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Optimization in Machine Learning
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Classify + from – by

finding a separating 

hyperplane (parameters w)

Which one should we choose?

Define loss L(w) = “1/size of margin”

� Solve for best vector w* = argminw L(w)

Key observation: Many problems in ML are convex!

� no local minima!! ☺

w1

w2

w*

w

L(w)
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Feature selection
Given random variables Y, X1, … Xn

Want to predict Y from subset XA = (Xi1
,…,Xik

)

Want k most informative features:

A* = argmax IG(XA; Y) s.t. |A| ≤ k

where IG(XA; Y) = H(Y) - H(Y | XA)

Problem inherently combinatorial!

Y

“Sick”

X1

“Fever”

X2

“Rash”

X3

“Male”

Naïve Bayes

Model

Uncertainty

before knowing XA

Uncertainty

after knowing XA
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Factoring distributions

Given random variables X1,…,Xn

Partition variables V into sets A and 
V\A as independent as possible

Formally: Want

A* = argminA I(XA; XV\A)   s.t.  0<|A|<n

where I(XA,XB) = H(XB) - H(XB | XA)

Fundamental building block in structure learning
[Narasimhan&Bilmes, UAI ’04]

Problem inherently combinatorial!

X1
X2X3

X4
X5X6

X7

X1
X3
X4

X6
X2

X5

X7

A
V\A

V
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Combinatorial problems in ML

Given a (finite) set V, function F: 2V → R, want

A* = argmin F(A)   s.t.  some constraints on A

Solving combinatorial problems:

Mixed integer programming?

Often difficult to scale to large problems

Relaxations? (e.g., L1 regularization, etc.)

Not clear when they work

This talk: 

Fully combinatorial algorithms (spanning tree, matching, …)

Exploit problem structure to get guarantees about solution!
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Example: Greedy algorithm for feature selection

Given: finite set V of features, utility function F(A) = IG(XA; Y)

Want:       A*⊆ V such that

NP-hard!

How well can this simple heuristic do?

Greedy algorithm:

Start with A = ∅

For i = 1 to k

s* := argmaxs F(A ∪ {s})

A := A ∪ {s*}

Y
“Sick”

X1
“Fever”

X2
“Rash”

X3
“Male”

M
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s

Key property: Diminishing returns
Selection A = {} Selection B = {X2,X3}

Adding X1

will help a lot!
Adding X1

doesn’t help much
New 

feature X1

B      A

s

+

+

Large improvement

Small improvement

For A⊆ B, F(A ∪ {s}) – F(A) ≥ F(B ∪ {s}) – F(B)

Submodularity:

Y
“Sick”

X1
“Fever”

X2
“Rash”

X3
“Male”

Y
“Sick”

Theorem [Krause, Guestrin UAI ‘05]: Information gain F(A) in 

Naïve Bayes models is submodular! 
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Why is submodularity useful?

Theorem [Nemhauser et al ‘78]

Greedy maximization algorithm returns Agreedy:

F(Agreedy) ≥ (1-1/e) max|A|≤k F(A)

Greedy algorithm gives near-optimal solution!

More details and exact statement later

For info-gain: Guarantees best possible unless P = NP! 

[Krause, Guestrin UAI ’05]

~63%
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Submodularity in Machine Learning

In this tutorial we will see that many ML problems are 

submodular, i.e., for F submodular require:

Minimization: A* = argmin F(A)

Structure learning (A* = argmin I(XA; XV\A))

Clustering

MAP inference in Markov Random Fields

…

Maximization: A* = argmax F(A)

Feature selection

Active learning

Ranking

…
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Tutorial Overview

1. Examples and properties of submodular functions

2. Submodularity and convexity

3. Minimizing submodular functions

4. Maximizing submodular functions

5. Research directions, …

LOTS of applications to Machine Learning!!
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Submodularity

Properties and Examples
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Set functions

Finite set V = {1,2,…,n}

Function F: 2V → R

Will always assume F(∅) = 0 (w.l.o.g.)

Assume black-box that can evaluate F for any input A

Approximate (noisy) evaluation of F is ok (e.g., [37])

Example: F(A) = IG(XA; Y) = H(Y) – H(Y | XA)

= ∑y,xA
P(xA) [log P(y | xA) – log P(y)]

Y
“Sick”

X1
“Fever”

X2
“Rash”

F({X1,X2}) = 0.9

Y
“Sick”

X2
“Rash”

X3
“Male”

F({X2,X3}) = 0.5
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Submodular set functions

Set function F on V is called submodular if

For all A,B ⊆ V: F(A)+F(B) ≥ F(A∪B)+F(A	B)

Equivalent diminishing returns characterization: 

SB      A

S

+

+

Large improvement

Small improvement

For A⊆B, s∉B, F(A ∪ {s}) – F(A) ≥ F(B ∪ {s}) – F(B)

Submodularity:

BA A ∪ B

A	B

++ ≥
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Submodularity and supermodularity

Set function F on V is called submodular if

1) For all A,B ⊆ V: F(A)+F(B) ≥ F(A∪B)+F(A	B)

� 2) For all A⊆B, s∉B, F(A ∪ {s}) – F(A) ≥ F(B ∪ {s}) – F(B)

F is called supermodular if –F is submodular

F is called modular if F is both sub- and supermodular

for modular (“additive”) F, F(A) = ∑i∈A w(i)
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Example: Set cover

Node predicts

values of positions

with some radius

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

For A ⊆ V: F(A) = “area 

covered by sensors placed at A”

Formally: 

W finite set, collection of n subsets Si⊆W

For A ⊆ V={1,…,n} define F(A) = |Ui∈ A Si|

Want to cover floorplan with discsPlace sensors
in building Possible

locations 
V
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Set cover is submodular

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

S1 S2

S1 S2

S3

S4 S’

S’

A={S1,S2}

B = {S1,S2,S3,S4}

F(A∪{S’})-F(A)

F(B∪{S’})-F(B)

≥
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Example: Mutual information

Given random variables X1,…,Xn

F(A) = I(XA; XV\A) = H(XV\A) – H(XV\A |XA)

Lemma: Mutual information F(A) is submodular

F(A ∪ {s}) – F(A) = H(Xs| XA) – H(Xs| XV\(A∪{s}) )

δs(A) = F(A∪{s})-F(A) monotonically nonincreasing

� F submodular ☺

Nonincreasing in A:
A⊆B ⇒ H(Xs|XA) ≥ H(Xs|XB)

Nondecreasing in A
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Example: Influence in social networks
[Kempe, Kleinberg, Tardos KDD ’03]

Who should get free cell phones?
V = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}

F(A) = Expected number of people influenced when targeting A

0.5

0.3
0.5 0.4

0.2

0.2 0.5

Alice

Bob

Charlie

Dorothy Eric

Fiona

Prob. of

influencing
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Influence in social networks is submodular
[Kempe, Kleinberg, Tardos KDD ’03]

0.5

0.3
0.5 0.4

0.2

0.2 0.5

Alice

Bob

Charlie

Dorothy Eric

Fiona

Key idea: Flip coins c in advance � “live” edges

Fc(A) = People influenced under outcome c (set cover!)

F(A) = ∑c P(c) Fc(A) is submodular as well!
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Closedness properties

F1,…,Fm submodular functions on V and λ1,…,λm > 0

Then: F(A) = ∑i λi Fi(A) is submodular!

Submodularity closed under nonnegative linear 

combinations!

Extremely useful fact!!

Fθ(A) submodular⇒ ∑θ P(θ) Fθ(A) submodular!

Multicriterion optimization: 

F1,…,Fm submodular, λi≥0 ⇒ ∑i λi Fi(A) submodular
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Submodularity and Concavity

Suppose g: N → R and F(A) = g(|A|)

Then F(A) submodular if and only if g concave!

E.g., g could say “buying in bulk is cheaper”

|A|

g(|A|)
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Maximum of submodular functions

Suppose F1(A) and F2(A) submodular.

Is F(A) = max(F1(A),F2(A)) submodular?

|A|

F2(A)

F1(A)

F(A) = max(F1(A),F2(A))

max(F1,F2) not submodular in general!
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Minimum of submodular functions

Well, maybe F(A) = min(F1(A),F2(A)) instead?

111{a,b}

010{b}

001{a}

000∅

F(A)F2(A)F1(A)
F({b}) – F(∅)=0

F({a,b}) – F({a})=1

<

But stay tuned – we’ll address mini Fi later!

min(F1,F2) not submodular in general!
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Duality

For F submodular on V let G(A) = F(V) – F(V\A)

G is supermodular and called dual to F

Details about properties in [Fujishige ’91]

|A|

F(A)

|A|

G(A)
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Tutorial Overview

Examples and properties of submodular functions

Many problems submodular (mutual information, influence, …)

SFs closed under positive linear combinations; 

not under min, max

Submodularity and convexity

Minimizing submodular functions

Maximizing submodular functions

Extensions and research directions



Carnegie Mellon

Submodularity

and Convexity
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Submodularity and convexity

For V = {1,…,n}, and A ⊆ V, let 

wA = (w1
A,…,wn

A) with

wi
A = 1 if i ∈ A, 0 otherwise

Key result [Lovasz ’83]: Every submodular function 

F induces a function g on Rn
+, such that

F(A) = g(wA) for all A ⊆ V

g(w) is convex

minA F(A) = minw g(w) s.t. w ∈ [0,1]n

Let’s see how one can define g(w)
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The submodular polyhedron PF

Example: V = {a,b}PF = {x ∈ Rn: x(A) ≤ F(A) for all A ⊆ V}

x(A) = ∑i∈ A xi

x({a}) ≤ F({a})

x({b}) ≤ F({b})

x({a,b}) ≤ F({a,b})
PF

-1 x{a}

x{b}

0 1

1

2

-2

0{a,b}

2{b}

-1{a}

0∅
F(A)A
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Lovasz extension

Evaluating g(w) requires solving a linear program with 

exponentially many constraints �

Claim: g(w) = maxx∈PF
wTx

PF = {x ∈ Rn: x(A) ≤ F(A) for all A ⊆ V}

-1 w{a}

w{b}

0 1

1

2

-2

w

xw
g(w)=wT xw

xw=argmaxx∈ PF
wT x
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Evaluating the Lovasz extension

Theorem [Edmonds ’71, Lovasz ‘83]: 
For any given w, can get optimal solution xw to the LP 
using the following greedy algorithm:

1. Order V={e1,…,en} so that w(e1)≥ …≥ w(en)

2. Let xw(ei) = F({e1,…,ei}) – F({e1,…,ei-1})

Then wT xw = g(w) = maxx∈ PF
wT x

Sanity check: If w = wA and A={e1,…,ek}, then

wA T x*= ∑i=1
k [F({e1,…,ei)-F({e1,…,ei-1)] = F(A)

g(w) = maxx∈PF
wTx

PF = {x ∈ Rn: x(A) ≤ F(A) for all A ⊆ V}

-1 x{a}

x{b}

0 1

1

2

-2

w

xw

M
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-1 w{a}

w{b}

0 1

1

2

-2

Example: Lovasz extension

g([0,1]) = [0,1]T [-2,2] = 2 = F({b})

g([1,1]) = [1,1]T [-1,1] = 0 = F({a,b})

{} {a}

{b} {a,b}
[-1,1]

[-2,2]

g(w) = max {wT x: x ∈ PF}

w=[0,1]

want g(w)

Greedy ordering:

e1 = b, e2 = a

� w(e1)=1 > w(e2)=0

xw(e1)=F({b})-F(∅)=2

xw(e2)=F({b,a})-F({b})=-2

� xw=[-2,2]

0{a,b}

2{b}

-1{a}

0∅
F(A)A
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Why is this useful?

Theorem [Lovasz ’83]:

g(w) attains its minimum in [0,1]n at a corner!

If we can minimize g on [0,1]n, can minimize F…

(at corners, g and F take same values)

F(A) submodular g(w) convex 

(and efficient to evaluate)

Does the converse also hold?

No, consider g(w1,w2,w3) = max(w1,w2+w3)

{a} {b} {c} F({a,b})-F({a})=0 < F({a,b,c})-F({a,c})=1

x{a}

x{b}

0 1

1

2 [0,1]2
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Tutorial Overview

Examples and properties of submodular functions
Many problems submodular (mutual information, influence, …)

SFs closed under positive linear combinations; 
not under min, max

Submodularity and convexity
Every SF induces a convex function with SAME minimum

Special properties: Greedy solves LP over exponential polytope

Minimizing submodular functions

Maximizing submodular functions

Extensions and research directions



Carnegie Mellon

Minimization of

submodular functions
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Overview minimization

Minimizing general submodular functions

Minimizing symmetric submodular functions

Applications to Machine Learning
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Minimizing a submodular function

Need to solve

minw maxx wTx

s.t. w∈[0,1]n, x∈PF

Equivalently:

minc,w c 

s.t. c ≥ wT x for all x∈PF

w∈ [0,1]n

This is an LP with infinitely many constraints!

Want to solve A* = argminA F(A)

g(w)
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Ellipsoid algorithm
[Grötschel, Lovasz, Schrijver ’81]

Separation oracle: Find most violated constraint:

maxx wT x – c   s.t. x ∈ PF

Can solve separation using the greedy algorithm!!

� Ellipsoid algorithm minimizes SFs in poly-time!

minc,w c 

s.t. c ≥ wT x for all x∈PF
w∈ [0,1]n

Feasible region Optimality 

direction
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Minimizing submodular functions

Ellipsoid algorithm not very practical

Want combinatorial algorithm for minimization!

Theorem [Iwata (2001)]

There is a fully combinatorial, strongly polynomial 

algorithm for minimizing SFs, that runs in time

O(n8 log2 n)

Polynomial-time = Practical ???
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A more practical alternative?
[Fujishige ’91, Fujishige et al ‘06]

Minimum norm algorithm:
1. Find x* = argmin ||x||2 s.t. x ∈ BF x*=[-1,1]

2. Return A* = {i: x*(i) < 0} A*={a}

Theorem [Fujishige ’91]: A* is an optimal solution!

Note: Can solve 1. using Wolfe’s algorithm

Runtime finite but unknown!! �

-1 x{a}

x{b}

0 1

1

2

-2

Base polytope:
BF = PF 	 {x(V) = F(V)}

[-1,1]

x({a,b})=F({a,b})

x*

M

0{a,b}

2{b}

-1{a}

0∅
F(A)A
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Empirical comparison
[Fujishige et al ’06]

Minimum norm algorithm orders of magnitude faster!

Our implementation can solve n = 10k in < 6 minutes!

Cut functions 
from DIMACS 
Challenge

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Lo
w

e
r 

is
 b

e
tt

e
r 

(l
o

g
-s

ca
le

!)

Problem size (log-scale!)
512 102425612864

Minimum
norm algorithm
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Checking optimality (duality)

Theorem [Edmonds ’70]

minA F(A) = maxx {x–(V) : x ∈ BF}

where x–(s) = min {x(s), 0}

Testing how close A’ is to minA F(A)
1. Run greedy algorithm for w=wA’ to get xw

2. F(A’) ≥min
A

F(A) ≥ xw
–(V)

Base polytope:

BF = PF 	 {x(V) = F(V)}-1 w{a}

w{b}

0 1

1

2

-2

[-1,1]

x*

BF

A = {a}, F(A) = -1

w = [1,0]

xw = [-1,1]

xw
- = [-1,0]

xw
-(V) = -1

� A optimal!

0{a,b}

2{b}

-1{a}

0∅
F(A)A
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Overview minimization

Minimizing general submodular functions

Can minimizing in polytime using ellipsoid method

Combinatorial, strongly polynomial algorithm O(n^8)

Practical alternative: Minimum norm algorithm?

Minimizing symmetric submodular functions

Applications to Machine Learning
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What if we have special structure?

Worst-case complexity of best known algorithm: O(n8 log2n)

Can we do better for special cases?

Example (again): Given RVs X1,…,Xn

F(A) = I(XA; XV\A)

= I(XV\A ; XA)

= F(V\A)

Functions F with F(A) = F(V\A) for all A are symmetric
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Another example: Cut functions

a c

db

e g

hf

V={a,b,c,d,e,f,g,h}

F(A) = ∑ {ws,t: s∈ A, t∈ V\ A}

2

2

2

2
2 2

1

1

3

3

3

3
3 3

Example: F({a})=6; F({c,d})=10; F({a,b,c,d})=2

Cut function is symmetric and submodular!
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Minimizing symmetric functions

For any A, submodularity implies

2 F(A) = F(A) + F(V\A)

≥ F(A 	 (V\A))+F(A ∪ (V\A)) 

= F(∅) + F(V) 

= 2 F(∅) = 0

Hence, any symmetric SF attains minimum at ∅

In practice, want nontrivial partition of V into 
A and V\A, i.e., require that A is neither ∅ of V

Want A* = argmin F(A)  s.t.  0 < |A| < n

There is an efficient algorithm for doing that! ☺
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Queyranne’s algorithm (overview)
[Queyranne ’98]

Theorem: There is a fully combinatorial, strongly 

polynomial algorithm for solving

A* = argminA F(A)   s.t.   0<|A|<n

for symmetric submodular functions A

Runs in time O(n3)  [instead of O(n8)…]

Note: also works for “posimodular” functions:

F posimodular � A,B⊆ V: F(A)+F(B) ≥ F(A\B)+F(B\A)

M



48

Gomory Hu trees

A tree T is called Gomory-Hu (GH) tree for SF F
if for any s, t ∈ V it holds that

min {F(A): s∈A and t∉A} =
min {wi,j: (i,j) is an edge on the s-t path in T}

“min s-t-cut in T = min s-t-cut in G”

Theorem [Queyranne ‘93]: 
GH-trees exist for any symmetric SF F!

a c

db

e g

hf

2

2

2

2
2 2

1

1

3

3

3

3
3 3

G

a c

db

e g

hf

6

6 7

2 9

10 9

T

Expensive to

find one in

general! �
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Pendent pairs

For function F on V, s,t∈ V: (s,t) is pendent pair if

{s} ∈ argminA F(A)   s.t.   s∈A, t∉A

Pendent pairs always exist:

a c

db

e g

hf

6

6 7

2 9

10 9
Gomory-Hu

tree T

Take any leaf s and neighbor t, then (s,t) is pendent!

E.g., (a,c), (b,c), (f,e), …

Theorem [Queyranne ’95]: Can find pendent pairs in O(n2)

(without needing GH-tree!)
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Why are pendent pairs useful?

Key idea: Let (s,t) pendent, A* = argmin F(A)

Then EITHER

s and t separated by A*, e.g., s∈A*, t∉A*. 

But then A*={s}!!  OR

s and t are not separated by A*

Then we can merge s and t…

V
A*

s t

V
A* s

t

V
A*

s t
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Merging

Suppose F is a symmetric SF on V, 

and we want to merge pendent pair (s,t)

Key idea: “If we pick s, get t for free”

V’ = V\{t}

F’(A) = F(A∪{t}) if s∈A, or

= F(A) if s∉A

Lemma: F’ is still symmetric and submodular!

a c

db

e g

hf

2

2

2

2
2 2

1

1

3

3

3

3
3 3

a,c

db

e g

hf
2

4 4

1

1

3

3

3

3
3 3

Merge

(a,c)
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Queyranne’s algorithm

Input:   symmetric SF F on V, |V|=n

Output: A* = argmin F(A)   s.t.  0 < |A| < n

Initialize F’← F, and V’← V

For i = 1:n-1
� (s,t) ← pendentPair(F’,V’)

� Ai = {s}

� (F’,V’) ←merge(F’,V’,s,t)

Return argmini F(Ai)

Running time: O(n3) function evaluations
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Note: Finding pendent pairs

1. Initialize v1 ← x (x is arbitrary element of V)

2. For i = 1 to n-1 do

1. Wi← {v1,…,vi}

2. vi+1← argminv F(Wi∪{v}) - F({v}) s.t. v∈ V\Wi

3. Return pendent pair (vn-1,vn)

Requires O(n2) evaluations of F
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Overview minimization

Minimizing general submodular functions

Can minimizing in polytime using ellipsoid method

Combinatorial, strongly polynomial algorithm O(n8)

Practical alternative: Minimum norm algorithm?

Minimizing symmetric submodular functions

Many useful submodular functions are symmetric

Queyranne’s algorithm minimize symmetric SFs in O(n3)

Applications to Machine Learning
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V

Application: Clustering
[Narasimhan, Jojic, Bilmes NIPS ’05]

o
oo

o
o

o

o
o

o

o o

Group data points V into

“homogeneous clusters”

Find a partition V=A1 ∪ … ∪ Ak
that minimizes

F(A1,…,Ak) = ∑i E(Ai)

A1

“Inhomogeneity of Ai”

Examples for E(A):

Entropy H(A)

Cut function

Special case: k = 2. Then F(A) = E(A) + E(V\A) is symmetric!

If E is submodular, can use Queyranne’s algorithm! ☺

A2
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What if we want k>2 clusters?
[Zhao et al ’05, Narasimhan et al ‘05]

Greedy Splitting algorithm

Start with partition P = {V}

For i = 1 to k-1
For each member Cj∈ P do 

split cluster Cj: 
A* = argmin E(A) + E(Cj\A) s.t. 0<|A|<|Cj|

Pj← P \ {Cj} ∪ {A,Cj\A}
Partition we get by splitting j-th cluster

P ← argminj F(Pj)

Theorem: F(P) ≤ (2-2/k) F(Popt)

X1
X2X3

X4
X5X6

X7

X1
X3

X4
X6

X2
X5

X7

X3
X6

X2
X5

X7X1
X4

M
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Example: Clustering species
[Narasimhan et al ‘05]

Common genetic information = #of common substrings:

Can easily extend to sets of species
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Example: Clustering species 
[Narasimhan et al ‘05]

The common genetic information ICG

does not require alignment

captures genetic similarity

is smallest for maximally evolutionarily diverged species

is a symmetric submodular function! ☺

Greedy splitting algorithm yields phylogenetic tree!
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Example: SNPs
[Narasimhan et al ‘05]

Study human genetic variation

(for personalized medicine, …)

Most human variation due to point mutations that occur 

once in human history at that base location:

Single Nucleotide Polymorphisms (SNPs)

Cataloging all variation too expensive 

($10K-$100K per individual!!)
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SNPs in the ACE gene 
[Narasimhan et al ‘05]

Rows: Individuals. Columns: SNPs.

Which columns should we pick to reconstruct the rest?

Can find near-optimal clustering (Queyranne’s algorithm)
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Reconstruction accuracy
[Narasimhan et al ‘05]

Comparison with 

clustering based on

Entropy

Prediction accuracy

Pairwise correlation

PCA# of clusters
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Example: Speaker segmentation
[Reyes-Gomez, Jojic ‘07]

Mixed waveforms

Time

Fr
e

q
u

e
n

cy

Partition

Spectro-

gram

using

Q-Algo

E(A)=-log p(XA)

F(A)=E(A)+E(V\A)

symmetric

& posimodular

Likelihood of

“region” A

Region A “Fiona”

Alice

Fiona

“???”

“???”

“308”

“217”
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Example: Image denoising
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Example: Image denoising

X1

X4

X7

X2

X5

X8

X3

X6

X9

Y1

Y4

Y7

Y2

Y5

Y8

Y3

Y6

Y9

P(x1,…,xn,y1,…,yn)
= ∏i,j ψi,j(yi,yj) Πi φi(xi,yi)

Want argmaxy P(y | x)

=argmaxy log P(x,y)
=argminy ∑i,j Ei,j(yi,yj)+∑i Ei(yi)

When is this MAP inference efficiently solvable

(in high treewidth graphical models)?

Ei,j(yi,yj) = -log ψi,j(yi,yj)

Pairwise Markov Random Field

Xi: noisy pixels

Yi: “true” pixels
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MAP inference in Markov Random Fields
[Kolmogorov et al, PAMI ’04, see also: Hammer, Ops Res ‘65]

Energy E(y) = ∑i,j Ei,j(yi,yj)+∑i Ei(yi)

Suppose yi are binary, define

F(A) = E(yA) where yA
i = 1 iff i∈ A

Then miny E(y) = minA F(A)

Theorem 

MAP inference problem solvable by graph cuts

� For all i,j: Ei,j(0,0)+Ei,j(1,1) ≤ Ei,j(0,1)+Ei,j(1,0)

� each Ei,j is submodular

“Efficient if prefer that neighboring pixels have same color”
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Constrained minimization

Have seen: if F submodular on V, can solve

A*=argmin F(A) s.t. A∈V

What about

A*=argmin F(A) s.t. A∈V and |A| ≤ k

E.g., clustering with minimum # points per cluster, …

In general, not much known about constrained minimization �

However, can do

A*=argmin F(A) s.t. 0<|A|< n

A*=argmin F(A) s.t. |A| is odd/even [Goemans&Ramakrishnan ‘95]

A*=argmin F(A) s.t. A ∈ argmin G(A) for G submodular [Fujishige ’91]



67

Overview minimization

Minimizing general submodular functions

Can minimizing in polytime using ellipsoid method

Combinatorial, strongly polynomial algorithm O(n8)

Practical alternative: Minimum norm algorithm?

Minimizing symmetric submodular functions

Many useful submodular functions are symmetric

Queyranne’s algorithm minimize symmetric SFs in O(n3)

Applications to Machine Learning

Clustering [Narasimhan et al’ 05]

Speaker segmentation [Reyes-Gomez & Jojic ’07]

MAP inference [Kolmogorov et al ’04]
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Tutorial Overview

Examples and properties of submodular functions

Many problems submodular (mutual information, influence, …)

SFs closed under positive linear combinations; not under min, max

Submodularity and convexity

Every SF induces a convex function with SAME minimum

Special properties: Greedy solves LP over exponential polytope

Minimizing submodular functions

Minimization possible in polynomial time (but O(n8)…)

Queyranne’s algorithm minimizes symmetric SFs in O(n3)

Useful for clustering, MAP inference, structure learning, …

Maximizing submodular functions

Extensions and research directions



Carnegie Mellon

Maximizing submodular

functions
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Maximizing submodular functions

Minimizing convex functions:

Polynomial time solvable!

Minimizing  submodular functions:

Polynomial time solvable!

Maximizing convex functions:

NP hard!
Maximizing  submodular functions:

NP hard!

But can get  

approximation 

guarantees ☺
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Maximizing influence
[Kempe, Kleinberg, Tardos KDD ’03]

F(A) = Expected #people influenced when targeting A

F monotonic: If A⊆B: F(A) ≤ F(B) 
Hence V = argmaxA F(A)

More interesting: argmaxA F(A) – Cost(A)

0.5

0.3
0.5 0.4

0.2

0.2 0.5

Alice

Bob

Charlie

Eric

Fiona

Dorothy
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Maximizing non-monotonic functions

Suppose we want for not monotonic F

A* = argmax F(A)  s.t.  A⊆V

Example:

F(A) = U(A) – C(A) where U(A) is submodular utility, 

and C(A) is supermodular cost function
E.g.: Trading off utility and privacy in personalized search 

[Krause & Horvitz AAAI ’08]

In general: NP hard. Moreover:

If F(A) can take negative values:

As hard to approximate as maximum independent set 

(i.e., NP hard to get O(n1-ε) approximation)

|A|

maximum
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Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak FOCS ’07]

picking a random set gives ¼ approximation 

(½ approximation if F is symmetric!)

we cannot get better than ¾ approximation unless P = NP

Theorem

There is an efficient randomized local search procedure,

that, given a positive submodular function F, F(∅)=0, 

returns set ALS such that 

F(ALS) ≥ (2/5) maxA F(A)
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Scalarization vs. constrained maximization

Given monotonic utility F(A) and cost C(A), optimize:

Option 1: 

maxA F(A) – C(A)

s.t. A ⊆ V

Option 2:

maxA F(A)

s.t. C(A) ≤ B

Can get 2/5 approx…

if F(A)-C(A) ≥ 0 
for all A ⊆ V

coming up…

Positiveness is a 

strong requirement �

“Scalarization” “Constrained maximization”
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Robust optimization Complex constraints

Constrained maximization: Outline

Selected setMonotonic submodular

BudgetSelection cost

Subset selection: C(A) = |A|
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Monotonicity

A set function is called monotonic if

A⊆B⊆V ⇒ F(A) ≤ F(B)

Examples:

Influence in social networks [Kempe et al KDD ’03]

For discrete RVs, entropy F(A) = H(XA) is monotonic:

Suppose B=A ∪ C. Then 

F(B) = H(XA, XC) = H(XA) + H(XC | XA) ≥ H(XA) = F(A)

Information gain: F(A) = H(Y)-H(Y | XA)

Set cover

Matroid rank functions (dimension of vector spaces, …)

…
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Subset selection

Given:      Finite set V, monotonic submodular function F, F(∅) = 0 

Want:       A*⊆ V such that

NP-hard!
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Exact maximization of monotonic submodular functions

1) Mixed integer programming  [Nemhauser et al ’81]

2) Branch-and-bound: “Data-correcting algorithm”

[Goldengorin et al ’99]

max η
s.t. η ≤ F(B) + ∑s∈V\B αs δs(B) for all B ⊆ S

∑s αs ≤ k
αs ∈ {0,1}

where δs(B) = F(B ∪ {s}) – F(B)

Solved using constraint generation

Both algorithms worst-case exponential!

M
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Approximate maximization

Given: finite set V, monotonic submodular function F(A) 

Want:       A*⊆ V such that

NP-hard!

Greedy algorithm:

Start with A0 = ∅

For i = 1 to k

si := argmaxs F(Ai-1 ∪ {s}) - F(Ai-1)

Ai := Ai-1 ∪ {si}

Y

“Sick”

X1

“Fever”

X2

“Rash”

X3

“Male”

M
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Performance of greedy algorithm

Theorem [Nemhauser et al ‘78]

Given a monotonic submodular function F, F(∅)=0, the 

greedy maximization algorithm returns Agreedy

F(Agreedy) ≥ (1-1/e) max|A|≤ k F(A)

~63%

Sidenote: Greedy algorithm gives 
1/2 approximation for 
maximization over any matroid C! 
[Fisher et al ’78]
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An “elementary” counterexample

X1, X2 ~ Bernoulli(0.5)

Y = X1 XOR X2

Let F(A) = IG(XA; Y) = H(Y) – H(Y|XA)

Y | X1 and Y | X2 ~ Bernoulli(0.5) (entropy 1)

Y | X1,X2 is deterministic! (entropy 0)

Hence F({1,2}) – F({1}) = 1, but

F({2}) – F(∅)  = 0

F(A) submodular under some conditions! (later)

X1

Y

X2
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Example: Submodularity of info-gain

Y1,…,Ym, X1, …, Xn discrete RVs

F(A) = IG(Y; XA) = H(Y)-H(Y | XA)

F(A) is always monotonic

However, NOT always submodular

Theorem [Krause & Guestrin UAI’ 05]

If Xi are all conditionally independent given Y,

then F(A) is submodular!

Y1

X1

Y2

X2

Y3

X4X3

Hence, greedy algorithm works!

In fact, NO algorithm can do better 

than (1-1/e) approximation!
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People sit a lot

Activity recognition in

assistive technologies

Seating pressure as 

user interface

Equipped with 

1 sensor per cm2!

Costs $16,000! �

Can we get similar 

accuracy with fewer, 

cheaper sensors?

Lean

forward

SlouchLean

left

82% accuracy on               

10 postures! [Tan et al]

Building a Sensing Chair 
[Mutlu, Krause, Forlizzi, Guestrin, Hodgins UIST ‘07]
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How to place sensors on a chair?

Sensor readings at locations V as random variables

Predict posture Y using probabilistic model P(Y,V)

Pick sensor locations A* ⊆ V to minimize entropy:

Possible locations V

$100 ☺☺☺☺79%After

$16,000 ����82%Before

CostAccuracy

Placed sensors, did a user study:

Similar accuracy at <1% of the cost!
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Variance reduction 
(a.k.a. Orthogonal matching pursuit, Forward Regression)

Let Y = ∑i αi Xi+ε, and (X1,…,Xn,ε) ∼ N(·; µ,Σ)

Want to pick subset XA to predict Y

Var(Y | XA=xA): conditional variance of Y given XA = xA

Expected variance:     Var(Y | XA) = ∫ p(xA) Var(Y | XA=xA) dxA

Variance reduction:    FV(A) = Var(Y) – Var(Y | XA)

FV(A) is always monotonic

Theorem [Das & Kempe, STOC ’08]

FV(A) is submodular*
*under some 

conditions on Σ

���� Orthogonal matching pursuit near optimal!

[see other analyses by Tropp, Donoho et al., and Temlyakov]
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Batch mode active learning [Hoi et al, ICML’06]

o

oo
o+

o

o
o

–

o o

o
o

o

o

o

Which data points o should we

label to minimize error?

Want batch A of k points to 

show an expert for labeling

F(A) selects examples that are

uncertain [σ2(s) = π(s) (1-π(s)) is large]

diverse (points in A are as different as possible)

relevant (as close to V\A is possible, sT s’ large)

F(A) is submodular and monotonic! 
[approximation to improvement in Fisher-information]

+

–
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Results about Active Learning
[Hoi et al, ICML’06]

Batch mode Active Learning performs better than

Picking k points at random

Picking k points of highest entropy



88

Monitoring water networks
[Krause et al, J Wat Res Mgt 2008]

Contamination of drinking water

could affect millions of people

Contamination

Place sensors to detect contaminations

“Battle of the Water Sensor Networks” competition

Where should we place sensors to quickly detect contamination?

Sensors

Simulator from EPA Hach Sensor

~$14K
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Model-based sensing

Utility of placing sensors based on model of the world

For water networks: Water flow simulator from EPA

F(A)=Expected impact reduction placing sensors at A

S2

S3

S4
S1 S2

S3

S4

S1

High impact reduction F(A) = 0.9 Low impact reduction F(A)=0.01

Model predicts

High impact

Medium impact

location

Low impact

location

Sensor reduces

impact through

early detection!

S1

Contamination

Set V of all 

network junctions

Theorem [Krause et al., J Wat Res Mgt ’08]:

Impact reduction F(A) in water networks is submodular! 
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Battle of the Water Sensor Networks Competition

Real metropolitan area network (12,527 nodes)

Water flow simulator provided by EPA

3.6 million contamination events

Multiple objectives: 

Detection time, affected population, …

Place sensors that detect well “on average”
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Bounds on optimal solution
[Krause et al., J Wat Res Mgt ’08]

(1-1/e) bound quite loose… can we get better bounds?

P
o

p
u
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(A

)

H
ig

h
e

r 
is

 b
e

tt
e

r

Water 

networks

data
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(Nemhauser)
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Greedy
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Number of sensors placed



92

Data dependent bounds
[Minoux ’78]

Suppose A is candidate solution to

argmax F(A)  s.t. |A| ≤ k

and A* = {s1,…,sk} be an optimal solution

Then F(A*) ≤ F(A ∪ A*) 

= F(A)+∑i F(A∪{s1,…,si})-F(A∪ {s1,…,si-1})

≤ F(A) + ∑i (F(A∪{si})-F(A))

= F(A) + ∑i δsi

For each s ∈ V\A, let δs = F(A∪{s})-F(A)

Order such that δ1 ≥ δ2≥ …≥ δn

Then: F(A*) ≤ F(A) + ∑i=1
k δi

M
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Bounds on optimal solution
[Krause et al., J Wat Res Mgt ’08]

Submodularity gives data-dependent bounds on the 

performance of any algorithm

S
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BWSN Competition results 
[Ostfeld et al., J Wat Res Mgt 2008]

13 participants

Performance measured in 30 different criteria
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G: Genetic algorithm

H: Other heuristic

D: Domain knowledge

E: “Exact” method (MIP)

24% better performance than runner-up! ☺☺☺☺
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Simulated all                                           on 2 weeks / 40 processors

152 GB data on disk

� Very accurate computation of F(A)

, 16 GB in main memory (compressed)

L
o
w
e
r 
is
 b
e
tt
e
r

30 hours/20 sensors

6 weeks for all

30 settings ����

3.6M contaminations

Very slow evaluation of F(A) �

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Number of sensors selected

R
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n
n
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g

 t
im

e
 (

m
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u
te

s)

Exhaustive search
(All subsets)

Naive
greedy

What was the trick?

ubmodularity

to the rescue



96

Scaling up greedy algorithm
[Minoux ’78]

In round i+1, 
have picked Ai = {s1,…,si}

pick si+1 = argmaxs F(Ai ∪ {s})-F(Ai)

I.e., maximize “marginal benefit” δs(Ai)

δs(Ai) = F(Ai ∪ {s})-F(Ai)

Key observation: Submodularity implies 

i ≤ j ⇒ δs(Ai) ≥ δs(Aj)

Marginal benefits can never increase!

s

δδδδs(Ai) ≥ δδδδs(Ai+1)
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“Lazy” greedy algorithm
[Minoux ’78]

Lazy greedy algorithm:

� First iteration as usual

� Keep an ordered list of marginal 

benefits δδδδi from previous iteration

� Re-evaluate δδδδi only for top 

element

� If δi stays on top, use it,

otherwise re-sort

a

b

c

d

Benefit δs(A)

e

a

d

b

c

e

a

c

d

b

e

Note: Very easy to compute online bounds, lazy evaluations, etc.

[Leskovec et al. ’07]

M
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Simulated all                                           on 2 weeks / 40 processors

152 GB data on disk

� Very accurate computation of F(A)

Using “lazy evaluations”:

1 hour/20 sensors

Done after 2 days! ☺☺☺☺

, 16 GB in main memory (compressed)

L
o
w
e
r 
is
 b
e
tt
e
r

30 hours/20 sensors

6 weeks for all

30 settings ����

3.6M contaminations

Very slow evaluation of F(A) �
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Fast greedy

ubmodularity

to the rescue:

Result of lazy evaluation
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What about worst-case?
[Krause et al., NIPS ’07]

S2

S3

S4S1

Knowing the sensor locations, an 

adversary contaminates here! 

Where should we place sensors to quickly detect in the worst case?

Very different average-case impact,

Same worst-case impact

S2

S3

S4

S1

Placement detects 

well on “average-case”

(accidental) contamination
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Robust optimization Complex constraints

Constrained maximization: Outline

Selected setUtility function

BudgetSelection cost

Subset selection



101

Separate utility function Fi for each contamination i

Fi(A) = impact reduction by sensors A for contamination i

Want to solve

Each of the Fi is submodular

Unfortunately, mini Fi not submodular!

How can we solve this robust optimization problem?

Optimizing for the worst case

Contamination 

at node s Sensors A

Fs(A) is high

Contamination 

at node r

Fr(A) is lowFr(B) is high

Fs(B) is high

Sensors B
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How does the greedy algorithm do?

Theorem [NIPS ’07]: The problem max|A|≤ k mini Fi(A) 

does not admit any approximation unless P=NP

Optimal

solution

Greedy picks

first

Then, can

choose only

or  

� Greedy does arbitrarily badly. Is there something better?

V={     ,     ,     }

Can only buy k=2

Greedy score: ε
Optimal score: 1 1

ε

ε

ε

0

0

mini Fi

21

2ε

ε1

εε

20

01

F2F1Set A

Hence we can’t find any

approximation algorithm.

Or can we?
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Alternative formulation

If somebody told us the optimal value, 

can we recover the optimal solution A*?

Need to find

Is this any easier?

Yes, if we relax the constraint |A| ≤ k
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Solving the alternative problem

Trick: For each Fi and c, define truncation

c

|A|

Fi(A)

F’i,c(A)

Same optimal solutions!

Solving one solves the other
Non-submodular �

Don’t know how to solve
Submodular!

But appears as constraint?

Problem 1 (last slide) Problem 2

Remains 

submodular!
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Maximization vs. coverage
Previously: Wanted

A* = argmax F(A)  s.t.  |A| ≤ k

Now need to solve:

A* = argmin |A|  s.t.  F(A) ≥ Q

Greedy algorithm:
Start with A := ∅;

While F(A) < Q and |A|< n
s* := argmaxs F(A ∪ {s})

A := A ∪ {s*}

Theorem [Wolsey et al]: Greedy will return Agreedy

|Agreedy| ≤ (1+log maxs F({s})) |Aopt|

For bound, assume 

F is integral.

If not, just round it.

M
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Solving the alternative problem

Trick: For each Fi and c, define truncation

c

|A|

Fi(A)

F’i,c(A)

Non-submodular �

Don’t know how to solve
Submodular!

Can use greedy algorithm!

Problem 1 (last slide) Problem 2
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Back to our example

Guess c=1

First pick 

Then pick 

� Optimal solution!

How do we find c?

Do binary search!

1

(1+εεεε)/2

(1+εεεε)/2

εεεε

½

½

F’avg,1

1

ε

ε

ε

0

0

mini Fi

21

2ε

ε1

εε

20

01

F2F1Set A
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Truncation

threshold

(color)

SATURATE Algorithm 
[Krause et al, NIPS ‘07]

Given: set V, integer k and monotonic SFs F1,…,Fm

Initialize cmin=0, cmax = mini Fi(V)

Do binary search: c = (cmin+cmax)/2

Greedily find AG such that F’avg,c(AG) = c

If |AG| ≤ α k: increase cmin

If |AG| >  α k: decrease cmax

until convergence

M
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Theoretical guarantees
[Krause et al, NIPS ‘07]

Theorem:

If there were a polytime algorithm with better factor 

β < α, then NP ⊆ DTIME(nlog log n)

Theorem:   SATURATE finds a solution AS such that

mini Fi(AS) ≥ OPTk and |AS| ≤ α k

where OPTk = max|A|≤k mini Fi(A)

α = 1 + log maxs ∑i Fi({s})

Theorem: The problem max|A|≤ k mini Fi(A) 

does not admit any approximation unless P=NP �
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Example: Lake monitoring

Monitor pH values using robotic sensor

Position s along transect

p
H

 v
a

lu
e

Observations A

True (hidden) pH values

Prediction at unobserved

locations

transect

Where should we sense to minimize our maximum error?

Use probabilistic model

(Gaussian processes)

to estimate prediction error

(often) submodular

[Das & Kempe ’08]

Var(s | A)

���� Robust submodular
optimization problem!



111

Comparison with state of the art

Algorithm used in geostatistics: Simulated Annealing

[Sacks & Schiller ’88, van Groeningen & Stein ’98, Wiens ’05,…]

7 parameters that need to be fine-tuned

Environmental monitoring
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Precipitation data
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SATURATE is competitive & 10x faster

No parameters to tune!

SATURATE
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SATURATE

Results on water networks

60% lower worst-case detection time!

Water networks
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Worst- vs. average case

Given: Set V, submodular functions F1,…,Fm

Very pessimistic!Too optimistic?

Worst-case scoreAverage-case score

Want to optimize both average- and worst-case score!

Can modify SATURATE to solve this problem! ☺

Want: Fac(A) ≥ cac and Fwc(A) ≥ cwc

Truncate:  min{Fac(A),cac} + min{Fwc(A),cwc} ≥ cac+cwc
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Worst- vs. average case
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Can find good compromise between 
average- and worst-case score!
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Robust optimization Complex constraints

Constrained maximization: Outline

Selected set

Budget

Subset selection

Utility function

Selection cost
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Other aspects: Complex constraints

maxA F(A) or maxA mini Fi(A) subject to

So far:  |A|   ≤ k

In practice, more complex constraints:

Different costs: C(A) ≤ B

Locations need to be 

connected by paths
[Chekuri & Pal, FOCS ’05]

[Singh et al, IJCAI ’07]

Lake monitoring

Sensors need to communicate 

(form a routing tree)

Building monitoring
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Non-constant cost functions

For each s ∈ V, let c(s)>0 be its cost
(e.g., feature acquisition costs, …)

Cost of a set C(A) = ∑s∈ A c(s)   (modular function!)

Want to solve

A* = argmax F(A)  s.t.  C(A) ≤ B

Cost-benefit greedy algorithm:

Start with A := ∅;

While there is an s∈V\A  s.t. C(A∪{s}) ≤ B

A := A ∪ {s*}

M



118

Performance of cost-benefit greedy

Want

maxA F(A) s.t. C(A)≤ 1

Cost-benefit greedy picks a.

Then cannot afford b!

� Cost-benefit greedy performs arbitrarily badly!

11{b}

ε2ε{a}

C(A)F(A)Set A
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Cost-benefit optimization
[Wolsey ’82, Sviridenko ’04, Leskovec et al ’07]

Theorem [Leskovec et al. KDD ‘07]

ACB: cost-benefit greedy solution and

AUC: unit-cost greedy solution (i.e., ignore costs)

Then 

max { F(ACB), F(AUC) } ≥ ½ (1-1/e) OPT

Can still compute online bounds and 

speed up using lazy evaluations

Note: Can also get

(1-1/e) approximation in time O(n4) [Sviridenko ’04]

Slightly better than ½ (1-1/e) in O(n2) [Wolsey ‘82]
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T
im
e

Information 

cascade

Example: Cascades in the Blogosphere
[Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, Glance ‘07]

Which blogs should we read to learn about big cascades early?

Learn about

story after us!
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Water vs. Web

In both problems we are given

Graph with nodes (junctions / blogs) and edges (pipes / links)

Cascades spreading dynamically over the graph (contamination / citations)

Want to pick nodes to detect big cascades early

Placing sensors in

water networks
Selecting

informative blogsvs.

In both applications, utility functions submodular ☺
[Generalizes Kempe et al, KDD ’03]
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Performance on Blog selection

Outperforms state-of-the-art heuristics

700x speedup using submodularity!

Blog selection
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Naïve approach: Just pick 10 best blogs

Selects big, well known blogs (Instapundit, etc.)

These contain many posts, take long to read!
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Cost-benefit optimization picks summarizer blogs!
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Predicting the “hot” blogs
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Poor generalization!

Why’s that?
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Detect well
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Detect poorly

here! 

Want blogs that will be informative in the future

Split data set; train on historic, test on future

Blog selection “overfits”

to training data!

Let’s see what

goes wrong here.

Want blogs that

continue to do well!
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Robust optimization
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Detections using SATURATE

F1(A)=.5

F2 (A)=.8

F3 (A)=.6

F4(A)=.01

F5 (A)=.02

Optimize

worst-case

Fi(A) = detections 

in interval i

“Overfit” blog 

selection A

“Robust” blog 

selection A*

Robust optimization ���� Regularization!
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Predicting the “hot” blogs

Greedy on historic
Test on future

Robust solution
Test on future
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50% better generalization!
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Other aspects: Complex constraints

maxA F(A) or maxA mini Fi(A) subject to

So far: |A|   ≤ k

In practice, more complex constraints:

Different costs: C(A) ≤ B

Locations need to be 

connected by paths
[Chekuri & Pal, FOCS ’05]

[Singh et al, IJCAI ’07]

Lake monitoring

Sensors need to communicate 

(form a routing tree)

Building monitoring

skip
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Naïve approach: Greedy-connect

Simple heuristic: Greedily optimize submodular utility function F(A)

Then add nodes to minimize communication cost C(A)

Want to find optimal tradeoff

between information and communication cost
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The pSPIEL Algorithm
[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]

pSPIEL: Efficient nonmyopic algorithm

(padded Sensor Placements at Informative and cost-

Effective Locations)

C1 C2

C3
C41

1
3

2

1

3 2

21 2
Decompose sensing region 

into small, well-separated 

clusters

Solve cardinality constrained 

problem per cluster (greedy)

Combine solutions using 

k-MST algorithm
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Theorem: 

pSPIEL finds a tree T with 

submodular utility  F(T)≥ Ω(1)    OPTF

communication cost C(T)≤ O(log |V|)  OPTC

Guarantees for pSPIEL
[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]
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Proof of concept study

Learned model from short deployment of 46 sensors 

at the Intelligent Workplace

Manually selected 20 sensors;

Used pSPIEL to place 12 and 19 sensors

Compared prediction accuracy

Initial deployment 

and validation set

Optimized

placements
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Proof of concept study

Manual (M20) pSPIEL (pS19) pSPIEL (pS12)

Root mean squares error (Lux)
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pSPIEL improves solution over intuitive manual placement:

50% better prediction and 20% less communication cost, or

20% better prediction and 40% less communication cost

Poor placements can hurt a lot!

Good solution can be unintuitive
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Robustness sensor placement

Want placement to do well both under all possible parameters θ

� Maximize minθ Fθ(A) 

Unified view
Robustness to change in parameters 

Robust experimental design

Robustness to adversaries 

Can use SATURATE for robust sensor placement!

what if the usage

pattern changes?

[Krause, McMahan, Guestrin, Gupta ‘07]

Optimal for old 

parameters θold

θnew
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Robust pSpiel

manual pSpiel

RpS19¯

Robust pSpiel
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Robust placement more intuitive, still better than manual!
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Tutorial Overview
Examples and properties of submodular functions

Many problems submodular (mutual information, influence, …)

SFs closed under positive linear combinations; not under min, max

Submodularity and convexity
Every SF induces a convex function with SAME minimum

Special properties: Greedy solves LP over exponential polytope

Minimizing submodular functions
Minimization possible in polynomial time (but O(n8)…)

Queyranne’s algorithm minimizes symmetric SFs in O(n3)

Useful for clustering, MAP inference, structure learning, …

Maximizing submodular functions
Greedy algorithm finds near-optimal set of k elements

For more complex problems (robustness, constraints) greedy fails, but 
there still exist good algorithms (SATURATE, pSPIEL, …)

Can get online bounds, lazy evaluations, …

Useful for feature selection, active learning, sensor placement, …

Extensions and research directions



Carnegie Mellon

Extensions and 

research directions

skip
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Learning submodular functions
[Goemans, Harvey, Kleinberg, Mirrokni, ’08]

Pick m sets, A1 … Am, get to see F(A1), …, F(Am)

From this, want to approximate F by F’ s.t. 

1/α≤ F(A)/F’(A) ≤ α for all A

Theorem: Even if 

F is monotonic

we can pick polynomially many Ai, chosen adaptively, 

cannot approximate better than

α = n½ / log(n)

unless P = NP
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Thus far assumed know 

submodular function F

(model of environment) 

→ Bad assumption

Don’t know lake correlations 

before we go…

Active learning: 

Simultaneous sensing (selection) 

and model (F) learning

Can use submodularity to analyze 

exploration/exploitation tradeoff

Obtain theoretical guarantees

pH data from Merced river

Sequential selection

M
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rr
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r

More observations
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a priori

model
active 

learning

[Krause, Guestrin ‘07]
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Online maximization of submodular functions
[Golovin & Streeter ‘07]

Theorem 
Can efficiently choose A1,…At s.t. in expectation

(1/T) ∑t Ft(At) ≥ (1/T) (1-1/e) max|A|≤ k ∑t Ft(A)

for any sequence Fi, as T→∞

“Can asymptotically get ‘no-regret’ over clairvoyant greedy”

A1 A2Pick sets

SFs

Reward

F1

r1=F1(A1) Total: ∑t rt � max

F2

r2

A3

F3

r3

AT

FT

rT

…

…

…

Time
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Game theoretic applications

How can we fairly distribute a set V of 

“unsplittable” goods to m people?

“Social welfare” problem:

Each person i has submodular utility Fi(A)

Want to partitition V = A1 ∪ … ∪ Am

to maximize

F(A1,…,Am) = ∑i Fi(Ai)

Theorem [Vondrak, STOC ’08]:

Can get 1-1/e approximation!
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Beyond Submodularity: Other notions

Posimodularity?
F(A) + F(B) ≥ F(A\B) + F(B\A)  ∀ A,B

Strictly generalizes symmetric submodular functions

Subadditive functions?
F(A) + F(B) ≥ F(A ∪ B) ∀ A,B

Strictly generalizes monotonic submodular functions

Crossing / intersecting submodularity?
F(A) + F(B) ≥ F(A∪B) + F(A	B) holds for some sets A,B

Submodular functions can be defined on arbitrary lattices

Bisubmodular functions?
Set functions defined on pairs (A,A’) of disjoint sets of 

F(A,A’) + F(B,B’) ≥ F((A,A’)Ç(B,B’)) + F((A,A’)Æ(B,B’))

Discrete-convex analysis (L-convexity, M-convexity, …)

Submodular flows

…
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Beyond submodularity:

Non-submodular functions
For F submodular and G supermodular, want 

A* = argminA F(A) + G(A)

Example:

–G (A) is information gain for feature selection

F(A) is cost of computing features A, where

“buying in bulk is cheaper”

In fact, any set function can be written this way!!

Y

“Sick”

X1

“MRI”

X2

“ECG”

F ({X1,X2}) ≤
F({X1})+F({X2})
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An analogy

For F submodular and G supermodular, want

A* = argminA F(A) + G(A)

Have seen:

submodularity ~ convexity

supermodularity ~ concavity

Corresponding problem: f convex, g concave

x* = argminx f(x) + g(x)
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DC Programming / Convex Concave Procedure
[Pham Dinh Tao ‘85]

x’← argmin f(x)

While not converged do

1.) g’← linear upper bound of g, 

tight at x’

2.) x’← argmin f(x)+g’(x)

f

g

h

h’

g’

Clever idea [Narasimhan&Bilmes ’05]: 
Also works for submodular and supermodular functions!

Replace 1) by “modular” upper bound

Replace 2) by submodular function minimization

Useful e.g. for discriminative structure learning!

Many more details in their UAI ’05 paper

Will converge to local optimum

Generalizes EM, …

M
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Structure in ML / AI problems

Structural insights help us solve challenging problems

ML last 10 years:

Convexity

Kernel machines 

SVMs, GPs, MLE…

ML “next 10 years:”

Submodularity ☺☺☺☺

New structural 

properties
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Open problems / directions

Submodular optimization

Improve on O(n8 log2 n)

algorithm for 

minimization?

Algorithms for 

constrained 

minimization of SFs?

Extend results to more 

general notions 

(subadditive, …)?

Applications to AI/ML

Fast / near-optimal 

inference?

Active Learning

Structured prediction?

Understanding 

generalization?

Ranking? 

Utility / Privacy?

Lots of interesting open problems!!
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www.submodularity.org
Examples and properties of submodular functions

Many problems submodular (mutual information, influence, …)

SFs closed under positive linear combinations; not under min, max

Submodularity and convexity

Every SF induces a convex function with SAME minimum

Special properties: Greedy solves LP over exponential polytope

Minimizing submodular functions

Minimization possible in polynomial time (but O(n8)…)

Queyranne’s algorithm minimizes symmetric SFs in O(n3)

Useful for clustering, MAP inference, structure learning, …

Maximizing submodular functions

Greedy algorithm finds near-optimal set of k elements

For more complex problems (robustness, constraints) greedy fails, but there still 
exist good algorithms (SATURATE, pSPIEL, …)

Can get online bounds, lazy evaluations, …

Useful for feature selection, active learning, sensor placement, …

Extensions and research directions

Sequential, online algorithms

Optimizing non-submodular functions

Check out our 

Matlab toolbox!

sfo_queyranne, 

sfo_min_norm_point, 

sfo_celf, sfo_sssp, 

sfo_greedy_splitting, 

sfo_greedy_lazy, 

sfo_saturate, 

sfo_max_dca_lazy

…


