Submodular function is linear combination of m SFs

— We evaluate it up to (stochastic) noise*

Fi(S) = F(S5) + noise
=» LSBGreedy algorithm

*some independence conditiofs



User Study [Yue & Guestrin '11]

 Real data: >10Kk articles
 T=10 days, rec. 10 articles per day

e 27 users rate articles, aim to maximize #likes

V4

“Google to DOJ: Let us prove to users that NSA isn't snooping on them” C//
“Storms Capable of Producing Derecho Possible in Midwest Today”c?
“Ohio kidnap suspect pleads not guilty” %

“Five takeaways from Spurs-Heat in Game 3 of the NBA Finalsf

“Samsung Unveils Galaxy S4 Zoom With 16MP Camera’%

 LSBGreedy outperforms baselines that fail to ...
— adapt weights (no personalization)
— address the exploration—exploitation tradeoff
— model diversity explicitly



Other results on online submodular optimization

e Online submodular maximization

— No (1-1/e) regret for ranking, matroids
Streeter, Golovin, Krause 2009, 2014]

— Kernelized submodular bandits
Chen, Krause, Karbasi ‘2017]

— Online continuous submodular optimization
[Chen, Hassani, Karbasi ‘2018]

* Online submodular coverage

— Min-cost / Min-sum submodular cover

[Streeter & Golovin NIPS 2008, Guillory & Bilmes NIPS
2011]

* Online Submodular Minimization
— Unconstrained [Hazan & Kale NIPS 2009]
— Constrained [Jegelka & Bilmes ICML 2011]
e See also the ,submodular secretary problem*

55



Active learning / diagnosis

s 1 .:..’:»

Is there a notion of submodularity for
sequential decision tasks?



Problem Statement

Given:

* |tems (tests, experiments, unlabeled ex., ...) V={1,...,n}

* Associated with random variables X,,..., X, taking values in O
* Objective: f:2V x OV - R

Want: Policy m that maps observation X, to next item

Value of policyn:  F(m) = Z P(xy)f(m(xy),xv)

\

Tests run by &

Want 7 € argmax F'(m) if world in state x,,
7| <k

NP-hard (also hard to approximate!)

57



Adaptive greedy policy

* Suppose we’ve seen X, = x,

* Conditional expected benefit of adding item s:

A(s | x4) =E Lf(A U {s}.xv) — f(A,xv)

| XA}
]

Y

Adaptive Greedy policyBenefitif worldin s
Start with 4 = ()

Fori=1:k
_ Pick s € argmax A(s | x4)

S

— Observe Xs, = Ts,

ate Xy

/

Conditional on
observations X,

When does this adaptive greedy policy work? 58



Adaptive submodularity

Adaptive monotonicity:
A(s|x4)>0 Xg Observes
more than X,
Adaptive submodularity: \\
A(s \ XA) > A(s | XB) whenever x4 < xpg

z selected
. JJ;E) actions/tests/items

stochastic
~outcome Q

v\ \ O Q Gain more

Gain less

59



Adaptive submodularity

Theorem: If f is adaptive submodular and adaptive
monotone w.r.t. to distribution P, then

F(T‘-Greedy) Z (1 — 1/€)F(7TOPT)

Strictly generalizes (Nemhauser, Wolsey & Fisher '78)

Many other results can be “lifted” to the adaptive setting

60



From sets to policies
Submodularity > Adaptive submodularity

Applies to: set functions

Ap(s|A) = F(AU {s}) = F(A)

Ap(s|A) >0
ACB = Ap(s| A) > Ap(s | B)

max F'(A)
A
Greedy algorithm provides
 (1-1/e) for max. w card. const.
 1/(p+1)for p-indep. systems
e log Q for min-cost-cover

e 4 for min-sum-cover

policies, value functions

Ap(s | xa) = E[f(A U{sh,xv) — f(A,xy) | XA]

Ap(s|xa)>0
x4 XxXp = Ap(s|xa) > Ap(s|xp)

max F'(7)

Greedy policy provides

e (1-1/e) for max. w card. const.
« 1/(p+1) for p-indep. systems

* log?Q for min-cost-cover*

e 4 for min-sum-cover g,



Optimal Diagnosis
* Prior over diseases P(Y)
* Deterministic test outcomes P(Xy, | Y)

 How should we test to
eliminate all incorrect hypotheses?

‘mass ruled out

A(t | xa) = E [by ¢ if we
know x4
“Generalized binary search”

Equivalent to max. infogain




OD is Adaptive Submodular

bg := ]}D(( ) Objective = probability mass of hypotheses
you have ruled out.

go := P(D)

A(s | {}) = ol

go + bo
bl = ]P( K_)
Test w
g1 :=P( ")
2g1b1
A(s | Xpw) = g1 + by Outcome = 1

bo > b1, go > g1

Not hard to show that A(S | {}) > A(S ‘ Xv,w) 63



Application: Touch-based localization

f

64



Application: Adaptive teaching

[Hunziker, Singla et al, arXiv 2018]

toy dessert

Spielzeug Nachtisch

Given limited instruction time and multiple concepts
to learn, what is a good learning schedule?

How should we adapt the learning schedule based on
the learner‘s performance history?

65



Sequential decision making with SFs

Adaptive submodularity / interactive submodular cover
Online learning with submodular functions
Submodular secretary problems

Streaming algorithms for submodular optimization

Submodular functions over sequences



Continuous Submodularity
and non-convex optimization



Submodularity more generally

e |attices and continuous functions

fx)+ fly) = flzVy)+ flzAy)

subclass: diminishing returns (DR) - submodular fn’s

* Many optimization results generalize

(Milgrom-Shannon 94; Topkis 98; Murota 03; Kapralov-Post-Vondrak 10; Soma et al 2014-16; Bach 2015;
Ene & Nguyen 2016; Bian-Mirzasoleiman-Buhmann-Krause 16)



Characterizations - Overview

Condition Submodular f(+) Convex g(+),A € [0,1]
0" order | F(x) + f() = f(xvy) + fxAy) | IO+ L TP
— >gix+ (1 -2y
1st order weak DR (Diminishing Returns) gy)—gx) ={Vgx),y — x)
62
2nd order f) <0,Vi+#]j V2g(x) = 0 (PSD)
6xl-6xj

V: coordinate-wise max. (“JOIN” in lattice theory)
A: coordinate-wise min. (“MEET” in lattice theory)

y xXVy XAy

N
)0
BE N
3 4 3 DR-sabmodulare. oo

X
2
0
4

69



Submodular & DR-Submodular

1
flx) = ExTHx +hTx +c,

%

-1 -2 :
’ ' H = [_2 _1], eigenvalues: ()
‘ Submodular
DR<Submodula
Condition Submodular f(-) DR-Submodular f'(+)
f'e)+ ')

fx)+ f(y) / ’
O order S xvy) 4 [ (xAY)
=2 fxvy)+fxny) & coordinate-wise concave

1st order weak DR DR

02 (x) 0%f'(x)

2nd order <0,Vi+#]
axlax] l J 0xl(3x]

<0,Yi,j

70



1st Order Condition — Diminishing Returns

weak DR: va < b, Vis.t. a; = b; ,Vk = 0, it holds,

f(ke; +a) - f(a) = f(ke; + b) — f(b)

why called 15t order? implies the relation between the
directional derivatives in directions e; : 7, f (a) = V., f (b)

Lemma: Submodularity & weak DR

Applies for all submodular set, integer-lattice and
continuous functions

DR: YVa<b,Vi, Vk=0, it holds,
f(ke;+a)— f(a) = f(ke; + b) — f(b)

71



Relation to Non-Convex Optimization

In general, only guarantee converging to stationary points
assuming smoothness

Continuous Submodular Optimization: constant approximation
guarantees with poly. algorithms

Convex Continuous Submodular Non-convex

72



A Summary of Main Results

Can minimize in polynomial time
[Bach “15]

Monotone DR-submodular max.
with down-closed convex constraints
[Bian-Baharan-Buhmann-Krause ‘17]

Non-monotone DR-submodular max.
with down-closed box constraints
[Bian-Buhmann-Krause ‘18]

Non-monotone DR-submodular max.
with general convex constraints
[Bian-Levy-Krause-Buhmann ‘“17]

- Based on generalization of Lovasz-
extension

- Hardness result: 1 — 1/e (unless RP=NP)
- Optimal algorithm: A Frank-Wolfe Variant

- Hardness result: 1/2 (unless RP=NP)
- Optimal algorithm: DR-DoubleGreedy

- Hardness result: Open problem
- Shrunken Frank-Wolfe: 1/e guarantee



What we did not cover

Stochastic submodular optimization
Learning submodular functions
— Uniform approximation, PMAC model, optimization from samples

Game theory
— Equilibria in cooperative (supermodular) games / fair allocations
— Price of anarchy in non-cooperative games
— Mechanism design with submodular optimization
— Solving submodular matrix games
Generalizations of submodular functions
— Bi-submodularity, tree-submodularity
— Discrete convex analysis
— XOS/Subadditive functions
— Continuous submodular optimization
Solving non-submodular problems via submodularity
— Submodularity ratio / supermodular degree
— Submodular surrogates
— Submodular/supermodular procedure



Conclusions

Discrete optimization abundant in ML applications

Fortunately, some of those have structure:
submodularity

Submodularity can be exploited to develop efficient,
scalable algorithms with strong guarantees

Can handle complex constraints

Useful for probabilistic inference, deep learning,
Interactive learning (online, adaptive, ...), ...
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