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Advanced Topics

• Submodularity and probabilistic inference
• Submodularity and deep learning
• Submodularity and interactive learning
• Submodularity and non-convex optimization



Submodularity and
probabilistic inference



From optimization to distributions
Instead of optimization, we take a probabilistic approach
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Use case: learning from data
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Example: Log-supermodular distributions
Attractive Ising model, Higher-order potentials

[c.f., Boros & Hammer ’02, Taskar et al ’04, Kohli et al ‘09]
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Log-supermodular è Marginals?



P (S) / exp log |KS,S |

Example: Log-submodular distributions
Determinantal point processes [Macchi ’75; Kulesza & Taskar ’12]
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(Macchi 75, Feder-Mihail 82, Borodin 02, Deshpande-Rademacher-Vempala-Wang 06, Borcea-Bränden 09, 
Borcea-Bränden-Liggett 09, Kulesza-Taskar 12, Anari-Oveis Gharan-Rezaei 16, Li-Jegelka-Sra 16, …)



General discrete probabilistic models

Relation to other discrete prob. models
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Key challenge:
Compute normalizing constant (partition function)

#P-hard for both log-sub/supermodular distributions
Hard to approximate in both cases as well
[Goldberg & Jerrum ’07, Sly & Sun’12]
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Existing approximate approaches
For low-order models (|Ci| small, typically = 2),

many heuristics for approximating Z:
– Mean-field and variants
– Belief propagation / sum-product and variants

Running time exponential in model order (maxi |Ci|)
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Variational Inference

All distributions

Tractable family

[Djolonga]



Approximate Inference in General PSMs
[Djolonga & K. ‘14,‘15,‘16]

Variational approach to inference in log-sub/supermodular 
distributions and beyond
– Tractable optimization independent of model order
– Provides upper and lower bounds on Z
– Some guarantees on accuracy of log Z
– For log-supermodular distributions, shares mode

(i.e., preserves MAP configuration)
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Our workhorse: modular functions
• Additive submodular functions:

• Correspond to completely factorized distributions, 
with marginals

and analytic partition function 
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Sub- and superdifferentials
• Similar to convex functions, submodular functions have 
subdifferentials [c.f. Fujishige ‘91]

• But they also have superdifferentials [c.f. Iyer, Jegelka, Bilmes’13]



Semigradient polyhedral structure

Courtesy: Jeff Bilmes

Use in optimization: [Jegelka & Bilmes `11, Iyer et al. ICML `13]



Key idea
Elements from the sub/superdifferentials bound F

and hence yield bounds on the partition function

We optimize over these upper and lower bounds



Sub- and superdifferentials



Subgradients of submodular functions

• Exponential-size description L

• Efficient O(n log n) linear optimization J [Edmonds/Fujishige]
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Optimizing over subgradients

For any X, and any , get a bound on Z:

To get best bound, need to optimize over X and
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Recall: Lovász extension
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Theory: Variational inference in 
log-supermodular distributions

Theorem [Djolonga, K ‘15]: The following are equivalent:

Regularized Lovász extension f (aka min-norm-point) 
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Illustration: Renyi divergence

Inclusive Exclusive

[Djolonga]



Proof sketch (i) ó (ii)
Can show: Min. of attained at ,

and s restricted to 
base polytope BF

For the resulting problem:
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Connection to min-norm point (MNP) problem

Optimizing variational bound     Min-norm-point problem!

Algorithmic implications:
– Solvable in strongly polynomial time via poly. many 

SFMin, or pseudo-polynomial time via Fujishige-
Wolfe’s algorithm [Chakrabarty et al ‘14]

– In practice fast algorithms based on convex 
optimization, exploiting special structure 
[e.g., Jegelka et al ’13, Nishihara et al ’14]

Corollary: Thesholding the solution at ½ gives a 
MAP configuration (i.e., approximation shares mode)
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Application: Image Segmentation
[Zhang, Djolonga, Krause, ICCV’15; MSRC-21 data]
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Submodularity and
Deep Learning



Data-driven decision making
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Data-driven decision making

How can we reason about 
making complex (combinatorial) 

decisions from data?
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Motivation: Structured prediction 
[Lafferty et al ‘01, Collins ‘02, Taskar ‘04, Tsochantaridis et al ’05, …]

32

x1

xn

S1

Sn

...
...

Si = argmin
S

F (S | xi, ✓)

E.g., minimum cut

F (S) =
X

i2S

vi +
X

i2S,j /2S

wi,j +
X

`

�`(|S \ C`|)



Motivation: Attention / Interpretability
[Mnih et al’14, Martins & Astudillo’16, Niculae & Blondel ’17, …]

Task: Given text T and hypothesis H predict
whether T entails H: 
– T = “A band is playing on a stage at a concert and the 

attendants are dancing to the music” 
– H = “No one is dancing”

Want “Interpretability”: Besides predicting the answer, tell 
me which sparse subset S of input is most relevant:
– Rationale: “attendants are dancing”

33



Attention ≅ input dependent sparsity
[Mnih et al’14, Martins & Astudillo’16, Niculae & Blondel ’17, …]
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x 7! g(xS ; ✓)
Sparse 
estimation

“Attention” x 7! g(xS(x;✓1); ✓2)



Differentiable Discrete Optimization
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x F S⇤ = argmin
S

F (S)

e.g., min-cut, MST, etc.

x S⇤
x S⇤

Differentiable! J
✓

è Train model end-to-end (via backpropagation and SGD)

y



Smoothing via probabilistic modeling

• Log-likelihood of S provides differentiable objective! J
• Key challenge: Normalizer 𝒵 is typically intractable! L

• Can we leverage structure of the discrete problem to 
obtain efficiently computable differentiable objectives?
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E.g., submodular minimization Log-supermodular distribution
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Differentiable learning of Submodular Functions
[with Djolonga, NIPS 2017]

Given data  and 
parametrized family of functions, want  

Want to learn parameters to maximize a posteriori 
probability under variational approximation Q
We show how to compute gradients of this 
objective 37
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Variational inference in PSMs
Theorem [Djolonga, K ‘15]: The solution of

Isotonic regression

Key challenge: Argmin differentiation of isotonic regression!
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Isotonic Regression
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Isotonic Regression
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Differentiable learning of PSMs
Theorem:  If exists for all ,
then the approximate Jacobians  

are independent of    .  Can multiply in linear time.

Theorem: Under some conditions* the approximation 
is exact!

Theorem: For mixtures  

can* compute the exact Jacobian in polynomial time
41
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Application: Segmentation
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without with SFMin layer

CNN CNN+
SFMin

Acc. .81 .91
NLL .39 .27

Trained on only 0.1% 
of labeled pixels!



Application: Textual entailment
[Niculae and Blondel NIPS ’17]

• Fusedmax attn. mechanism of Niculae and Blondel
is a special case, obtained by concatenating 2 
SFMin layers

• Task: Does sentence T entail hypothesis H
(here H=“no one is dancing”)
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Differentiable submodular maximization

• Similar results for submodular maximization 
[with Tschiatschek, Sahin, IJCAI’18]

• Key idea: Directly define a distribution over sets 
through the (double) greedy algorithm

• Tractable, differentiable likelihood 
è Gradient-based learning!

• Applications to recommender systems and image 
collection summarization



Submodularity and
Interactive Learning



Learning to optimize submodular functions

• Online submodular optimization
– Learn to pick a sequence of sets to maximize a 

sequence of (unknown) submodular functions
– Application: Making diverse recommendations

• Adaptive submodular optimization
– Gradually build up a set, taking into account

feedback
– Application: Experimental design / Active

learning / Active Teaching / ...
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News recommendation

47



Application: Diverse Recommendations

“Google to DOJ: Let us prove to users that NSA isn't snooping on them”
“US tech firms push for govt transparency on securityReuters”
“Internet Companies Call For More Disclosure of Surveillance”
“NSA scandal: Twitter and Microsoft join calls to disclose data requests”
“NSA Secrecy Prompts a Pushback”

“Google to DOJ: Let us prove to users that NSA isn't snooping on them”
“Storms Capable of Producing Derecho Possible in Midwest Today”
“Ohio kidnap suspect pleads not guilty”
“Five takeaways from Spurs-Heat in Game 3 of the NBA Finals”
“Samsung Unveils Galaxy S4 Zoom With 16MP Camera”

Prefer recommendations that are both relevant and diverse
[Yue]



Simple model
• We‘re given a set of articles
• Each round:
– A user appears, interested in a subset of the articles
– We recommend a set of articles
– The user clicks on any displayed article that she is

interested in

• Goal: Maximize the total #of clicks
• Challenge: 
– We don‘t know which articles the user is interested in!
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Online maximization of submodular functions
[Streeter, Golovin NIPS ‘08]

Goal: Want to choose A1,…At s.t. the regret

grows sublinearly, i.e., 

For k=1, many good algorithms known! J
But what if k>1?
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Online Greedy Algorithm
[Streeter & Golovin, NIPS `08] 

Replace each stage of greedy algorithm with a 
multi-armed bandit algorithm.

a1 a2 a3 akSelect {     ,                 ,                ,    … ,                }     .

Feedback to       for action aj is (unbiased est. of)  
Ft({a1, a2, …, aj-1, aj}) – Ft({a1, a2, …, aj-1})  
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Ft(A)�O
⇣
nT 2/3

⌘
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Online maximization of submodular functions
[Streeter, Golovin NIPS ‘08]

Theorem 
Online greedy algorithm chooses A1,…,AT s.t.
for any sequence F1,…,FT

Can get ‘no-regret’ over greedy algorithm in hindsight
I.e.,	can	learn	``enough’’	about	F	to	optimize	greedily!



Stochastic linear submodular bandits
[Yue & Guestrin ‘11]

• Basic submodular bandit algorithm has slow convergence
• Can do better if we make stronger assumptions
– Submodular function is linear combination of m SFs

– We evaluate it up to (stochastic) noise*

è LSBGreedy algorithm

53

F (S) =
mX

i=1

wiFi(S)
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*some independence conditions



User Study [Yue & Guestrin ’11]

• Real data: >10k articles
• T=10 days, rec.  10 articles per day

• 27 users rate articles, aim to maximize #likes 

• LSBGreedy outperforms baselines that fail to …
– adapt weights (no personalization)
– address the exploration—exploitation tradeoff
– model diversity explicitly

“Google to DOJ: Let us prove to users that NSA isn't snooping on them”
“Storms Capable of Producing Derecho Possible in Midwest Today”
“Ohio kidnap suspect pleads not guilty”
“Five takeaways from Spurs-Heat in Game 3 of the NBA Finals”
“Samsung Unveils Galaxy S4 Zoom With 16MP Camera”



Other results on online submodular optimization
• Online submodular maximization
– No (1-1/e) regret for ranking, matroids

[Streeter, Golovin, Krause 2009, 2014]
– Kernelized submodular bandits

[Chen, Krause, Karbasi ‘2017]
– Online continuous submodular optimization

[Chen, Hassani, Karbasi ‘2018]
• Online submodular coverage
– Min-cost / Min-sum submodular cover

[Streeter & Golovin NIPS 2008, Guillory & Bilmes NIPS 
2011]

• Online Submodular Minimization
– Unconstrained [Hazan & Kale NIPS 2009]
– Constrained [Jegelka & Bilmes ICML 2011]

• See also the „submodular secretary problem“
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Active	learning	/	diagnosis

Is	there	a	notion	of	submodularity for
sequential	decision	tasks?

160

... ...... ...
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Problem	Statement
Given:
• Items	(tests,	experiments,	unlabeled	ex.,	…)			V={1,…,n}
• Associated	with	random	variables	X1,…,Xn taking	values	in	O
• Objective:

Want:	Policy	π that	maps	observation	xA to	next	item

Value	of	policy	π:

Want

NP-hard (also	hard	to	approximate!)
57

Tests	run	by	π
if	world	in	state	xV

f : 2V ⇥OV ! R



Adaptive	greedy	policy
• Suppose	we’ve	seen	XA =	xA.
• Conditional	expected	benefit of	adding	item	s:

Adaptive	Greedy	policy:
Start	with	
For	i =	1:k
– Pick
– Observe	
– Set
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A = ;

When does this adaptive greedy policy work?

Benefit if world in state xV

�(s | xA) = E
h
f(A [ {s},xV )� f(A,xV ) | xA

i

Conditional on 
observations xA



Adaptive	submodularity
Adaptive monotonicity:

Adaptive submodularity:

59

xB observes 
more than xA

whenever 

�(s | xA) � 0

Gain less

Gain more

selected
actions/tests/items

stochastic
outcome

(Golovin &	Krause	’10,	’11)



Theorem:	If	f is	adaptive	submodular and	adaptive	
monotone	w.r.t.	to	distribution	P,	then

60

Strictly	generalizes	(Nemhauser,	Wolsey	&	Fisher	’78)

Many	other	results	can	be	“lifted” to	the	adaptive	setting

F (⇡Greedy) � (1� 1/e)F (⇡OPT)

Adaptive	submodularity

(Golovin &	Krause	’10,	’11)



From sets to policies

Applies to: set functions

Greedy algorithm provides
• (1-1/e) for max. w card. const.
• 1/(p+1) for p-indep. systems
• log Q for min-cost-cover
• 4 for min-sum-cover

policies, value functions

Greedy policy provides
• (1-1/e) for max. w card. const.
• 1/(p+1) for p-indep. systems
• log2 Q for min-cost-cover*
• 4 for min-sum-cover 61

A ✓ B ) �F (s | A) � �F (s | B) xA � xB ) �F (s | xA) � �F (s | xB)

Submodularity Adaptive	submodularity

max

A
F (A)

max

⇡
F (⇡)

�F (s | xA) � 0�F (s | A) � 0

�F (s | A) = F (A [ {s})� F (A) �F (s | xA) = E
h
f(A [ {s},xV )� f(A,xV ) | xA

i



Optimal	Diagnosis
• Prior	over	diseases	P(Y)
• Deterministic	test	outcomes	P(XV |	Y)

• How	should	we	test	to	
eliminate	all	incorrect	hypotheses?

“Generalized	binary	search”
Equivalent	to	max.	infogain
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Y
“Sick”

X1
“Fever”

X2
“Rash”

X3
“Cough”

X1=1 X3=0

X2=1X2=0



OD	is	Adaptive	Submodular

63

Objective	=	probability	mass	of	hypotheses	
you	have	ruled	out.

Outcome = 1Outcome	=	0

Test	s

Test	w
Test	v

�(s | {}) = 2g0b0
g0 + b0

�(s | xv,w) =
2g1b1
g1 + b1

�(s | {}) � �(s | xv,w)Not hard to show that



Application: Touch-based localization
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(Chen-Javdani-Karbasi-Bagnell-Srinivasa-Krause ‘15)
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Given limited instruction time and multiple concepts
to learn, what is a good learning schedule?

How should we adapt the learning schedule based on 
the learner‘s performance history?

Spielzeug Nachtisch

Application: Adaptive teaching
[Hunziker, Singla et al, arXiv 2018]



Sequential decision making with SFs
• Adaptive submodularity / interactive submodular cover

(Golovin & Krause’10; Guillory & Bilmes’10)

• Online learning with submodular functions
(Golovin & Streeter ‘08; Hazan & Kale ’09)

• Submodular secretary problems 
(Bateni-Hajiaghayi-Zadimoghaddam’09)

• Streaming algorithms for submodular optimization
(Gomes & Krause’10, Chakrabarti & Kale’13, Badanidiyuru-
Mirzasoleiman-Karbasi-Krause’14)

• Submodular functions over sequences
(Zhang-Wang-Chong-Pezeshki-Moran’13; 
Tschiatschek-Singla-Krause’17)



Continuous Submodularity
and non-convex optimization



• Lattices and continuous functions

subclass: diminishing returns (DR) – submodular fn’s

• Many optimization results generalize

Submodularity more generally

(Milgrom-Shannon 94; Topkis 98; Murota 03; Kapralov-Post-Vondrak 10; Soma et al 2014-16; Bach 2015; 
Ene & Nguyen 2016; Bian-Mirzasoleiman-Buhmann-Krause 16) 



Characterizations - Overview

Condition Submodular 𝑓($) Convex 𝑔($), 𝜆 ∈ [0,1]

0th order 𝑓 𝒙 + 𝑓 𝒚 ≥ 𝑓 𝒙 ∨ 𝒚 + 𝑓(𝒙 ∧ 𝒚) 𝜆𝑔 𝒙 + 1 − 𝜆 𝑔 𝒚
≥ 𝑔(𝜆𝒙 + 1 − 𝜆 𝒚)

1st order weak DR (Diminishing Returns) 𝑔(𝒚) − 𝑔(𝒙) ≥ 𝛻𝑔 𝒙 , 𝒚 − 𝒙

2nd order
𝜕7𝑓 𝒙
𝜕𝑥9𝜕𝑥:

≤ 0, ∀𝑖 ≠ 𝑗 𝛻7𝑔 𝒙 ≽ 0		(PSD)
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Submodular

Concave Convex

DR-submodular

∨:	coordinate-wise max. (“JOIN” in lattice theory)
∧:	coordinate-wise min.  (“MEET” in lattice theory)

𝒙

2
0
4

𝒚

1
2
3

𝒙 ∨ 𝒚

2
2
4

𝒙 ∧ 𝒚

1
0
3



Submodular & DR-Submodular

Submodular

Concave Convex

DR-submodular
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Condition Submodular 𝑓($) DR-Submodular 𝑓′($)

0th order 𝑓 𝒙 + 𝑓 𝒚
≥ 𝑓 𝒙 ∨ 𝒚 + 𝑓(𝒙 ∧ 𝒚)

𝑓′ 𝒙 + 𝑓′ 𝒚
≥ 𝑓′ 𝒙 ∨ 𝒚 + 𝑓′(𝒙 ∧ 𝒚)

& coordinate-wise concave
1st order weak DR DR

2nd order
𝜕7𝑓 𝒙
𝜕𝑥9𝜕𝑥:

≤ 0, ∀𝑖 ≠ 𝑗
𝜕7𝑓′ 𝒙
𝜕𝑥9𝜕𝑥:

≤ 0, ∀𝑖, 𝑗

𝑓 𝒙 =
1
2𝒙

F𝐻𝒙 + ℎF𝒙 + 𝑐,

𝐻 = 	 −1 −2
−2 −1 , eigenvalues: J

KL



1st Order Condition – Diminishing Returns
weak DR: ∀𝒂 ≤ 𝒃, ∀𝑖	𝑠. 𝑡. 	𝑎9 = 𝑏9	, ∀𝑘 ≥ 0,	 it holds,

𝑓 𝑘𝒆9 + 𝒂 − 𝑓 𝒂 ≥ 𝑓 𝑘𝒆9 + 𝒃 − 𝑓 𝒃

why called 1st order? implies the relation between the
directional derivatives in directions 𝒆9	: 𝛻𝒆V𝑓 𝒂 ≥ 𝛻𝒆V𝑓(𝒃)

Lemma: Submodularity ⇔ weak DR
Applies for all submodular set, integer-lattice and
continuous functions

71

DR: ∀𝒂 ≤ 𝒃, ∀𝑖, 			 ∀𝑘 ≥ 0,	 it holds,
𝑓 𝑘𝒆9 + 𝒂 − 𝑓 𝒂 ≥ 𝑓 𝑘𝒆9 + 𝒃 − 𝑓 𝒃



Relation to Non-Convex Optimization

• In general, only guarantee converging to stationary points
assuming smoothness

• Continuous Submodular Optimization: constant approximation 
guarantees with poly. algorithms
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Continuous Submodular Non-convexConvex



A Summary of Main Results

Can minimize in polynomial time
[Bach ‘15]

- Based on generalization of Lovász-
extension 

Monotone DR-submodular max. 
with down-closed convex constraints
[Bian-Baharan-Buhmann-Krause ‘17]

- Hardness result: 1 − 1/𝑒 (unless RP=NP)
- Optimal algorithm: A Frank-Wolfe Variant 

Non-monotone DR-submodular max. 
with down-closed box constraints

[Bian-Buhmann-Krause ‘18]

- Hardness result: 1/2 (unless RP=NP)
- Optimal algorithm: DR-DoubleGreedy

Non-monotone DR-submodular max. 
with general convex constraints
[Bian-Levy-Krause-Buhmann ‘17]

- Hardness result: Open problem
- Shrunken Frank-Wolfe: 1/𝑒 guarantee



What we did not cover
• Stochastic submodular optimization
• Learning submodular functions

– Uniform approximation, PMAC model, optimization from samples
• Game theory

– Equilibria in cooperative (supermodular) games / fair allocations
– Price of anarchy in non-cooperative games
– Mechanism design with submodular optimization
– Solving submodular matrix games

• Generalizations of submodular functions
– Bi-submodularity, tree-submodularity
– Discrete convex analysis
– XOS/Subadditive functions
– Continuous submodular optimization

• Solving non-submodular problems via submodularity
– Submodularity ratio / supermodular degree
– Submodular surrogates
– Submodular/supermodular procedure



Conclusions
• Discrete optimization abundant in ML applications
• Fortunately, some of those have structure: 

submodularity
• Submodularity can be exploited to develop efficient, 

scalable algorithms with strong guarantees
• Can handle complex constraints
• Useful for probabilistic inference, deep learning, 

interactive learning (online, adaptive, …), …
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