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Semantic Segmentation
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How can we map pixels to objects?




Document Summarization

How can we select
representative sentences?



Network inference
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How can we learn who influences whom?




What’‘s common?

¢ Can be formalized as optimizing a set function F(S)
under constraints

e Generally very hard
o Structure helps: We'll see that if F(S) is submodular,

e can solve maximization and minimization problems with
strong guarantees

e can solve learning problems involving submodular functions

¢ You'll learn about theory and applications



Outline

o What is submodularity?
¢ Properties of submodular functions

¢ Optimization
¢ Minimization
¢ Maximization

¢ Learning
o Learning for Optimization



Running example: Sensor placement
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Want to place sensors to monitor temperature



Set functions

o] =l
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L

o Finite setV={1,2,...,n} % Bk i
PR |
» Set function F:2V - R oo @ o

o Will always assume F({}) = 0 (w.l.0.g.)

¢ Assume black-box that can evaluate F for any input A

e Approximate (noisy) evaluation of F is ok



Example: Sensor placement

Utility F(A) of having sensors at subset A of all locations
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A={1,2,3}: Very informative A={1,4,5}: Redundant info
High value F(A) Low value F(A)
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Marginal gains

» Given set function F :2¥ — R

¢ Marginal gain:

Ar(s|A) = F({s}UA)

New sensor s

— (A

10



Submodularity: Decreasing marginal gains

PIacementA-{l 2} Placement B = {1,...,5}
@gé i@ sk K@% i@
%% T\ i Zig
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v i {5‘5—_‘- ﬂ © 3@
oo B o o e - -

Adding s will help a lot! Q Adding s doesn’ t help much
New sensor s

Submodularity: te S‘<arge improvement|
T o S<Sma|limprovement I

For AC B: F(AU{s}) — F(A) > F(BU {s}) — F(B)
A(s|A) = A(s | B) 11




Alternative characterizations

o Set function F on V is called submodular if
VA, BCV:F(A)+ F(B) > F(AUB)+ F(AN B)

) +

¢ Equivalent diminishing returns haracterlzatlon

Large improvement |

L d gma improvement |
VACBCV,s¢B: - > N\maLmerovement

F(AU{s}) — F(BU{s})—
A(s | A) A(s | B)
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Questions

How do | prove my problem is
submodular?

Why is submodularity useful?

13



Example: Set cover
Place sensors \ Want to cover floorplan W|th discs
in building P055|ble}

location
v 5\% o8
ﬁ ?’ & >
o
o

Node predicts For AC V: F(A) = “area
values of positions covered by sensors placed at A”
with some radius
y Formally:

W finite set, collection of n subsets S, & W
For AC V define F(A) = [Ugc 4 Si|

14



Set cover is submodular

. A={S,,S,}

®

% ¢

% ;

. \ F(A U {S’ })-F(A)
>

0008 & 0

3 ’ / F(B U {S’ })-F(B)

B = {51152153154}
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More complex model for sensing

|

[

:

/Yﬂ-ﬂr h Y.: temperature

Joint probability distribution
P(Xl,...,Xn,Yl,...,Yn) = P(Yl,...,Yn) P(Xl,...,X

at location s

X,: sensor value
at location s

X, =Y, + noise

| YyuoosY,)

n

H_j\ d
Y

Prior

Likelihood

16



Example: Sensor placement

Utility of having sensors at subset A of all locations

F(A) = H(Y) — H(Y | X4)

Uncertainty Uncertainty
about temperature Y about temperature Y
before sensing after sensing

;3@1 L i | 0
T e L B

A={1,2,3}: High value F(A) A={1,4,5}: Low value F(A)

17



Example: Submodularity of info-gain

YooY Xq, oo, X discrete RVs
F(A) = I(Y; XA) = H(Y)-H(Y | XA)

e F(A) is NOT always submodular

Theorem [Krause & Guestrin 05]
If X, are all conditionally independent given'Y,
then F(A) is submodular!

18



Proof: Submodularity of information gain

YooY Xq, oo, X discrete RVs
F(A) = 1(Y; Xa) = H(Y)-H(Y | X,)
Variables X independent given Y

F(A U {s}) - F(A) = H(X,[X,) = H(X,]Y)
H_J W_/
Nonincreasing in A: Constant
A C B H(X|Xa) 2 H(X[Xg)  (indep. of A)

information never hurts”

A(s | A) = F(A U {s})-F(A) monotonically nonincreasing
< F submodular ©

19



breakfast??

\ 

Example: costs

i cost:

time to reach shop
+ price of items

ground set V'

5

each item
1€

20



Example: costs

o -
ti

me to shop
??
breakfast?: + price of items

F( 1 «g) = cost( T)+ cost(q,g)
=t,+1 + t, +2

= #shops + Hitems

submodular?

21



Shared fixed costs
A(b|A)

A(b|B) =

=1+1

marginal cost: #new shops + #new items

diminishing =» cost is submodular!

 shops: shared fixed cost
e economies of scale

22



Another example: Cut functions

4 O)
2
0 C

(b
N

1%

2

©
g

L G (@ V={a,b,c,defgh}

Cut function is submodular!
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Why are cut functions submodular?

S

F..(S)

U

{a}

0
W
W
0

QOO |
27 P e
»e &G ubmodu
@a.ia o

F(S)= Y. Fu(Sn{ig))

ar if w = 0!

(4,J)EE |

Cut function in subgraph {i,j}
=» Submodular!

24



Closedness properties

F,,....F,, submodular functionson Vand A,...,.A_ >0
Then: F(A) = ). A F.(A) is submodular

Submodularity closed under nonnegative linear
combinations!

Extremely useful fact:
o F4(A) submodular = >, P(0) F4(A) submodular!

e Multicriterion optimization:
F,,...,F.. submodular, >0 = Y A F.(A) submodular

¢ A basic proof technique! ©

25



Other closedness properties

e Restriction: F(S) submodular on V, W subset of V
Then F’(S) = F(SNW) issubmodular

26



- Other closedness properties

e Restriction: F(S) submodular on V, W subset of V
Then F’(S) = F(SNW) issubmodular

¢ Conditioning: F(S) submodular on V, W subset of V
Then F'(S)=F(SUW) issubmodular

27



Other closedness properties

e Restriction: F(S) submodular on V, W subset of V
Then F’(S) = F(SNW) issubmodular

¢ Conditioning: F(S) submodular on V, W subset of V
Then F'(S)=F(SUW) issubmodular

o Reflection: F(S) submodular on

Then F’(S) — F(V \ S) is submodular

28



Convex aspects

o Submodularity as discrete analogue of convexity
¢ Convex extension
¢ Efficient minimization !
¢ Duality of

¢ However, this is only one half of the story...

29



Concave aspects
» Marginal gain Ap(s|A)=F({s}UA) - F(A)

e Submodular:
VACB,s¢ B: F(AU{s})—F(A) > F(BU{s})— F(B)

e Concave:
Va<b, s>0 fla+s) — fla) > f(b+s) — f(b)

*

F(A) “intuitively”

Al 30



Submodularity and Concavity

Suppose g:N =22 R and F(A)=g(|A])
Then F(A) submodular ifand only if g is concave !

V'S

g(lAl)

Al
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Maximum of submodular functions

Suppose F,(A) and F,(A) submodular.
Is F(A) = max(F,(A),F,(A)) submodular?

V'S

F(A) = max(F,(A),F,(A))

>
Al

max(F,,F,) not submodular in general!
32



Minimum of submodular functions

Well, maybe F(A) = min(F,(A),F,(A)) instead?

Fi(A) | Fy(A)
{} 0 0
{a} 1 0
{b} 0 1
{a,b} |1 1

F({b}) - F({})=0

<

F({a,b}) - F({a})=1

min(F,F,) not submodular in general!

33



Two faces of submodular functions

Convex aspects
=» minimization!

Concave aspects
=» maximization!

34



What to do with submodular functions

Learnir@

35



Optimization

Lea rnir@

Online/
adaptive
optim.

Minimization and maximization not the same??

36



Submodular minimization

Lea rnir@

/

37



Submodular minimization

Lea rni@

Online/
adaptive
optim.

38



Submodular function minimization

Ban

clustering

MAP
inference

min £'(.5)
SCV

“yes, that’s true”

“that’s ...1?”

I

Structured
sparsity

oh
yes
./ true

that’s

Corpus

training set
extraction

39



Submodular function minimization

min F'(.5)
SCV

¢ polynomial-time?

=» submodularity and convexity

40



Set functions and energy functions

Can view any set function

F:2V 3R

CIo CIo) ks
||

equivalently as function on binary vectors:

F:{0,1}" - R

where |V|=n

41



Submodularity and Convexity

¢ Extension:
F:{0,1}" > R F:00,1" > R =
)
(o)
Lovasz extension @
f(r) = max x-y

yePr

convex \

* minimum of F isa minimum of f

=>» submodular minimization reduces to convex min

OOI—\ll—\

o 0o T o

42



The submodular polyhedron P,

Pr={reR":2(A) < F(A) forall ACV} Example:V ={a,b}

\ A |Fa)
r(A) = Z T T 0
i€ A {a} -1
{b} 2
{a,b} |0

1 X(b}
\ ST x({b}) < F({b})
P
F Al x({a,b}) < F({a,b})

> 1] 0] 1 Xg
\

'x({a}) = F({a})

43



Evaluating the Lovasz extension

Linear maximization over P, y* Xy
f(z) = max z'y 2[ 4,
y€ Py /
1
Exponentially many constraints!!! ® .
Computable in O(n log n) time © -2 - 0o 1
[Edmonds ‘70] X(a}

 Subgradient
e Separation oracle
* Central for optimization

44



Example Lovasz extension

0-85F(b,).,_ o

F(a,b)

R ' Fa)

: F(A)
{ ;
@ |1
b |8
{a,b} 5

45



Submodular function minimization

gngleF(S)

¢ polynomial-time?
¢ Yes -- ellipsoid algorithm: Grotschel, Lovasz, Schrijver "81

o Combinatorial algorithm?

Edmonds, Cunningham,...

lwata, Fujishige, Fleischer 01 Schrijver "00

lwata "03: O(n“T + n°logM) Orlin "09: O(n® + n°T)

T = time for evaluating F

“efficient” ...?

46



The submodular polyhedron P,

Pr={reR":2(A) < F(A) forall ACV} Example:V ={a,b}

\ A |Fa)
r(A) = Z T T 0
i€ A {a} -1
{b} 2
{a,b} |0

1 X(b}
\ ST x({b}) < F({b})
P
F Al x({a,b}) < F({a,b})

> 1] 0] 1 Xg
\

'x({a}) = F({a})

47



A more praCl'ical alternative? [Fujishige ” 91, Fujishige et al ‘11]

Base polytope: x({a,b})=F({a,b}) , y
7 {b}
Minimum norm point algorithm ¥k 2
1. Find x* = arg xrélg; 2|2 -11] 1
2. A* ={i | 2" (i) <0} R
-2 -1 0 1
X(a}
Theorem [Fujishige '91]:
A* is an optimal solution A F(A)
{} 0
{a} -1
b} 2
Runtime finite but worst-case complexity open {a,b} |0

48
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- LEX2 e gy < from DIMACS
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_ Minimum ]
' norm algorithm |

' >

64 128 256 512 1024
Problem size (log-scale!)

Minimum norm algorithm: usually O(n3) to O(n?)

=> orders of magnitude faster 29



Image segmentation

| ﬂ ;li’l"v A o i wé! lg.x

' \1-;4‘,51 A
¥

color,
texture, ...

MAP inference

smoothness

= energy minimization

50



Set functions and energy functions

Can view any set function

F:2V 3R

CIo CIo) ks
||

equivalently as function on binary vectors:

F:{0,1}" - R

where |V|=n

Conversely:
a function on binary variables is a set function!

51



Set functions & probabilistic models

¢ Maximum a posteriori: A

observations y: infer binary labels @ 1),
/+ VA
maximize 1— ;1} /Qy
. /Y \
p(z | y) o< exp(—E(x; y)) 0 BB,
h B
min FE(x;
& Join (75 y) o
if Fis submodular:
polynomial-time ©
& minimize

F(A) := E(ea; y)

52



Example: Sparsity

large

pixels wavelet
‘& coefficients
A BS (blue = 0)
d + ‘ k< d
wideband [ ’ r ( “ JPWL%’N'M g <Ta rge
onal 2
saS :ﬁr;?es L " c(iaet;g;feTnFt)s

Many natural signals sparse in suitable basis.
Can exploit for learning/regularization/compressive sensing...



Sparse reconstruction
min ||y — Mz||* +XQ(x)

e explain y with few columns
of M: few x;

discrete regularization on support S of x
Qz) = [lzflo =1[5]
relax to convex envelope

Qz) = |z

in nature: sparsity pattern often not random...

54



Structured sparsity

Incorporate tree preference in regularizer?

Set function:
X F(T) < F(S)

if Tis atree and S not

1SI=1T]

U ancestors(s)

seS

55



Structured sparsity

Incorporate tree preference in regularizer?

Set function:
F(T) < F(9)

¢ If Tis a tree and S not,
|S| =|T|

F(S) = U ancestors(s)

seS

L F(T)=3

56



Structured sparsity

Incorporate tree preference in regularizer?

Set function:

X F(T') < F(95)
1 If Tis atree and S not,
Function F is... |S| = |T]

submodular! ©

«— F(5) = U ancestors(s)
sesS

F(T)=3

57



Sparsity
min ||y — Mz||* +XQ(x)

e explain y with few e prior knowledge: patterns
columns of M: few x, . of nonzeros

discrete regularization on support S of x

e submodular function
Qz) = ||zllo =15] Q(z) = F(S)

relax to convex envelope
=» Lovasz extension
Qx) = ||z i Q(z) = f(|z))

e Optimization: submodular minimization

[Bach 10]

58



Further connections: Dictionary Selection

min ||y — Mz||* +2Q(z)

Where does the dictionary M come from?

Want to learn it from data: {yl, e ,yn} C R4

Selecting a dictionary with near-max. variance reduction
& Maximization of approximately submodular function
[Krause & Cevher “10; Das & Kempe "11]

59



More applications ...

Ban

clustering

6

X
/+
\ Ys
9/

2

\X
Y

Ys

x

-

/@
x4/' xs/
/+ /+
'\/Xw _ 8 _
Y
8

MAP
inference

=

5?; (X, G i;a
: { /+

/@ /@
p

“oh, yes!” oh
“ves ...”
yes
“True.”
‘ true
“yes, that’s true” e
" J’ I?” that’s
that’s ...1" \_/

Corpus
training set
extraction
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Special cases

Minimizing general submodular functions:
poly-time, but not very scalable

Special structure =» faster algorithms

¢ Symmetric functions
¢ Graph cuts
¢ Concave functions

¢ Sums of functions with bounded support

‘ L ]

61



Graph cuts

Cut(S) = > w(u,v)

ueS,v¢S

Given F, can we build a graph so that F(S) = Cut(S)?

Solving a Min-(s,t)-cut: efficient

general case: O(mn)
[Orlin"12]

special cases: linear-time

62



MAP inference as graph cut

minimize

E(asy) = ) Eiwi) +) . Fijlwi o))

in F(A) = in FE(x;
min F'(A) i (5 )

Cut(A) = E(ea; y)

Minimum energy = minimum cut! O(n)

[Boykov&Kolmogorov "04] 63




Which functions can be minimized as cuts?

¢ Functions of order two:

E(x) =)  Ei(z)+ Zij Eij(@s, ;)

Need regularity:

=» Each pairwise term must be submodular

[Queyranne, Picard&Ratliff,...]
64



But ...

~

Unary preferences
(texture)

+

Pairwise potentials

E(x) =
Z Ei(z;) + Z Eij(wi, z5)

sky

building

grass

65



P" potentials

pairwise higher-order

I
+

pairwise Sl
smoothness Grass
Potentials
+

) 17

Pixels in one tile
should take the
same label

[Kohli et al."09] 66



Enforcing label consistency

Pixels in a superpixel should have the same label

E(x) 4
Ymax '/ \

] >
000 000 O0O0
o000 @00 O0O0
o000 @00 O0O0

concave function of cardinality = submodular ©

> 2 arguments: Graph cut ??

67



Higher-order functions as graph cuts?

Zi Ez(x,,,) + Zij Ez'j(ZU,,;,CCj) -+ Zc EC(CI}C)

» works well for some particular  F.(x¢)
[Billionet & Minoux 85, Freedman & Drineas ‘05, Zivny & Jeavons "10,...]

¢ necessary conditions complex and
not all submodular functions equal such graph cuts [Zivny et al.'09]

General strategy:
reduce to pairwise case by adding auxiliary variables
A possibly many extra nodes in the graph

68



Fast approximate minimization

Not all submodular functions are graph cuts
Avoid adding too many extra nodes

10" | ‘ ]
tri fl minimum norm point algorithm ,+°
parametric maxriow ~ O(n?) .
[Fujishige & lwata 99] , \ o’
10° |
— iterative .27
2
approximate by a GEJ
series of graph cuts =
[Jegelka, Lin & Bilmes "11]




Other special cases

¢ Symmetric: F(S)=FV\S)
e Queyranne’s algorithm: O(n3) [Queyranne, 1998]
» Concave of modular: EF(S) = Zgi( Zw(s))
? sesS

[Kolmogorov "12, Stobbe & Krause "10, Kohli et al, '09]

¢ Sum of submodular functions, each bounded support

[Kolmogorov "12]

70



Submodular minimization

Lea rni@

Online/
adaptive
optim.

71



Submodular Minimization

¢ Polynomial time
o Empirically better: minimum-norm point algorithm
¢ Provably better: special cases (graph cuts, concave, ...)

What if we have constraints?

Hint: graph cuts are submodular functions...

limited cases doable:

 odd/even cardinality

e inclusion/exclusion of a set NP-hard

*  ring family polynomial lower bounds

General case:

72



Limitations of graph cuts

Graph cut

solution E(:C; y) — ZZ E; (372) +
el

Eij(xi,x;)

data fit

smoothn@ss prior:
cutin grid

 True boundary not “short”
* Local information scarce

instead: prefer congruous boundary =» look at entire cut at once

73



Graph cut as edge selection

t

minimize sum

= Zw(e)

ecC

=

s.t. C isacut

now:
prefer congruous cuts

minimize submodular function

F(C)

not a sum

of weights!
s.t. C isacut

74



Rewarding co-occurrence of edges

sum of weights:

submodular cost function:
use few edges

use few groups S; of edges

F(C) = ZZ Fi(CNS;)

cost

|A|
One group (13 edges)

Many groups  ( 6 edges) Optimization?

efficient iterative algorithm

75



Results

Graph cut
solution

Cooperative cut
solution

76



SFM & Combinatorial Constraints

matching path spanning tree

¥ E

.. with minimum cost

min w(e) ; > min F'(.5)

SeC SeC
ecS
4 )
General case: very hard. [Goel et al.’09, Iwata & Nagano "09, Jegelka & Bilmes '11,...]
L/Approximations:\)
\_ relaxation via Lovasz extension approximate F y

77



Submodular Minimization

Convex Lovasz extension )}
|
(High-order) polynomial time ‘/{}\ I

Empirically better: minimum-norm point algorithm
Provably better: special cases .i:;)?z;)r'

Constraints: gJ
usually hard problems =2 approximations

Applications: MAP inference, combinatorial regularizers,
clustering, ...

78




Optimization

Lea rnir@

/

79



Optimization

Online/

adaptive
optim.

Lea rnir@
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Submodular function maximization

covering summarization
max F'(.5)
feature SCV
selection
sensing

diversity

81



Two faces of submodular functions

Convex aspects
=» minimization!

Concave aspects
=» maximization!

82



Reminder: Diminishing returns

3 S0 A={5,5;}
o &
ceo v | T~ FaU (s )RR

@

o / F(B U {S’})-F(B)

B - {51,52,53,54}

®00@d &¢e0 0

F(A) “intuitively”

|Al
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Maximizing submodular functions

Minimizing convex functions: Minimizing submodular functions:
Polynomial time solvable! Polynomial time solvable!
Maximizing convex functions: Maximizing submodular functions:
NP hard! NP hard!
But can get

approximation
guarantees ©

84



Maximizing submodular functions

maximum
o Suppose we want for submodular F
A" = arg max F(A)st. ACV
o Example: | |A|

e F(A) = U(A) — C(A) where U(A) is submodular utility,
and C(A) is supermodular cost function

¢ In general: NP hard. Moreover:

o If F(A) can take negative values:
As hard to approximate as maximum independent set
(i.e., NP hard to get O(n'¢) approximation)

85



Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak ’09; Buchbinder, Feldman, Naor, Schwartz ’12]

Theorem
There is an efficient algorithm, that, given a positive

submodular function F, F({})=0, returns set A . such that
F(As) 2 1/2 max, F(A)

e picking a random set gives % approximation
(2 approximation if F is symmetric!)

e we cannot get better than %2 approximation unless P = NP

86



Optimization

Online/

adaptive
optim.

Lea rnir@
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Scalarization vs. constrained maximization

Given monotonic utility F(A) and cost C(A), optimize:

Option 1: Option 2:
max F(A)—C(A) max F(A)
s.t. ACV s.t. C(A) < B
“Scalarization” “Constrained maximization”

Can get 1/2 approx...  \What is possible?
if F(A)-C(A) =20
for all sets A

Positiveness is a
strong requirement ®

88



Monotonicity

PIacement A={1, 2} PIacement B=1{1,...,5}
- B R [
%g {}& 3@ 5 g 1% @
il g
%f_—— = P ke @ 3@
& ay 88 OM=

ED©®@@ O

Fis monotonic: VA,s: F(AU{s}) — F(A) >0
A(s|A) >0

Adding sensors can only help



¢ Given: finite set V of locations

¢ Want:

Constrained maximization

A" SV such that
A* = argmax F(A)
|A|<k

Typically NP-hard!

90



Exact maximization of SFs

¢ Mixed integer programming
¢ Series of mixed integer programs [Nemhauser et al ‘81]
¢ Constraint generation [Kawahara et al ‘09]

¢ Branch-and-bound
¢ ,Data-Correcting Algorithm® [Goldengorin et al '99]

All algorithms worst-case exponential!

91



Greedy algorithm

¢ Given: finite set V of locations
o Want: | A" €V cuch that ol A i

A* = argmax F(A) 4 % W
A|<k
A< % i §E§§
Typically NP-hard! S il
& It
Greedy algorithm: B2
: 22 & 88
Start with 4 = ()
Fori=1tok
s* « argmax F(AU {s})
A— AU{s"}

How well can this simple heuristic do? 0



Performance of greedy

(o]

Optimal -~

oo

N

()]

Greedy | Temperature data
{from sensor network

(&)

Information gain
D

2

1 2 3 4 5
Number of sensors placed

Greedy empirically close to optimal. Why?
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- One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey '78]
For monotonic submodular functions,

Greedy algorithm gives constant factor approximation

oreed ) 2 (1-1/6) F(Aot)

~63%0

¢ Greedy algorithm gives near-optimal solution!

¢ For information gain: Guarantees best possible unless P = NP!
[Krause & Guestrin '05]
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Scaling up the greedy algorithm [Minoux * 78]

In round i+1,
¢ have picked A, = {s,,...,S}
o pick s, = argmax, F(A. U {s})-F(A))

l.e., maximize “marginal benefit” A(s | A)

Als | A) = F(A, U {s}H-F(A)

Key observation: Submodularity implies

2 A(s | Aji)

i<j => Als | A)ZA(s | A)

|l

Marginal benefits can never increase!
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“Lazy” greedy algorithm [Minoux ’ 78]

Lazy greedy algorithm: M

- First iteration as usual Benefit A(s | A)

- Keep an ordered list of marginal 4 -
benefits A, from previous iteration B -

- Re-evaluate A, only for top o
element

- If A, stays on top, use it, d
otherwise re-sort 6

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec, Krause et al. " 07]



Empirical improvements [Leskovec, Krause et al’06]

- - E u 400 \ \ \
O o 300 | AT ] =
:lj = | Exhaustive search ‘." Ul © Exhaustive search
) c i .~ (All subsets) Bl 5300 (All subsets)
al|l € i o U D
7)) — 200 | Naive 1oL :
. — Q i — 0 o Naive
| £ i greedy "= £2007, .
| * i ¥ 4 0| o
a0 o | £
% g 100 i ‘ Fast greedy % €100 =
— c ; ’ —| 2 Fast greedy
- i
vV < E l
Oc 1t
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 I«

Number of sensors selected Number of blogs selected

Blog selection — ¢

30x speedup 700x speedup
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ObjeCt detECﬁOn [Barinova et al.”10]

X; = index of hypothesis
explaining x; Xo

Voting elements

[llustrations courtesy of Pushmeet Kohli

y; = 1: object i
present
y; = 0: object i

not present

Hypotheses
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Object detection

: . X=2 g

X; = index of hypothesis o
explaining x. X =2. =N y; = 1: object i

) > present
submodular Ol g, Joint MAP inference:
maximization i — o

S F(S) = E max w; ;

© JjeS

Voting elements

[llustrations courtesy of Pushmeet Kohli

Weight element i wrt hyp. |



Inference

Datasets from [Andriluka et al. CVPR 2008]
(with strongly occluded pedestrians added)

Using the Hough forest trained in [Gall&Lempitsky CVPR0O9]

[llustrations courtesy of Pushmeet Kohli



Results for pedestrians detection

uoIsIda.d

TUD-campus TUD-crossing
1 — , 1 -
0.8 \ 0.8}
0.6 ? . 5 06
-3
D
(@)
0.4 @ 0.4/
o
>
0.2 0.2
0 1 L 1 L O 1 L 1 1 J
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall

Blue = Hough transform + non-maximum suppression
Light-blue = greedy detection

submodularity for detection also in [Blaschko’11]



Network inference

lipstick on a pig our entire economy
is in danger
e to help me
effort to protect the american decent person and a person
. economy must not fajl that you do not have to be
nunity scared of as president of
ilities the most serious the united states

financial crisis since

the great depression this is something that all of us will

swallow hard and go forward with

fundamentals of i think when you sj
our economy are who is the real the wealth around
strong barack obama good for everybod

resident's :
i%b to deal he's palling around [ iam not
with more with terrorists president
~ than one

she is a diva
takes no adv
from anyone

hey can

thing at !
i call you

once

29 9/5 9/12 919 9/26 10/3 10/10 7 10117 10/24 :

How can we learn who influences whom?
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Inferring diffusion networks
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

Given Want

engadget™ » _—> engadgetl

A Directory Of Wonderrut Things

i
Given traces of influence, wish to infer sparse
directed network G=(V,E)
=» Formulate as optimization problem

E* = arg max F(F)
PARSG
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Estimation problem

engadge@

L] [ ] =
miNdonag
i

boinaboinag

¢ Many influence trees T consistent with data
» For cascade C, model P(C.| T)

¢ Find sparse graph that maximizes likelihood for all
observed cascades

=» Log likelihood monotonic submodular in selected edges

F(F) = Zlog max P(C; | T)

tree TCFE 104



Precision

Evaluation: Synthetic networks

1 I I | I ]
08 -
06 -
04 + -
021 Netlnf ]
0 quelmel | [ |
0 02 04 06 038 1
Recall

1024 node hierarchical Kronecker
exponential transmission model

Precision

1 Netinf |
Baseline \\
0.8 |

06
04 §

02 ¢

0 L L L L L
0 02 04 06 038 1
Recall

1000 node Forest Fire (a=1.1)
power law transmission model

¢ Performance does not depend on the network

structure:

¢ Synthetic Networks: Forest Fire, Kronecker, etc.

¢ Transmission time distribution: Exponential, Power Law

¢ Break-even point of > 90%
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Diffusion Network
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

. . AN . ® Blogs
: s ! //: /. @ Mainstream media
| T
'//.>> . “VVL".
e .\
\..‘?:-;:
N
s
o I
.. _®

Actual network inferred from 172 million
articles from 1 million news sources o



Diffusion Network (small part)

I

wrap713three.blogspot:eom

v ik 'ality.co

J

kitan niaradid.blo'gspo f'eom

|
|
|

.orum.dvdtalk.com

‘ooxxet.com

-f’.hekevin pipé&.com
wengadget.com

@ Mainstream media



Document summarization [Lin & Bilmes ‘11]

¢ Which sentences should we select that best
summarize a document? 108



Marginal gain of a sentence

C

¢ Many natural notions of ,,document coverage” are
submodular [Lin & Bilmes ‘11]
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Document summarization

F(S) = R(S)+ AD(S)

\

Relevance Diversity
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Relevance of a summary
A

F(S) = R(S) + AD(S) Y %

-
R(S) =Y min{Ci(S),aCi(V)}

\

How well is sentence i ,covered” by S

Similarity between i and |
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Diversity of a summary

Pl‘r

Z S 1 > ¢
i=1 JGP/Y o e ® _P
O OO

Relevance of sentence j to doc. ® p, © ®
rs = N § :wi,j Clustering of sentences
' " in document

Similarity between i and j

Can be made query-specific; multi-resolution; etc.
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Empirical results [Lin & Bilmes 11}

R F
L1(S) + ARg(95) 12.18 | 12.13
L1(S)+Y20_, MRa.x(S) 12.38 |(12.33)
Toutanova et al. (2007) 11.89 | 11.89
Haghighi and Vanderwende (2009) 11.80 -
Celikyilmaz and Hakkani-tir (2010) 11.40 -
Best system in DUC-07 (peer 15), using web search || 12.45 | 12.29

Best F1 score on benchmark corpus DUC-07!
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Submodular Sensing Problems

[with Guestrin, Leskovec, Sinh, Sukhatme, ...]

Top score in
BWSN competition

By
g ;- ’
e

: — Water distribution networks
Environmental monitoring [ WRPM ’08 Best paper]

[JAIR '08, ICRA ‘10]

o 053, ot oot [ Machine Learning \laskhhalg
o (Theory)
0.8
0.7
0.6

boinaboinag [sisu
engadgeﬁ

Recommending blogs & news
Experiment design [NIPS ‘10, ‘11] [KDD ‘07, 10 Best paper]

Can all be reduced to monotonic submodular maximization
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More complex constraints
o So far: A* — argmaxF(A)
|A[<E

¢ Can one handle more complex constraints?
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Example: Camera network

Ground set V ={14,1p,...,54,5}
Configuration: S = {vl, ... VF}
Sensing quality model F:2V 5 R

Configuration is feasible if no camera is pointed in
two directions at once




Matroids

¢ Abstract notion of feasibility: independence

Sis independent if ...

. |S| <k

Uniform matroid

Partition matroid

... S contains at most one
element from each square

=]

... S contains no cycles

Graphic matroid

 Sindependent =2 T C Salsoindependent
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Matroids

¢ Abstract notion of feasibility: independence

Sis independent if ...

. ¥
— — o ® ° ‘><|
o; oo o |~ o ° .
| <k

. |s

... S contains at most one ... S contains no cycles
element from each group

Uniform matroid Partition matroid Graphic matroid

 Sindependent = T C Salsoindependent
 Exchange property: S, U independent, |S| > |U|
=» some e € S can be added to U: [/ U e independent

* All maximal independent sets have the same size
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Example: Camera network

Ground set V ={14,1p,...,54,5}
Configuration: S = {vl, ... VF}
Sensing quality model F:2V 5 R

Configuration is feasible if no camera is pointed in
two directions at once

This is a partition matroid:
P = {1a71b}7'°'7p5 — {5a75b}

Independence:
SNF| <1




Greedy algorithm for matroids:

¢ Given: finite set V

o Want: | 4" €V such that
A* = argmax F(A)

A independent

Greedy algorithm: T
Start with 4 = () )

‘ N, IQ
While ds : AU {s} indep. ! [ gﬂ_l
s« argmax F(AU({s}]
s: AU{s} indep. Vo
A— AU {s*} % % _[;

v




Maximization over matroids

Theorem [Nemhauser, Fisher & Wolsey '78]
For monotonic submodular functions,

Greedy algorithm gives constant factor approximation

I:(Areed ) 2 7 F(Aot)

o Greedy gives 1/(p+1) over intersection of p matroids
¢ Can model rankings with p=2!

o Can get also obtain (1-1/e) for arbitrary matroids [Vondrak et al ‘08]
using continuous greedy algorithm
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Non-constant cost functions

o Foreachs &V, let ¢(s)>0 be its cost
(e.g., length of sentence; feature acquisition costs, ...)

» Cost of aset C(A) = )., c(s)
¢ Want to solve

A* = argmax F(A) s.t. C(A)<B
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Cost-benefit optimization
[Wolsey ‘82, Sviridenko ‘04, Krause et al ‘05]

Theorem [Krause and Guestrin ‘05]
Can efficiently find a set A such that

Then 1 /
>
P2 (1= 72) o, )

~39%

Can still speed up using lazy evaluations

Note: Can also get
e (1-1/e) approximation in time O(n%)  [Sviridenko ~ 04]
e (1-1/e) approximation for multiple linear constraints [Kulik ‘09]

e 0.38/k approximation for k matroid and m linear constraints
[Chekuri et al “11]
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Summary: More complex constraints

o Approximate submodular maximization possible
under a variety of constraints:

¢ Matroid

¢ Knapsack

¢ Multiple matroid and knapsack constraints
¢ Path constraints (Submodular orienteering)
¢ Connectedness (Submodular Steiner)

e Robustness (minimax)

¢ Often the (best) algorithms are non-greedy
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Key intuition for approx. maximization

N\
For submod. functions,
local maxima
can‘t be too bad

¢ E.g., all local maxima under cardinality constraints
are within factor 2 of global maximum

¢ Key insight for more complex maximization
=>» Greedy, local search, simulated annealing
for (hnon-monotone, constrained, ...)
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Two-faces of submodular functions

Cuts, o
j summarization
clustering,
similarity
Convex aspects
: Ml =>» minimization! sensing
inference
Concave aspects
=>» maximization!
Structured Coverage,

sparsity diversity
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Unconstrained

Constrained

Maximization

NP-hard, but
well-approximable
(if nonnegative)

NP-hard but well-
approximable
,Greedy-(like)” for
cardinality, matroid
constraints;

Non-greedy for more
complex (e.g.,
connectivity) constraints

Minimization
Polynomial time!
Generally inefficent
(n76), but can exploit
special cases

(cuts; symmetry;
decomposable; ...)

NP-hard; hard to
approximate, still useful
algorithms
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What to do with submodular functions

Learnir@

128



What to do with submodular functions

r N
/ Learnir@
4

N/
AN
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Example 1: Valuation Functions

. q/
4 _

o For combinatorial auctions, show bidders various subsets
of items, see their bids

Can we learn a bidder’s utility
function from few bids?
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Example 2: Graph Evolution

¢ Want to track changes in a graph

¢ Instead of storing entire graph at each time step,
store some measurements

o # of measurements << # of edges in graph
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Random Graph Cut #1

Cut value = 13 Cut value = 14

o Choose a random partition of vertices
¢ Count total # of edges across partition
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Random Graph Cut #2

//'Q. //-QQ
/ //‘/’\ / p: 0/’\
— —> —/ o
7 2/ '
Cut value = 13 Cut value = 12

o Choose another random partition of vertices
» Count total # of edges across partition
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Symmetric Graph Cut Function

f(A) = sum of weights of edges between A and V\A

e V =set of vertices
* One-to-one correspondence of graphs and cut functions

Can we learn a graph from the value of few cuts?
[E.g., graph sketching, computational biology, ...]
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General Problem: Learning Set Functions

Base Set V
Set function f:2¥ - R

o Wish to learn f from:

o Small measurement collection M = {A4,..., A}

¢ Function values f(A1),...,f(An)
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Approximating submodular functions
[Goemans, Harvey, Kleinberg, Mirrokni,  08]

o Pick msets, A, ... A, gettosee F(A,), ..., F(A,)
¢ From this, want to approximate F' by Fs.t.

F'(A) < F(A) < aF(A) for all A

Theorem: Even if
e Fis monotonic

¢ we can pick polynomially many A,, chosen adaptively,

cannot approximate better than Ol = n” / Iog(n)
unless one looks at exponentially many sets A,

But can efficiently obtain o = n” log(n)
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Learning submodular functions
[Balcan, Harvey STOC ‘11]

o Sample m sets A, ... A, from dist. D; see F(A,), ..., F(A,,)
¢ From this, want to generalize well
o| Fis(a,g,8)-PMAC iff with prob. 1-8 it holds that

Pap [F(A) < F(A) < aF(A)| >1—¢

Theorem: cannot approximate better than
o = n3 /log(n)
unless one looks at exponentially many samples A,

But can efficiently obtain o = n”
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What if we have structure?

o To learn effectively, need additional assumptions
beyond submodularity.

o Sparsity in Fourier domain [Stobbe & Krause '12]

f(A)= ) (~1)"Ff(B)

Be2v "‘
Sparsity: Most coefficients =0

¢ ,Submodular” compressive sensing
¢ Cuts and many other functions sparse in Fourier domain!

o Also can learn XOS valuations [Balcan et al ‘12]
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Compressive sensing with set functions
[Stobbe & Krause "12]

Theorem: Suppose number of random measurements
is proportional to the sparsity times log factors

m = O(klog*(p))

Then we can recover f by solving:

min ||x||1 s.t. faf = Pogx

Random Hadamard-Walsh basis functions satisfy RIP w.h.p
Can also handle noisy observations

Many more details [see paper]
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Graph Evolution Results

Tracking evolution |
of 128-vertex 0.8

subgraph using 507 | Week
0.6/ L a=245

random cuts 80

A = number of 9

differences 0.2]

between graphs 01

0 200 400 600 800 | 1000 1200 1400
Number of measurements

¢ Autonomous Systems Graph (from SNAP)
e For low error, observing m ~ 8 A random cuts suffices
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What to do with submodular functions

N

AN

~

a e
- N
Online/
adaptive
optim.
N— /
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Learning to optimize
¢ Have seen how to

e optimize submodular functions

¢ learn submodular functions

What if we only want to
learn enough to optimize?

142



Learning to optimize submodular functions

e Structured prediction with submodular functions
¢ Learn function parameters to achieve target minimizer

e Application: MAP inference; summarization

e Online submodular optimization

¢ Learn to pick a sequence of sets to maximize a sequence of
(unknown) submodular functions

e Application: Building algorithm portfolios

e Adaptive submodular optimization
e Gradually build up a set, taking into account feedback
e Application: Sequential experimental design
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Structured Prediction with SFs

» Given training data {(S1,%1),...,(Sh,Xn)}
and paramerized family of SFs F,
can we find parameters @ such that

S; ~ arg mgn

F(S,H,X,L)

o Approaches

\

With margin!

e Parameter learning in submodular MRFs [Taskar et al. '04]

=» Minimization

¢ Learning mixtures of submodular shells [Lin & Bilmes ‘12]

=» Maximization
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Learning to summarize [Lin & Bilmes‘12]

¢ Input:
o Collection of documents dj, and human summaries Sy

¢ Goal:
¢ Learn parameterized submodular relevance & diversity

F(S;dy) = ZWWSdk+ZfJT (S;dy)

Relevance &Pdnaensterinstantibbdddor each document k

o Want to achieve that Sy & argmax F'(S; d) forallk
S:|S|<B

¢ Can efficiently find solution with bounded

generalization error!
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Learning mixtures for summarization

DUC-07 R F
Toutanova et al. [53] 11.89 | 11.89
Haghighi and Vanderwende |[16] 11.80 :
Celikyilmaz and Hakkani-tur [4] 11.40 -
Lin and Rilmes [28] 12.38 | 12.33
Best system in DUC-07 (peer 15) || 12.45 | 12.29
Submodular Shell Mixture 12.51 | 12.40]

¢ Training data: Documents with human summaries
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Learning to optimize submodular functions

e Structured prediction with submodular functions
¢ Learn function parameters to achieve target minimizer

e Application: MAP inference; summarization

@ Online submodular optimization

¢ Learn to pick a sequence of sets to maximize a sequence of
(unknown) submodular functions

¢ Application: Building algorithm portfolios

e Adaptive submodular optimization
e Gradually build up a set, taking into account feedback
e Application: Sequential experimental design
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Online maximization of submodular functions
[Streeter, Golovin NIPS ‘08]

Pick sets A, A, Ay L Observe either
\ \ \ / F., oronly F.(A,)
SFs Fi F, F, .
\ \ \
Reward r;=F,(A;) o, ry rT Total: ), r, = max

> Time

Theorem
Can efficiently choose A,...A, s.t.in expectation

l — 1—1/e
T;Ft(At) > max ZF(A

A<k 4

for any sequence F,as T >

Can get ‘no-regret’ over ‘omniscient’ greedy algorithm
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Application: Learning to solve SAT quickly

[Streeter, Golovin, Smith]

e Hybridization via Task-Switching Schedules

Heuristic #1

Example Schedule S
2 secj| 4 sec 6 sec 2secl[ 10 sec Heuristic #2
Time Heuristic #4

* Need to learn which schedules work well!



Hybridizing Solvers

[Streeter & Golovin ‘08]

V = {run heuristic h for t seconds : h in H, t >0}
f.(S) = Pr[schedule S completes job f in time limit].
e This is a submodular function! ©

Task: Select {S, : i =1, 2, ..., T} online to maximize # instances solved
This is an online submodular maximization problem! ©
Online greedy algorithm achieves no-(1-1/e)-regret



Example Schedule
[Streeter, Golovin, Smith, AAAI ‘07 & CSP ‘08]

BPrologCSPSolver70a oy NN NN E NN

Abscon 109 ESAC E E
Abscon 109 AC

S5

sugar m % %
CSPtoSAT+minisat HRE B
CSP4J - MAC I
galac E
0.01 0.1 1 10 100 1000
(log scale)

time (S)




SAT 2007 Competition Data

Number of benchmark instances solved within the time limit.

Category Offline [ Online| Parallel Top |
oreedy | greedy| schedule| solver
Industrial 147 149 132 139
Random 350 347 302 257
Hand-crafted 114 107 ) 95 .98

The CADE ATP System Competition (2008)

Percentage of benchmark instances solved within the time limit.

Category (MetaProver ) 2nd best) 3rd best
FNT 74% 70% 70%
SAT _100% 97.5% ) 96.3%




Other results on online submodular optimization

e Online submodular maximization

e No (1-1/e) regret for ranking (partition matroids)
[Streeter, Golovin, Krause 2009]

¢ Distributed implementation [Golovin, Faulkner, Krause ‘2010]

¢ Improved bounds for bandits with linear combinations of SFs
[Yue, Guestrin, NIPS 2011]

e Online submodular coverage

e Min-cost / Min-sum submodular cover [Streeter & Golovin
NIPS 2008]

¢ Guillory & Bilmes [NIPS 2011]

@ Online Submodular Minimization
¢ Unconstrained [Hazan & Kale NIPS 2009]
¢ Constrained [Jegelka & Bilmes ICML 2011]
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What to do with submodular functions
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Learning to optimize submodular functions

e Structured prediction with submodular functions
¢ Learn function parameters to achieve target minimizer

e Application: MAP inference; summarization

e Online submodular optimization

¢ Learn to pick a sequence of sets to maximize a sequence of
(unknown) submodular functions

e Application: Building algorithm portfolios

e Adaptive submodular optimization
e Gradually build up a set, taking into account feedback
o Application: Sequential experimental design
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Adaptive Sensing / Diagnosis

g

Want to effectively diagnose while minimizing cost of testing!
Classical submodularity does not apply ®

Can we generalize submodularity for
sequential decision making?
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Adaptive selection in diagnosis

o Prior over diseases P(Y) &

» Deterministic test outcomes P(X, | Y)

Cetver?) Caain) Coino

¢ Each test eliminates hypothesesy

States y
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Problem Statement

Given:
¢ ltems (tests, experiments, actions, ...) V={1,...,n}

¢ Associated with random variables X,,..., X taking values in O
e Objective: [ : 2V x 0OV =R

¢ Policy T maps observation x, to next item

Value of policy m:  F'(w ZP xy ) f(m(xy), Xv)

Tests run by 1T

if world in state x
Want 7" € argmax F'() v

7| <F

NP-hard (also hard to approximate!)
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Adaptive greedy algorithm

’ —
o Suppose we've seen X, = X,

¢ Conditional expected benefit of adding item s:

Als | x4) =E|f(AU {sh,xv) = [(A,xv) | x4]

\

Y
Adaptive Greedy algorithgefit if wdrld in state x,, [

Start with A = ()

Fori=1:k
+ Pick s € argmax A(s | x4)
o Observe X, = x,,
o Set A+ AU{sk}

Conditional on
observations x,

When does this adaptive greedy algorithm work?? 159



Adaptive submodularity
[Golovin & Krause, JAIR 2011]

Adaptive monotonicity:

A(s|x4) >0

Xz observes

more than x,
Adaptive submodularity: \

A(s|xa) > A(s | xp) whenever x4 = xp

Theorem: If f is adaptive submodular and adaptive
monotone w.r.t. to distribution P, then

) 2 (1-1/e) F(1T,)

F(TT

greedy

Many other results about submodular set functions

can also be “lifted” to the adaptive setting! .



From sets to policies
Submodularity Adaptive submodularity

Applies to: set functions policies, value functions

Ap(s| A)=FAU{s}) — F(A) | Ap(s|xa) :E[f(Au{s},xv) — (A, xy) | XA}

Ap(s|A) >0 Ap(s|xa) >0
ACB=Ap(s|A) > Ap(s|B) |xa=xp=Ap(s|x4)>Ar(s|xp)
max F'(A) max F'(7)
A T

Greedy algorithm provides Greedy policy provides

+ (1-1/e) for max. w card. const. | . (1-1/e) for max. w card. const.
- 1/(p+1) for p-indep. systems . 1/(p+1) for p-indep. systems

- log Q for min-cost-cover . log Q for min-cost-cover

- 4 for min-sum-cover . 4 for min-sum-cover




Optimal Diagnosis
» Prior over diseases P(Y)
» Deterministic test outcomes P(X,, | Y) &
¢ How should we test to @ & m

eliminate all incorrect hypotheses?

‘mass ruled out |
At | xa) =E|bytif we

know x4

“Generalized binary search”

Equivalent to max. infogain
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OD is Adaptive Submodular

by := (( ) Objective = probability mass of hypotheses
you have ruled out.

go + bo
by :=P(C )
g1 = P( \/)
2g1b1
A v,aw) —
(s [ xo) = 21

bo > b1, go = g1
Not hard to show that  A(s | {}) > A(s | Xy w)
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Theoretical guarantees

Garey & Graham, 1974;
Loveland, 1985;
Arkin et al., 1993;
Kosaraju et al., 1999;
Dasgupta, 2004;
Guillory & Bilmes, 2009;
Nowak, 2009;
Gupta et al., 2010

Adaptive-Greedy is a (In(1/pmin) + 1) approximation.

N\ With adaptive
submodular
analysis!

Result requires that tests are exact (no noise)!



What if there is noise?
[w Daniel Golovin, Deb Ray, NIPS ‘10]

o Prior over diseases P(Y)
» Noisy test outcomes P(X,, | Y)

¢ How should we test
to learn about y (infer MAP)?

¢ Existing approaches:

¢ Generalized binary search?
¢ Maximize information gain? Not adaptive submodular!

¢ Maximize value of information?

Theorem: All these approaches can have cost
more than n/log n times the optimal cost!

=>» |Is there an adaptive submodular criterion?? 165



Theoretical guarantees
[with Daniel Golovin, Deb Ray, NIPS ‘10]

Theorem: Equivalence class edge-cutting (EC?) is
adaptive monotone and adaptive submodular.
Suppose P(xy,h) € {0}U 4, 1] forall xy ., h
Then it holds that

1
Cost(mgreedy) < O <log 5) Cost(m™)

First approximation guarantees for nonmyopic VOI
in general graphical models!
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Example: The lowa Gambling Task
[with Colin Camerer, Deb Ray]

A) What would you prefer? B)
Prob. 4 -7 Prob. 4 ./
3 3
-10S 0S +10S -10S 0S +10S

Various competing theories on how people make decisions
under uncertainty

o Maximize expected utility? [von Neumann & Morgenstern ‘47]

o Constant relative risk aversion? [Pratt ‘64]

o Portfolio optimization? [Hanoch & Levy ‘70]

o (Normalized) Prospect theory? [Kahnemann & Tversky ~ 79]

How should we design tests to distinguish theories?
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lowa Gambling as BED

Every possible test X, = (g, ;,8; ,) is a pair of gambles
Theories parameterized by 6

Each theory predicts utility for
every gamble U(g,y,0)

PX3:1 7(9 —
( ) = e U (9e1.9.0) = U(9e2.9.0)

0 5
Difference in utility A, 168



Simulation Results

InfoGain
0.9 Adaptive i
Submodular\
0.8r BED —
0.7 i

UncertaintySampling

Random

Accuracy
o
(o)}

AN

Generalized
binary search

0.2 | | | |
0 5 10 15 20 25 30

Number of tests

Adaptive submodular criterion (EC?)
outperforms existing approaches 169



Num. classified

30

25

20

15 -

10 -

Experimental Study

[with Colin Camerer, Deb Ray]

Study with 57
naive subjects

32,000 designs

40s per test ®

Exploiting
| | submodularity:
Expected Meanvar. Prospect Const. rel. <5¢ per test @

value skewness Theory risk aversion

e Strongest support for PT, with some heterogeneity

¢ Unexpectedly no support for CRRA

¢ Submodularity enables real-time performance! 170



Interactive submodular coverage

¢ Alternative formalization of adaptive optimization
[Guillory & Bilmes, ICML ‘10]

¢ Addresses the worst case setting

¢ Applications to (noisy) active learning, viral marketing
[Guillory & Bilmes, ICML ‘11]
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Other directions

o Game theory
¢ Equilibria in cooperative (supermodular) games / fair allocations
¢ Price of anarchy in non-cooperative games
¢ Incentive compatible submodular optimization

o New algorithms for submodular maximization
¢ Robust submodular optimization

» Generalizations of submodular functions

o L#-convex / discrete convex analysis
e XOS/Subadditive functions

o Efficient minimization of subclasses
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Further resources

e submodularity.org

¢ References

o Matlab Toolbox for Submodular Optimization
e discml.cc

¢ NIPS Workshops on Discrete Optimization in Machine Learning
¢ Videos of invited talks on videolectures.net

Keynote Talk

Invited Talicyy Invited Talk '}

¢ Submit to DISCML 2012! ©
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Conclusions

¢ Discrete optimization abundant in applications

¢ Fortunately, some of those have structure:
submodularity

¢ Submodularity can be exploited to develop efficient,
scalable algorithms with strong guarantees

¢ Can handle complex constraints
¢ Can learn to optimize (online, adaptive, ...)
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