Beyond Convexity – Submodularity in Machine Learning

Andreas Krause, Carlos Guestrin

Carnegie Mellon University

International Conference on Machine Learning | July 5, 2008

Select Lab

Carnegie Mellon

Acknowledgements

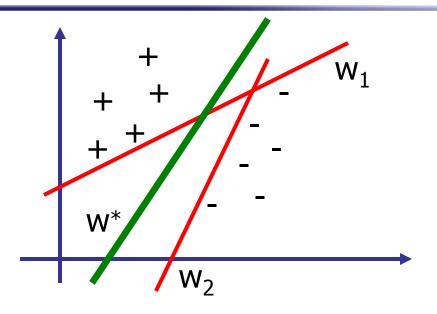
Thanks for slides and material to Mukund Narasimhan,
 Jure Leskovec and Manuel Reyes Gomez

MATLAB Toolbox and details for references available at

http://www.submodularity.org

Algorithms implemented \longrightarrow M

Optimization in Machine Learning



Classify + from – by finding a separating hyperplane (parameters w)

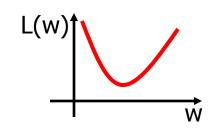
Which one should we choose?

Define loss L(w) = "1/size of margin"

→ Solve for best vector

$$w^* = argmin_w L(w)$$

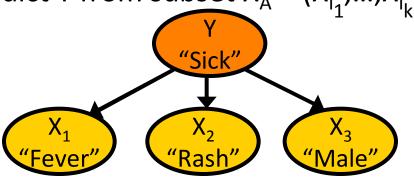
Key observation: Many problems in ML are convex!



→ no local minima!! ©

Feature selection

- Given random variables Y, X₁, ... X_n
- Want to predict Y from subset X_A = (X_{i1},...,X_{i1})



Naïve Bayes Model

Want k most informative features:

$$A^* = \operatorname{argmax} |G(X_A; Y)| \text{ s.t. } |A| \leq k$$

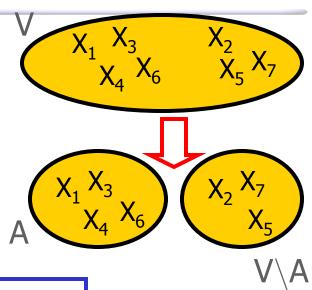
where
$$IG(X_A; Y) = H(Y) - H(Y \mid X_A)$$

Uncertainty Uncertainty
before knowing X_A after knowing X_A

Problem inherently combinatorial!

Factoring distributions

- Given random variables X₁,...,X_n
- Partition variables V into sets A and V\A as independent as possible



Formally: Want

$$A^* = \operatorname{argmin}_A I(X_A; X_{V \setminus A})$$
 s.t. $0 < |A| < n$

where
$$I(X_A, X_B) = H(X_B) - H(X_B \mid X_A)$$

Fundamental building block in structure learning [Narasimhan&Bilmes, UAI '04]

Problem inherently combinatorial!

Combinatorial problems in ML

Given a (finite) set V, function F: $2^{V} \rightarrow R$, want

 $A^* = argmin F(A)$ s.t. some constraints on A

Solving combinatorial problems:

- Mixed integer programming?
 Often difficult to scale to large problems
- Relaxations? (e.g., L1 regularization, etc.)
 Not clear when they work
- This talk:

Fully combinatorial algorithms (spanning tree, matching, ...) Exploit problem structure to get guarantees about solution!

Example: Greedy algorithm for feature selection

- Given: finite set V of features, utility function F(A) = IG(XA; Y)
- Want:

$$A^* \subseteq V$$
 such that

$$\mathcal{A}^* = \operatorname*{argmax}_{|\mathcal{A}| \le k} F(\mathcal{A})$$

NP-hard!

Greedy algorithm:

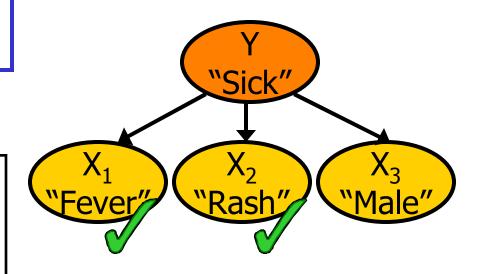
 \mathbf{N}

Start with $A = \emptyset$

For
$$i = 1$$
 to k

$$s^* := argmax_s F(A \cup \{s\})$$

$$A := A \cup \{s^*\}$$

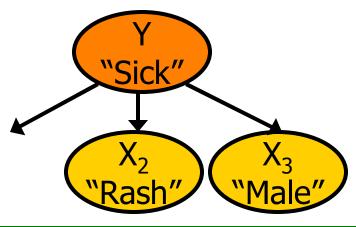


How well can this simple heuristic do?

Key property: Diminishing returns

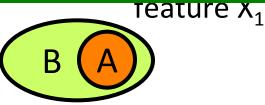
Selection A = {}

Selection B = $\{X_2, X_3\}$



Theorem [Krause, Guestrin UAI '05]: Information gain F(A) in Naïve Bayes models is submodular!

Submodularity:



For
$$A \subseteq B$$
, $F(A \cup \{s\}) - F(A) \ge F(B \cup \{s\}) - F(B)$

Why is submodularity useful?

Theorem [Nemhauser et al '78]

Greedy maximization algorithm returns Agreedy:

$$F(A_{greedy}) \ge (1-1/e) \max_{|A| \le k} F(A)$$

~63%

- Greedy algorithm gives near-optimal solution!
- More details and exact statement later
- For info-gain: Guarantees best possible unless P = NP! [Krause, Guestrin UAI '05]

Submodularity in Machine Learning

- In this tutorial we will see that many ML problems are submodular, i.e., for F submodular require:
- Minimization: A* = argmin F(A)
 - Structure learning (A* = argmin $I(X_A; X_{V \setminus A})$)
 - Clustering
 - MAP inference in Markov Random Fields
 - •
- Maximization: A* = argmax F(A)
 - Feature selection
 - Active learning
 - Ranking
 - **...**

Tutorial Overview

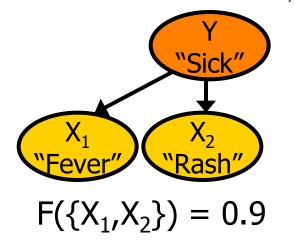
- 1. Examples and properties of submodular functions
- Submodularity and convexity
- 3. Minimizing submodular functions
- 4. Maximizing submodular functions
- 5. Research directions, ...
 - LOTS of applications to Machine Learning!!

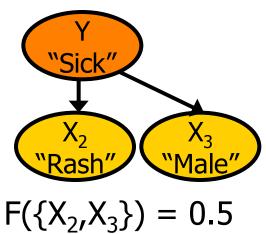
Submodularity

Properties and Examples

Set functions

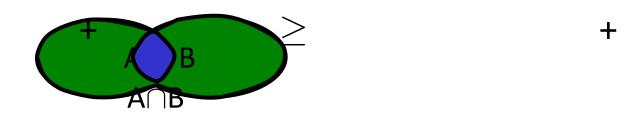
- Finite set V = {1,2,...,n}
- Function F: $2^{V} \rightarrow R$
- Will always assume $F(\emptyset) = 0$ (w.l.o.g.)
- Assume black-box that can evaluate F for any input A
 - Approximate (noisy) evaluation of F is ok (e.g., [37])
- Example: $F(A) = IG(X_A; Y) = H(Y) H(Y \mid X_A)$ = $\sum_{y,x_A} P(x_A) [log P(y \mid x_A) - log P(y)]$





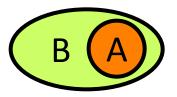
Submodular set functions

Set function F on V is called submodular if For all A,B ⊂ V: F(A)+F(B) ≥ F(A∪B)+F(A∩B)



Equivalent diminishing returns characterization:

Submodularity:



For $A\subseteq B$, $s\notin B$, $F(A\cup \{s\})-F(A)\geq F(B\cup \{s\})-F(B)$

Submodularity and supermodularity

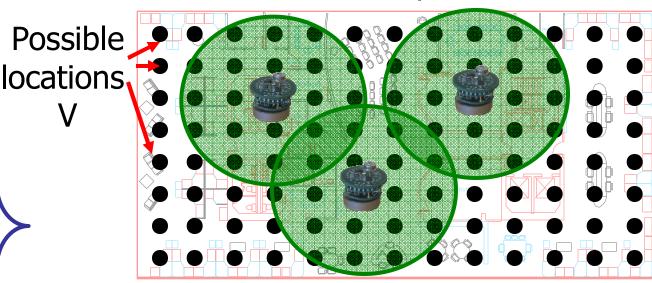
- Set function F on V is called submodular if
 - 1) For all A,B \subseteq V: F(A)+F(B) \geq F(A \cup B)+F(A \cap B)
 - \Leftrightarrow 2) For all A \subseteq B, s \notin B, F(A \cup {s}) F(A) \geq F(B \cup {s}) F(B)
- F is called supermodular if –F is submodular
- F is called modular if F is both sub- and supermodular for modular ("additive") F, F(A) = $\sum_{i \in A}$ w(i)

Example: Set cover

Place sensors in building

Node predicts values of positions with some radius

Want to cover floorplan with discs

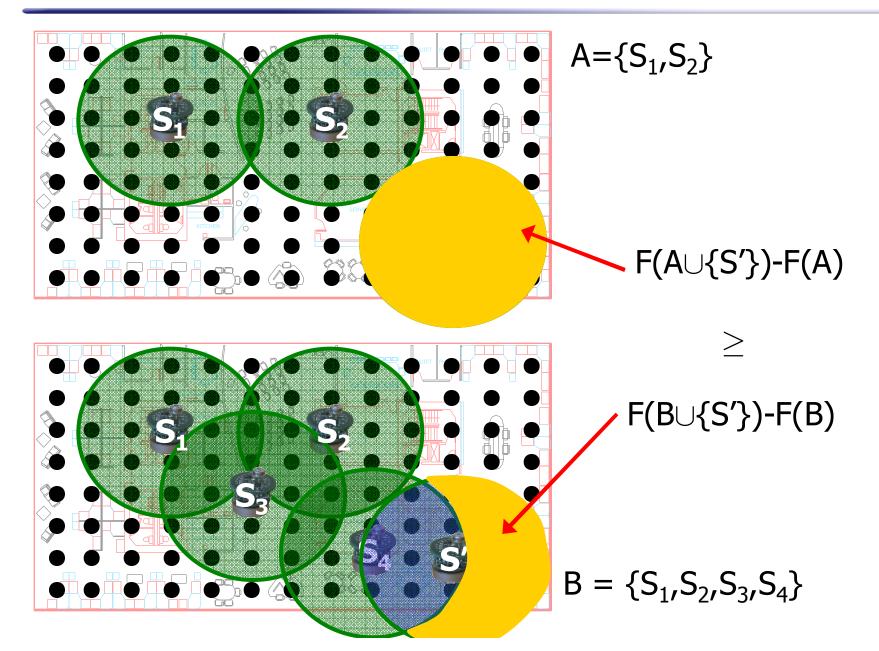


For $A \subseteq V$: F(A) = "area covered by sensors placed at A"

Formally:

W finite set, collection of n subsets $S_i \subseteq W$ For $A \subseteq V = \{1,...,n\}$ define $F(A) = \bigcup_{i \in A} S_i$

Set cover is submodular



Example: Mutual information

- Given random variables X₁,...,X_n
- $F(A) = I(X_A; X_{V \setminus A}) = H(X_{V \setminus A}) H(X_{V \setminus A} \mid X_A)$

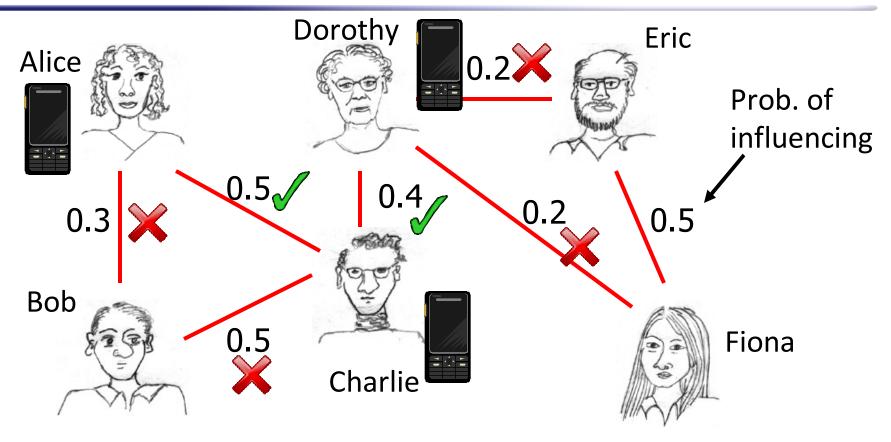
Lemma: Mutual information F(A) is submodular

$$F(A \cup \{s\}) - F(A) = H(X_s | X_A) - H(X_s | X_{V \setminus (A \cup \{s\})})$$

Nonincreasing in A: Nondecreasing in A $A \subseteq B \Rightarrow H(X_s|X_A) \ge H(X_s|X_B)$

 $\delta_s(A) = F(A \cup \{s\}) - F(A)$ monotonically nonincreasing \Leftrightarrow F submodular \odot

Example: Influence in social networks [Kempe, Kleinberg, Tardos KDD '03]

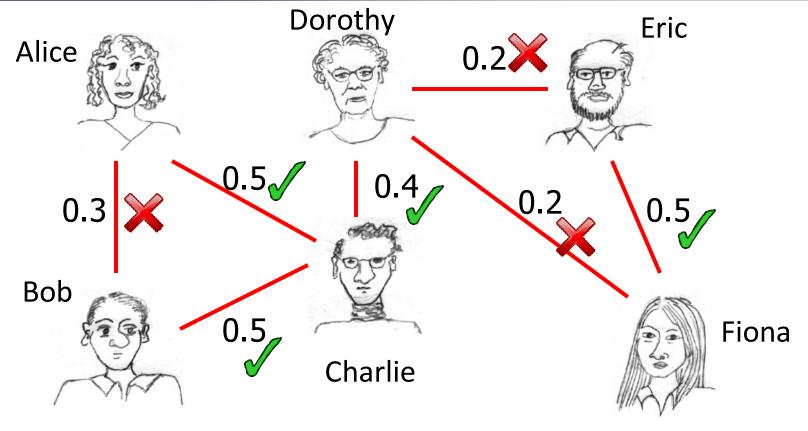


Who should get free cell phones?

V = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}

F(A) = Expected number of people influenced when targeting A

Influence in social networks is submodular [Kempe, Kleinberg, Tardos KDD '03]



Key idea: Flip coins c in advance → "live" edges

 $F_c(A)$ = People influenced under outcome c (set cover!)

 $F(A) = \sum_{c} P(c) F_{c}(A)$ is submodular as well!

Closedness properties

 $F_1,...,F_m$ submodular functions on V and $\lambda_1,...,\lambda_m > 0$

Then: $F(A) = \sum_{i} \lambda_{i} F_{i}(A)$ is submodular!

Submodularity closed under nonnegative linear combinations!

Extremely useful fact!!

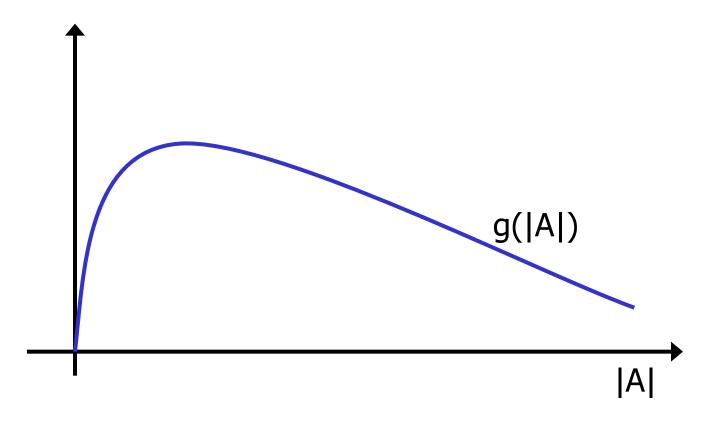
- $F_{\theta}(A)$ submodular $\Rightarrow \sum_{\theta} P(\theta) F_{\theta}(A)$ submodular!
- Multicriterion optimization: $F_1,...,F_m$ submodular, $\lambda_i \ge 0 \Rightarrow \sum_i \lambda_i F_i(A)$ submodular

Submodularity and Concavity

Suppose g: N \rightarrow R and F(A) = g(|A|)

Then F(A) submodular if and only if g concave!

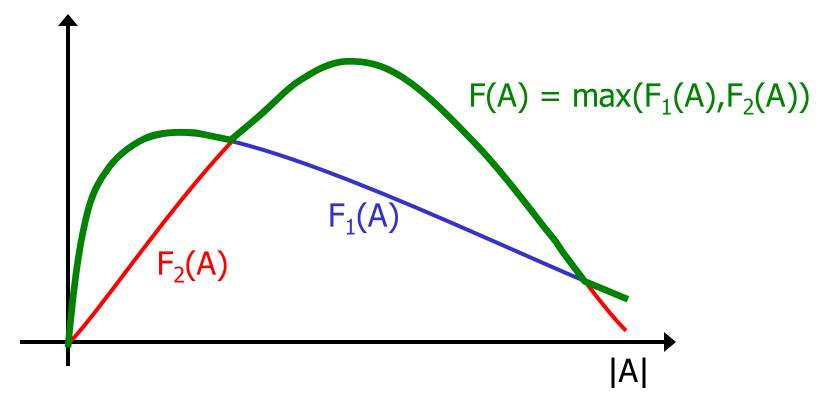
E.g., g could say "buying in bulk is cheaper"



Maximum of submodular functions

Suppose $F_1(A)$ and $F_2(A)$ submodular.

Is $F(A) = max(F_1(A), F_2(A))$ submodular?



 $max(F_1,F_2)$ not submodular in general!

Minimum of submodular functions

Well, maybe $F(A) = min(F_1(A), F_2(A))$ instead?

	F ₁ (A)	F ₂ (A)
Ø	0	0
{a}	1	0
{b}	0	1
{a,b}	1	1

$$F({b}) - F(\emptyset) = 0$$

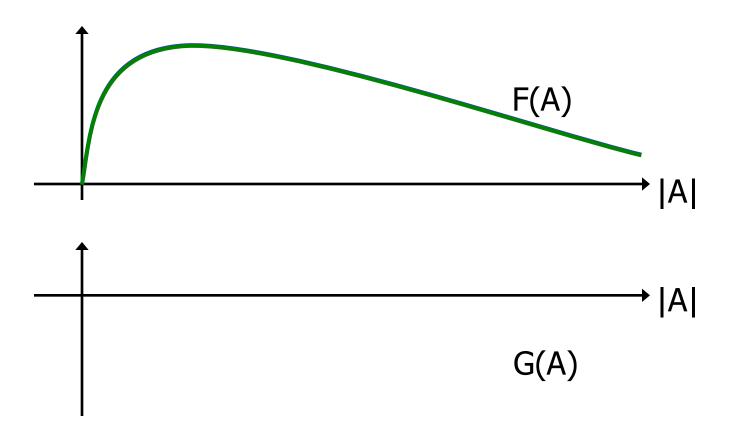
 $F({a,b}) - F({a}) = 1$

min(F₁,F₂) not submodular in general!

But stay tuned – we'll address min; F; later!

Duality

- For F submodular on V let $G(A) = F(V) F(V \setminus A)$
- G is supermodular and called dual to F
- Details about properties in [Fujishige '91]



Tutorial Overview

Examples and properties of submodular functions

- Many problems submodular (mutual information, influence, ...)
- SFs closed under positive linear combinations; not under min, max
- Submodularity and convexity
- Minimizing submodular functions
- Maximizing submodular functions
- Extensions and research directions

Submodularity and Convexity

Submodularity and convexity

For V = {1,...,n}, and A
$$\subseteq$$
 V, let $w^A = (w_1^A,...,w_n^A)$ with $w_i^A = 1$ if $i \in A$, 0 otherwise

Key result [Lovasz '83]: Every submodular function F induces a function g on R₊, such that

- $F(A) = g(w^A)$ for all $A \subseteq V$
- g(w) is convex
- $\min_{A} F(A) = \min_{W} g(W) \text{ s.t. } W \in [0,1]^n$

Let's see how one can define g(w)

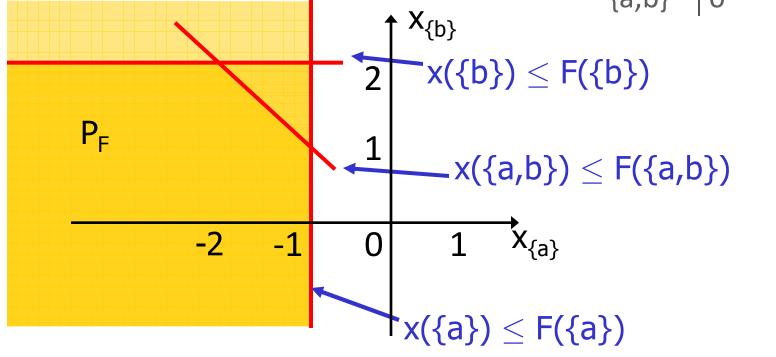
The submodular polyhedron P_F

$$P_F = \{x \in R^n \colon x(A) \le F(A) \text{ for all } A \subseteq V\}$$

$$x(A) = \sum_{i \in A} x_i$$

Example: $V = \{a,b\}$

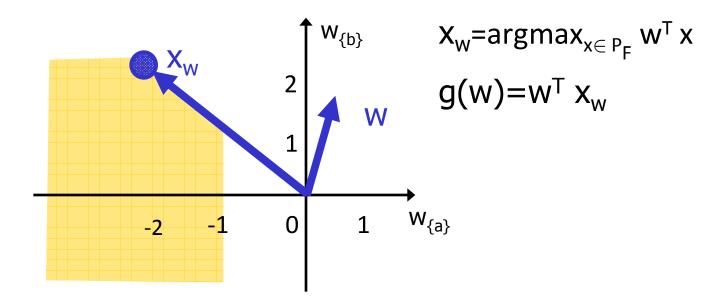
Α	F(A)
Ø	0
{a}	-1
{b}	2
{a,b}	0



Lovasz extension

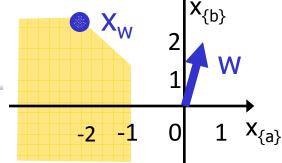
Claim: $g(w) = \max_{x \in P_F} w^T x$

 $P_F = \{x \in R^n : x(A) \le F(A) \text{ for all } A \subseteq V\}$



Evaluating g(w) requires solving a linear program with exponentially many constraints 🕾

Evaluating the Lovasz extension



$$g(w) = max_{x \in P_F} w^T x$$

$$P_F = \{x \in R^n : x(A) \le F(A) \text{ for all } A \subseteq V\}$$

Theorem [Edmonds '71, Lovasz '83]:

For any given w, can get optimal solution x_w to the LP using the following greedy algorithm:

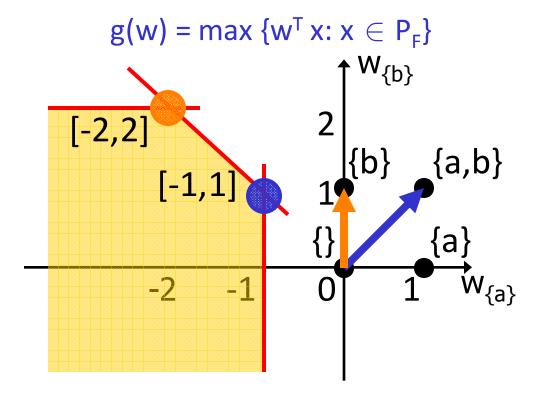
1. Order
$$V=\{e_1,...,e_n\}$$
 so that $w(e_1) \ge ... \ge w(e_n)$

2. Let $x_w(e_i) = F(\{e_1,...,e_i\}) - F(\{e_1,...,e_{i-1}\})$

Then
$$\mathbf{w}^T \mathbf{x}_{\mathbf{w}} = \mathbf{g}(\mathbf{w}) = \max_{\mathbf{x} \in P_F} \mathbf{w}^T \mathbf{x}$$

Sanity check: If $w = w^A$ and $A = \{e_1, ..., e_k\}$, then $w^{A T} x^* = \sum_{i=1}^k [F(\{e_1, ..., e_i\} - F(\{e_1, ..., e_{i-1}\})] = F(A)$

Example: Lovasz extension



$$g([0,1]) = [0,1]^T [-2,2] = 2 = F({b})$$

$$g([1,1]) = [1,1]^T[-1,1] = 0 = F({a,b})$$

Α	F(A)
\emptyset	0
{a}	-1
{b}	2
{a,b}	0

Greedy ordering:

$$e_1 = b, e_2 = a$$

 \Rightarrow $w(e_1)=1 > w(e_2)=0$

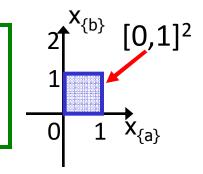
$$x_w(e_1)=F(\{b\})-F(\emptyset)=2$$

 $x_w(e_2)=F(\{b,a\})-F(\{b\})=-2$
 $\Rightarrow x_w=[-2,2]$

Why is this useful?

Theorem [Lovasz '83]:

g(w) attains its minimum in [0,1]ⁿ at a corner!



If we can minimize g on [0,1]ⁿ, can minimize F... (at corners, g and F take same values)

g(w) convex

(and efficient to evaluate)

Does the converse also hold?

No, consider
$$g(w_1, w_2, w_3) = max(w_1, w_2 + w_3)$$

{a} {b} {c} $F(\{a,b\}) - F(\{a\}) = 0 < F(\{a,b,c\}) - F(\{a,c\}) = 1$

Tutorial Overview

- Examples and properties of submodular functions
 - fluonco
 - Many problems submodular (mutual information, influence, ...)
 - SFs closed under positive linear combinations; not under min, max
- Submodularity and convexity
 - Every SF induces a convex function with SAME minimum
 - Special properties: Greedy solves LP over exponential polytope
- Minimizing submodular functions
- Maximizing submodular functions
- Extensions and research directions

Minimization of submodular functions

Overview minimization

Minimizing general submodular functions

Minimizing symmetric submodular functions

Applications to Machine Learning

Minimizing a submodular function

Want to solve

$$A^* = argmin_A F(A)$$

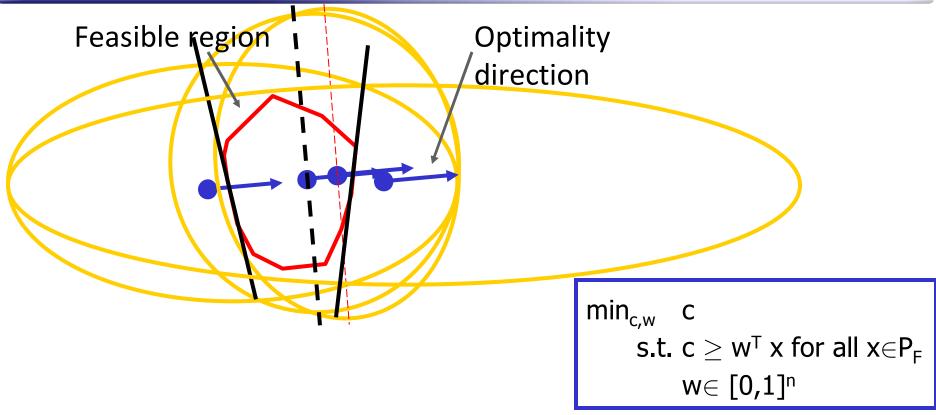
Need to solve

$$\min_{w} \max_{x} w^{T}x \leftarrow g(w)$$
s.t. $w \in [0,1]^{n}$, $x \in P_{F}$

Equivalently:

```
\begin{aligned} & \text{min}_{c,w} \ c \\ & \text{s.t.} \quad c \geq w^T \ x \ \text{for all } x \in P_F \\ & w \in [0,1]^n \end{aligned}
```


Ellipsoid algorithm [Grötschel, Lovasz, Schrijver '81]



Separation oracle: Find most violated constraint:

$$\max_{x} w^{T} x - c$$
 s.t. $x \in P_{F}$

Can solve separation using the greedy algorithm!!

→ Ellipsoid algorithm minimizes SFs in poly-time!

Minimizing submodular functions

Ellipsoid algorithm not very practical

Want combinatorial algorithm for minimization!

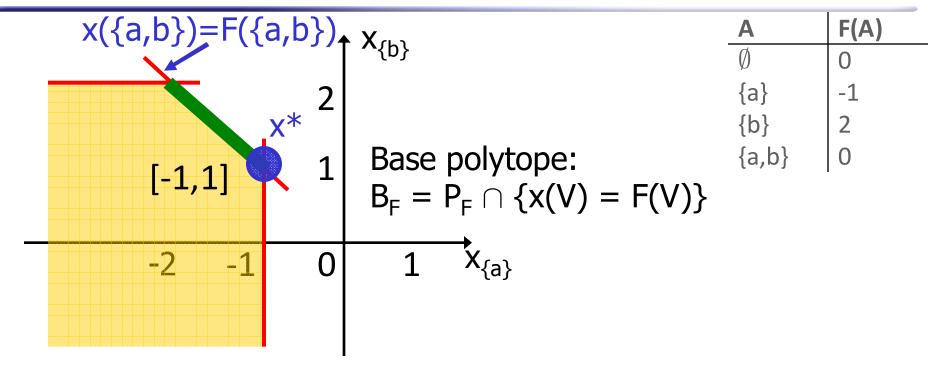
Theorem [Iwata (2001)]

There is a fully combinatorial, strongly polynomial algorithm for minimizing SFs, that runs in time

 $O(n^8 \log^2 n)$

Polynomial-time = Practical ???

A more practical alternative? [Fujishige '91, Fujishige et al '06]



Minimum norm algorithm:

- 1. Find $x^* = \operatorname{argmin} ||x||_2$ s.t. $x \in B_F$
- 2. Return $A^* = \{i: x^*(i) < 0\}$

$$x^* = [-1,1]$$

 $A^* = \{a\}$

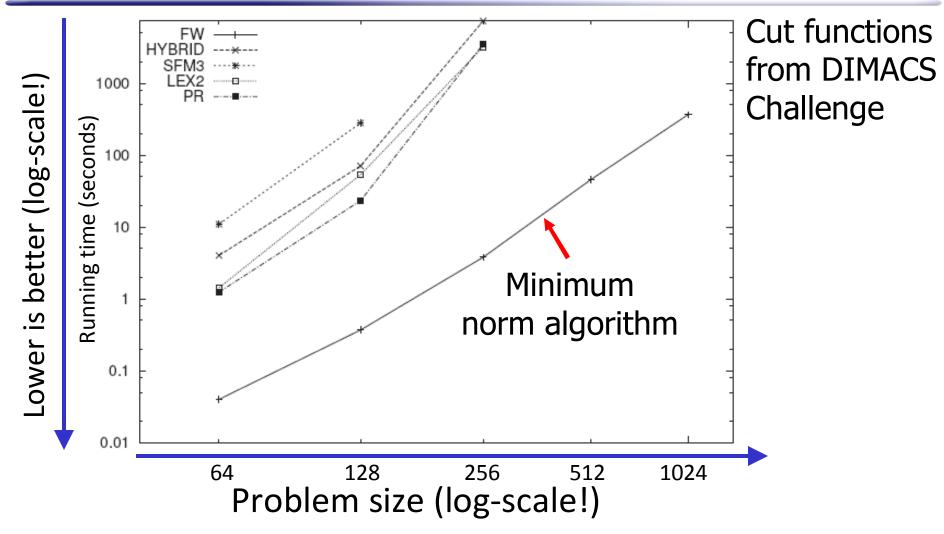
Theorem [Fujishige '91]: A* is an optimal solution!

Note: Can solve 1. using Wolfe's algorithm

Runtime finite but unknown!!

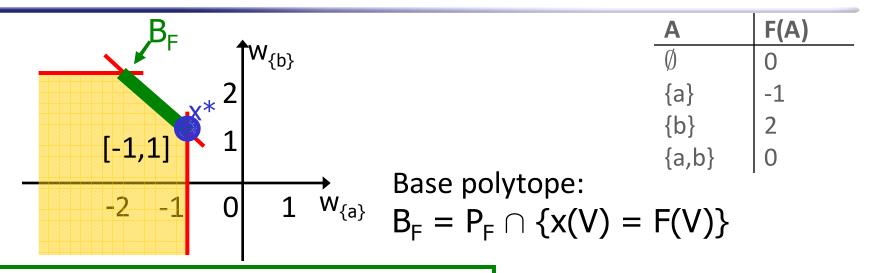
Empirical comparison

[Fujishige et al '06]



Minimum norm algorithm orders of magnitude faster! Our implementation can solve n = 10k in < 6 minutes!

Checking optimality (duality)



Theorem [Edmonds '70]

$$min_A F(A) = max_x \{x^-(V) : x \in B_F\}$$

where $x^-(s) = min \{x(s), 0\}$

Testing how close A' is to $min_A F(A)$

- 1. Run greedy algorithm for $w=w_{A'}$ to get x_w
- 2. $F(A') \ge \min_A F(A) \ge x_w^{-}(V)$

A = {a}, F(A) = -1
w = [1,0]

$$x_w = [-1,1]$$

 $x_w^- = [-1,0]$
 $x_w^-(V) = -1$
A optimal!

Overview minimization

Minimizing general submodular functions

- Can minimizing in polytime using ellipsoid method
- Combinatorial, strongly polynomial algorithm O(n^8)
- Practical alternative: Minimum norm algorithm?
- Minimizing symmetric submodular functions

Applications to Machine Learning

What if we have special structure?

Worst-case complexity of best known algorithm: O(n⁸ log²n)

Can we do better for special cases?

Example (again): Given RVs
$$X_1,...,X_n$$

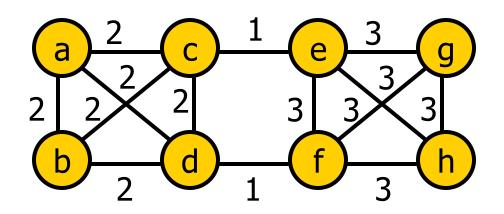
$$F(A) = I(X_A; X_{V \setminus A})$$

$$= I(X_{V \setminus A}; X_A)$$

$$= F(V \setminus A)$$

Functions F with $F(A) = F(V \setminus A)$ for all A are symmetric

Another example: Cut functions



V={a,b,c,d,e,f,g,h}

$$F(A) = \sum \{ w_{s,t} : s \in A, t \in V \setminus A \}$$

Example: $F({a})=6$; $F({c,d})=10$; $F({a,b,c,d})=2$

Cut function is symmetric and submodular!

Minimizing symmetric functions

For any A, submodularity implies

```
2 F(A) = F(A) + F(V \setminus A)
\geq F(A \cap (V \setminus A)) + F(A \cup (V \setminus A))
= F(\emptyset) + F(V)
= 2 F(\emptyset) = 0
```

- ullet Hence, any symmetric SF attains minimum at \emptyset
- In practice, want nontrivial partition of V into A and V\A, i.e., require that A is neither Ø of V

Want
$$A^*$$
 = argmin $F(A)$ s.t. $0 < |A| < n$

There is an efficient algorithm for doing that! ©

Queyranne's algorithm (overview) [Queyranne'98]

Theorem: There is a fully combinatorial, strongly polynomial algorithm for solving

M

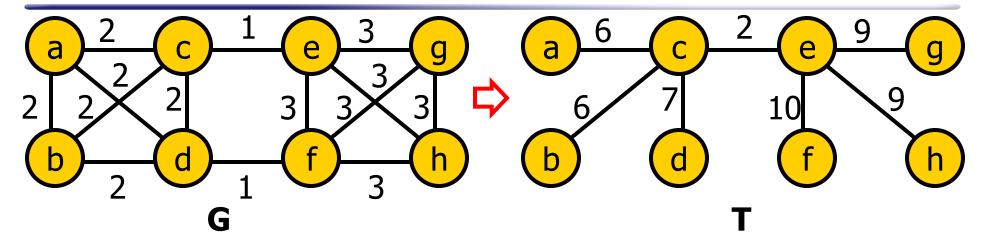
 $A^* = \operatorname{argmin}_{\Delta} F(A)$ s.t. 0 < |A| < n

for symmetric submodular functions A

Runs in time O(n³) [instead of O(n³)...]

Note: also works for "posimodular" functions: F posimodular \Leftrightarrow A,B \subseteq V: F(A)+F(B) \geq F(A\B)+F(B\A)

Gomory Hu trees



A tree T is called Gomory-Hu (GH) tree for SF F if for any s, $t \in V$ it holds that min $\{F(A): s \in A \text{ and } t \notin A\} = \min \{w_{i,j}: (i,j) \text{ is an edge on the s-t path in T}\}$

"min s-t-cut in T = min s-t-cut in G"

Theorem [Queyranne '93]: GH-trees exist for any symmetric SF F!

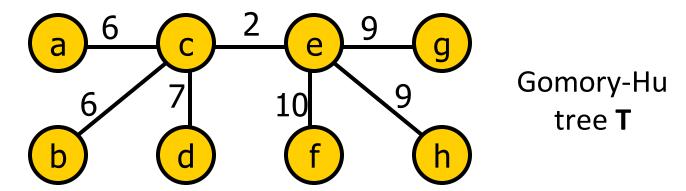
Expensive to find one in general! 🙁 48

Pendent pairs

For function F on V, $s,t \in V$: (s,t) is pendent pair if

 $\{s\} \in \operatorname{argmin}_A F(A)$ s.t. $s \in A$, $t \notin A$

Pendent pairs always exist:



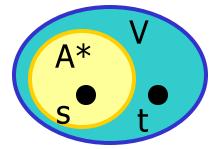
Take any leaf s and neighbor t, then (s,t) is pendent! E.g., (a,c), (b,c), (f,e), ...

Theorem [Queyranne '95]: Can find pendent pairs in O(n²) (without needing GH-tree!)

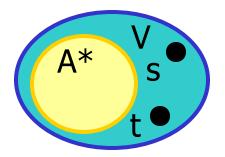
Why are pendent pairs useful?

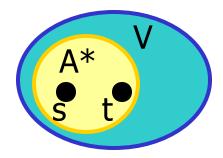
• Key idea: Let (s,t) pendent, A* = argmin F(A)
Then EITHER

• s and t separated by A*, e.g., s∈A*, t∉A*. But then A*={s}!! OR



s and t are not separated by A*



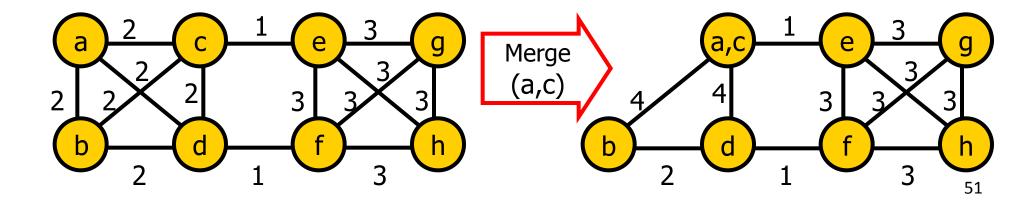


Then we can merge s and t...

Merging

- Suppose F is a symmetric SF on V,
 and we want to merge pendent pair (s,t)
- Key idea: "If we pick s, get t for free"
 - $V' = V \setminus \{t\}$
 - $F'(A) = F(A \cup \{t\})$ if $s \in A$, or = F(A) if $s \notin A$

Lemma: F' is still symmetric and submodular!



Queyranne's algorithm

```
Input: symmetric SF F on V, |V|=n
```

Output: $A^* = \operatorname{argmin} F(A)$ s.t. 0 < |A| < n

```
Initialize F' \leftarrow F, and V' \leftarrow V
```

For
$$i = 1:n-1$$

- (s,t) ← pendentPair(F',V')
- $(F',V') \leftarrow merge(F',V',s,t)$

Return argmin; F(A_i)

Running time: O(n³) function evaluations

Note: Finding pendent pairs

- 1. Initialize $v_1 \leftarrow x$ (x is arbitrary element of V)
- 2. For i = 1 to n-1 do
 - 1. $W_i \leftarrow \{v_1,...,v_i\}$
 - 2. $v_{i+1} \leftarrow \operatorname{argmin}_{v} F(W_i \cup \{v\}) F(\{v\}) \text{ s.t. } v \in V \setminus W_i$
- 3. Return pendent pair (v_{n-1},v_n)

Requires O(n²) evaluations of F

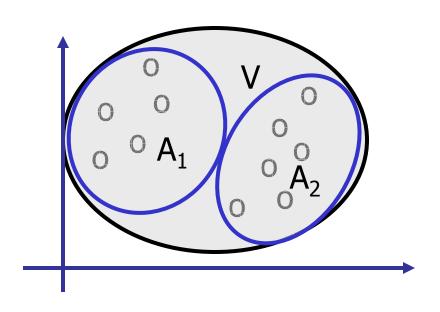
Overview minimization

Minimizing general submodular functions

- Can minimizing in polytime using ellipsoid method
- Combinatorial, strongly polynomial algorithm O(n⁸)
- Practical alternative: Minimum norm algorithm?
- Minimizing symmetric submodular functions

- Many useful submodular functions are symmetric
- Queyranne's algorithm minimize symmetric SFs in O(n³)
- Applications to Machine Learning

sense Application: Clustering [Narasimhan, Jojic, Bilmes NIPS '05]



Group data points V into "homogeneous clusters"

Find a partition $V=A_1 \cup ... \cup A_k$ that minimizes

$$F(A_1,...,A_k) = \sum_i E(A_i)$$

"Inhomogeneity of A_i" Examples for E(A):

- Entropy H(A)
- Cut function

Special case: k = 2. Then $F(A) = E(A) + E(V \setminus A)$ is symmetric! If E is submodular, can use Queyranne's algorithm! ©

What if we want k>2 clusters? [Zhao et al '05, Narasimhan et al '05]

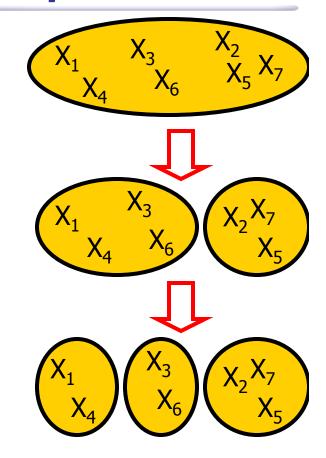
Greedy Splitting algorithm

M

Start with partition P = {V}

For i = 1 to k-1

- For each member $C_i \in P$ do
 - split cluster C_j : $A^* = \operatorname{argmin} E(A) + E(C_j \setminus A) \text{ s.t. } 0 < |A| < |C_j|$
 - $P_j \leftarrow P \setminus \{C_j\} \cup \{A,C_j \setminus A\}$ Partition we get by splitting j-th cluster
- \bullet P \leftarrow argmin_j F(P_j)



Theorem: $F(P) \leq (2-2/k) F(P_{opt})$

Example: Clustering species [Narasimhan et al '05]

Species X ATGCCTGA

Species Y TGCCTAGTGGA

Species Z TGGAGCCTTGA

Common genetic information = #of common substrings:

$$I_{CG}(X;Y) = |\{TGC, GCC, CCT, GCCT, TGCC, TGCCT\}| = 6$$

$$I_{CG}(X;Z) = |\{GCC, CCT, GCCT\}| = 3$$

Can easily extend to sets of species

$$I_{CG}(X; \{Y, Z\}) = |\{TGC, GCC, CCT, TGCC, GCCT, TGCCT\}| = 6$$

Example: Clustering species [Narasimhan et al '05]

- The common genetic information I_{CG}
 - does not require alignment
 - captures genetic similarity
 - is smallest for maximally evolutionarily diverged species
 - is a symmetric submodular function! ②

Greedy splitting algorithm yields phylogenetic tree!

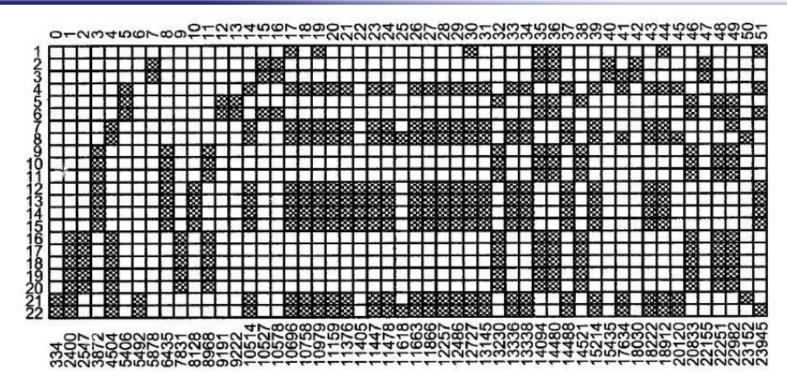
Example: SNPs [Narasimhan et al '05]

- Study human genetic variation (for personalized medicine, ...)
- Most human variation due to point mutations that occur once in human history at that base location:

Single Nucleotide Polymorphisms (SNPs)

 Cataloging all variation too expensive (\$10K-\$100K per individual!!)

SNPs in the ACE gene [Narasimhan et al '05]

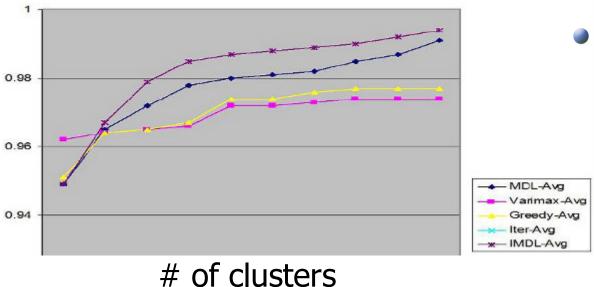


Rows: Individuals. Columns: SNPs.

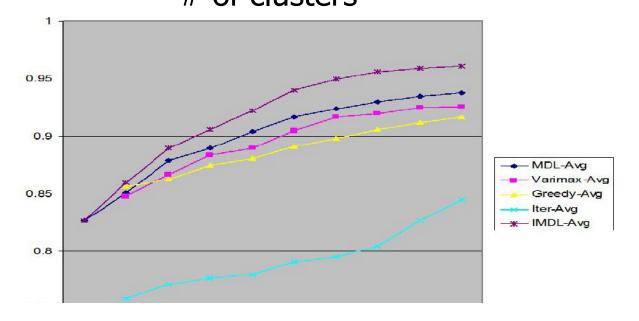
Which columns should we pick to reconstruct the rest?

Can find near-optimal clustering (Queyranne's algorithm)

Reconstruction accuracy [Narasimhan et al '05]

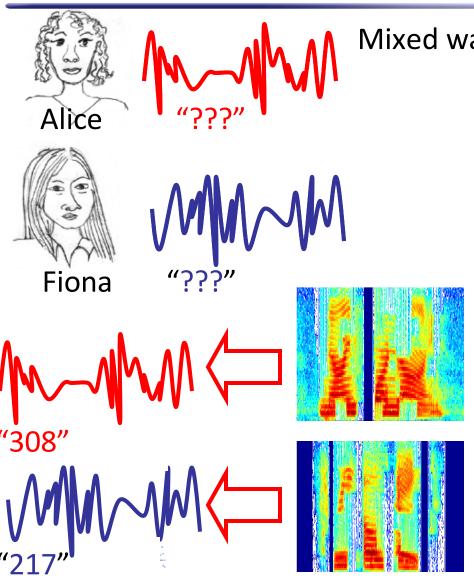


- Comparison with clustering based on
 - Entropy
 - Prediction accuracy
 - Pairwise correlation
 - PCA

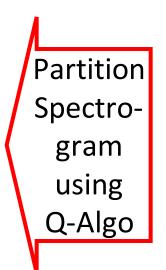


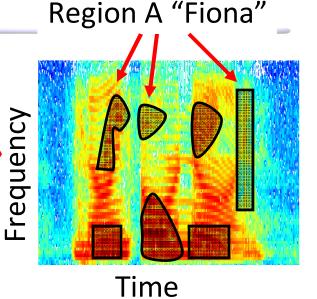
Example: Speaker segmentation

[Reyes-Gomez, Jojic '07]



Mixed waveforms



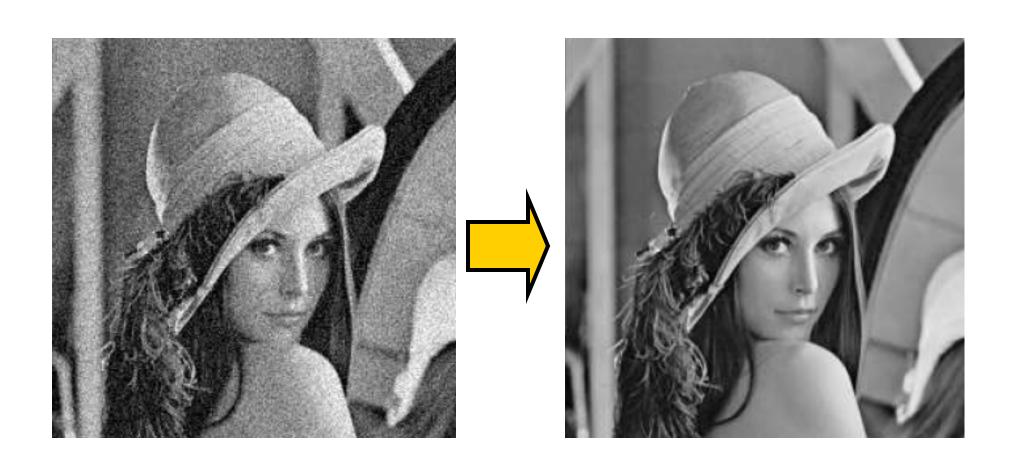


 $E(A) = -\log p(X_A)$ Likelihood of "region" A

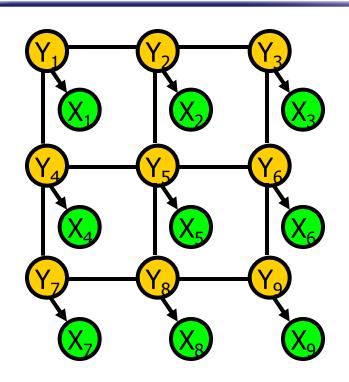
$$F(A) = E(A) + E(V \setminus A)$$

symmetric & posimodular

Example: Image denoising



Example: Image denoising



Pairwise Markov Random Field

$$P(x_1,...,x_n,y_1,...,y_n) = \prod_{i,j} \psi_{i,j}(y_i,y_j) \prod_i \phi_i(x_i,y_i)$$

Want
$$\operatorname{argmax}_{y} P(y \mid x)$$

 $= \operatorname{argmax}_{y} \log P(x,y)$
 $= \operatorname{argmin}_{y} \sum_{i,j} E_{i,j}(y_{i},y_{j}) + \sum_{i} E_{i}(y_{i})$

X_i: noisy pixels

Y_i: "true" pixels

 $E_{i,j}(y_i,y_j) = -\log \psi_{i,j}(y_i,y_j)$

When is this MAP inference efficiently solvable (in high treewidth graphical models)?

MAP inference in Markov Random Fields

[Kolmogorov et al, PAMI '04, see also: Hammer, Ops Res '65]

Energy
$$E(y) = \sum_{i,j} E_{i,j}(y_i,y_j) + \sum_i E_i(y_i)$$

Suppose
$$y_i$$
 are binary, define $F(A) = E(y^A)$ where $y_i^A = 1$ iff $i \in A$
Then $min_y E(y) = min_A F(A)$

Theorem

MAP inference problem solvable by graph cuts

$$\Leftrightarrow$$
 For all i,j: $E_{i,i}(0,0)+E_{i,i}(1,1) \leq E_{i,i}(0,1)+E_{i,i}(1,0)$

⇔ each E_{i,i} is submodular

Constrained minimization

Have seen: if F submodular on V, can solve

$$A \in V$$

What about

$$A \in V$$
 and $|A| \leq k$

E.g., clustering with minimum # points per cluster, ...

In general, not much known about constrained minimization 🕾

However, can do

- A*=argmin F(A) s.t. 0<|A|< n</p>
- A*=argmin F(A) s.t. |A| is odd/even [Goemans&Ramakrishnan '95]
- A*=argmin F(A) s.t. A ∈ argmin G(A) for G submodular [Fujishige '91]

Overview minimization

Minimizing general submodular functions

- Can minimizing in polytime using ellipsoid method
- Combinatorial, strongly polynomial algorithm O(n⁸)
- Practical alternative: Minimum norm algorithm?
- Minimizing symmetric submodular functions

- Many useful submodular functions are symmetric
- Queyranne's algorithm minimize symmetric SFs in O(n³)
- Applications to Machine Learning

- Clustering [Narasimhan et al' 05]
- Speaker segmentation [Reyes-Gomez & Jojic '07]
- MAP inference [Kolmogorov et al '04]

Tutorial Overview

- Examples and properties of submodular functions
 - Many problems submodular (mutual information, influence, ...)
 - SFs closed under positive linear combinations; not under min, max
- Submodularity and convexity
 - Every SF induces a convex function with SAME minimum
 - Special properties: Greedy solves LP over exponential polytope
- Minimizing submodular functions
 - Minimization possible in polynomial time (but O(n⁸)...)
 - Queyranne's algorithm minimizes symmetric SFs in O(n³)
 - Useful for clustering, MAP inference, structure learning, ...
- Maximizing submodular functions
- Extensions and research directions

Maximizing submodular functions

Maximizing submodular functions

Minimizing convex functions: Polynomial time solvable!

Minimizing submodular functions: Polynomial time solvable!

Maximizing convex functions:

NP hard!

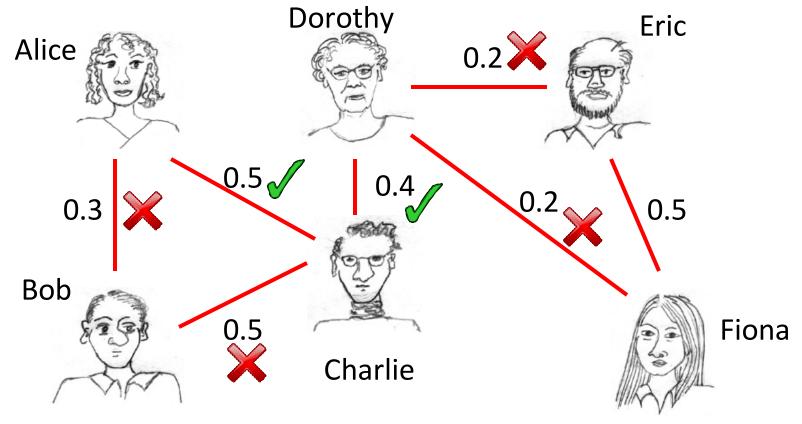
Maximizing submodular functions:

NP hard!

But can get approximation guarantees ©

Maximizing influence

[Kempe, Kleinberg, Tardos KDD '03]



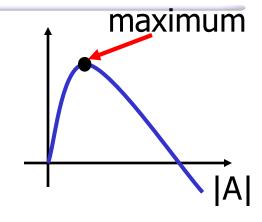
- F(A) = Expected #people influenced when targeting A
- F monotonic: If $A\subseteq B$: $F(A) \le F(B)$ Hence $V = \operatorname{argmax}_A F(A)$

More interesting: $argmax_A F(A) - Cost(A)$

Maximizing non-monotonic functions

Suppose we want for not monotonic F

$$A^* = \operatorname{argmax} F(A) \text{ s.t. } A \subseteq V$$



- Example:
 - F(A) = U(A) − C(A) where U(A) is submodular utility, and C(A) is supermodular cost function
 E.g.: Trading off utility and privacy in personalized search
 [Krause & Horvitz AAAI '08]

- In general: NP hard. Moreover:
- If F(A) can take negative values: As hard to approximate as maximum independent set (i.e., NP hard to get $O(n^{1-\epsilon})$ approximation)

Maximizing positive submodular functions [Feige, Mirrokni, Vondrak FOCS '07]

Theorem

There is an efficient randomized local search procedure, that, given a positive submodular function F, $F(\emptyset)=0$, returns set A_{LS} such that

$$F(A_{LS}) \ge (2/5) \max_A F(A)$$

- picking a random set gives ¼ approximation
 (½ approximation if F is symmetric!)
- we cannot get better than ¾ approximation unless P = NP

Scalarization vs. constrained maximization

Given monotonic utility F(A) and cost C(A), optimize:

Option 1:

 $max_A F(A) - C(A)$ s.t. $A \subseteq V$

"Scalarization"

Can get 2/5 approx... if $F(A)-C(A) \ge 0$ for all $A \subseteq V$

Option 2:

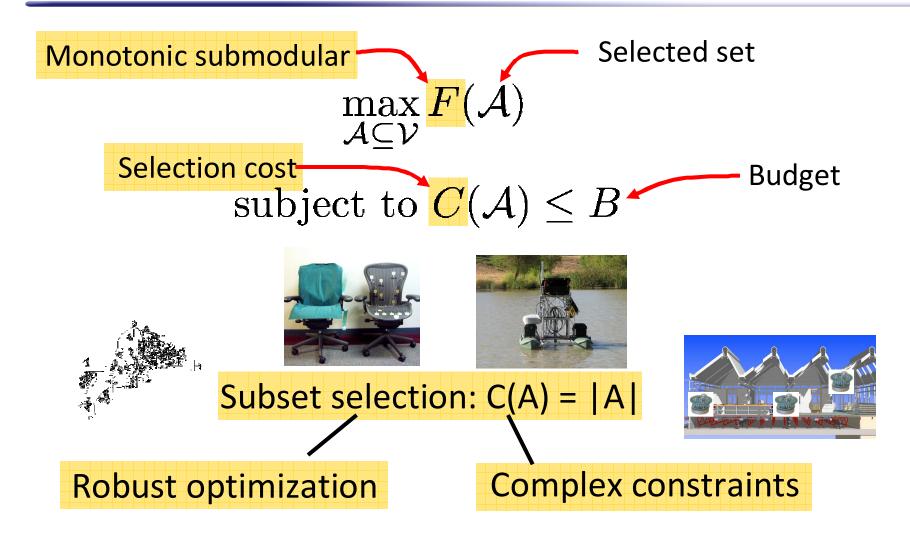
 $\max_{A} F(A)$ s.t. $C(A) \leq B$

"Constrained maximization"

coming up...

Positiveness is a strong requirement \odot

Constrained maximization: Outline



Monotonicity

A set function is called monotonic if

$$A\subseteq B\subseteq V \Rightarrow F(A) \leq F(B)$$

- Examples:
 - Influence in social networks [Kempe et al KDD '03]
 - For discrete RVs, entropy $F(A) = H(X_A)$ is monotonic: Suppose $B=A \cup C$. Then $F(B) = H(X_A, X_C) = H(X_A) + H(X_C \mid X_A) \ge H(X_A) = F(A)$
 - Information gain: F(A) = H(Y)-H(Y | X_A)
 - Set cover
 - Matroid rank functions (dimension of vector spaces, ...)
 - •

Subset selection

- Finite set V, monotonic submodular function F, $F(\emptyset) = 0$ Given:

• Want:
$$A^* \subseteq V$$
 such that
$$\mathcal{A}^* = \operatorname*{argmax}_{|\mathcal{A}| \leq k} F(\mathcal{A})$$

NP-hard!

Exact maximization of monotonic submodular functions

1) Mixed integer programming [Nemhauser et al '81]

$$\begin{array}{ll} \text{max } \eta \\ \text{s.t.} & \eta \leq \text{F(B)} + \sum_{s \in \text{V} \setminus \text{B}} \alpha_s \; \delta_s(\text{B)} \; \text{for all B} \subseteq \text{S} \\ & \sum_s \alpha_s \leq k \\ & \alpha_s \in \{\text{0,1}\} \end{array}$$

where
$$\delta_s(B) = F(B \cup \{s\}) - F(B)$$

Solved using constraint generation

2) Branch-and-bound: "Data-correcting algorithm" M [Goldengorin et al '99]

Both algorithms worst-case exponential!

Approximate maximization

Given: finite set V, monotonic submodular function F(A)

Want:

$$A^* \subseteq V$$
 such that

$$\mathcal{A}^* = \operatorname*{argmax}_{|\mathcal{A}| \le k} F(\mathcal{A})$$

NP-hard!

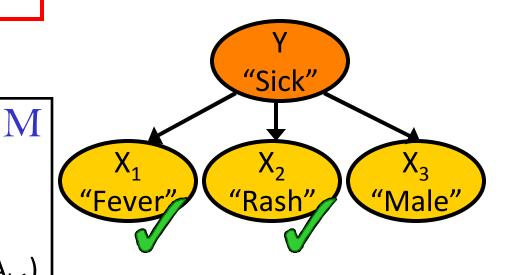
Greedy algorithm:

Start with $A_0 = \emptyset$

For i = 1 to k

 $s_i := argmax_s F(A_{i-1} \cup \{s\}) - F(A_{i-1})$

$$\mathsf{A}_\mathsf{i} := \mathsf{A}_\mathsf{i-1} \cup \{\mathsf{S}_\mathsf{i}\}$$



Performance of greedy algorithm

Theorem [Nemhauser et al '78]

Given a monotonic submodular function F, F(\emptyset)=0, the greedy maximization algorithm returns A_{greedy}

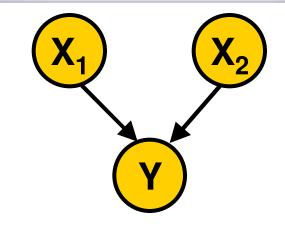
$$F(A_{greedy}) \ge (1-1/e) \max_{|A| \le k} F(A)$$

~63%

Sidenote: Greedy algorithm gives 1/2 approximation for maximization over any matroid C! [Fisher et al '78]

An "elementary" counterexample

$$X_1$$
, $X_2 \sim Bernoulli(0.5)$
 $Y = X_1 XOR X_2$



Let
$$F(A) = IG(X_A; Y) = H(Y) - H(Y|X_A)$$

$$Y \mid X_1 \text{ and } Y \mid X_2 \sim \text{Bernoulli}(0.5) \text{ (entropy 1)}$$

 $Y \mid X_1, X_2 \qquad \text{is deterministic! (entropy 0)}$

Hence
$$F(\{1,2\})$$
 - $F(\{1\})$ = 1, but $F(\{2\})$ - $F(\emptyset)$ = 0

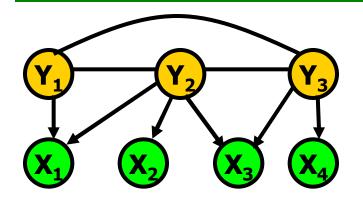
F(A) submodular under some conditions! (later)

Example: Submodularity of info-gain

$$Y_1,...,Y_m, X_1, ..., X_n$$
 discrete RVs
 $F(A) = IG(Y; X_A) = H(Y)-H(Y | X_A)$

- F(A) is always monotonic
- However, NOT always submodular

Theorem [Krause & Guestrin UAI' 05] If X_i are all conditionally independent given Y, then F(A) is submodular!



Hence, greedy algorithm works!

In fact, NO algorithm can do better than (1-1/e) approximation!

Sense Building a Sensing Chair

[Mutlu, Krause, Forlizzi, Guestrin, Hodgins UIST '07]

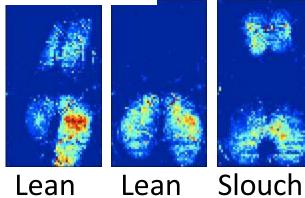
- People sit a lot
- Activity recognition in assistive technologies

Seating pressure as user interface

Equipped with 1 sensor per cm²!

Costs \$16,000! 🕾

Can we get similar accuracy with fewer, cheaper sensors?



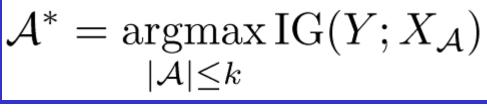
left forward

82% accuracy on **10 postures!** [Tan et al]83

How to place sensors on a chair?

- Sensor readings at locations V as random variables
- Predict posture Y using probabilistic model P(Y,V)
- Pick sensor locations $A^* \subseteq V$ to minimize entropy:

Possible locations V



Placed sensors, did a user study:

	Accuracy	Cost
Before	82%	\$16,000 🕾
After		

Similar accuracy at <1% of the cost!

Variance reduction

(a.k.a. Orthogonal matching pursuit, Forward Regression)

- Let $Y = \sum_{i} \alpha_{i} X_{i} + \varepsilon$, and $(X_{1},...,X_{n},\varepsilon) \sim N(\cdot; \mu,\Sigma)$
- Want to pick subset X_A to predict Y
- $Var(Y \mid X_A = x_A)$: conditional variance of Y given $X_A = x_A$
- Expected variance: $Var(Y \mid X_A) = \int p(x_A) Var(Y \mid X_A = x_A) dx_A$
- Variance reduction: $F_V(A) = Var(Y) Var(Y \mid X_A)$

F_V(A) is always monotonic

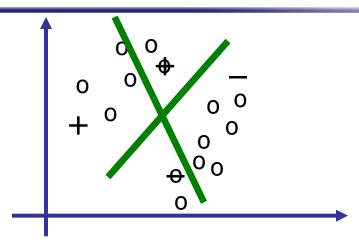
Theorem [Das & Kempe, STOC '08] $F_V(A)$ is submodular*

*under some conditions on Σ

→ Orthogonal matching pursuit near optimal!

[see other analyses by Tropp, Donoho et al., and Temlyakov]

Batch mode active learning [Hoi et al, ICML'06]



Which data points o should we label to minimize error?

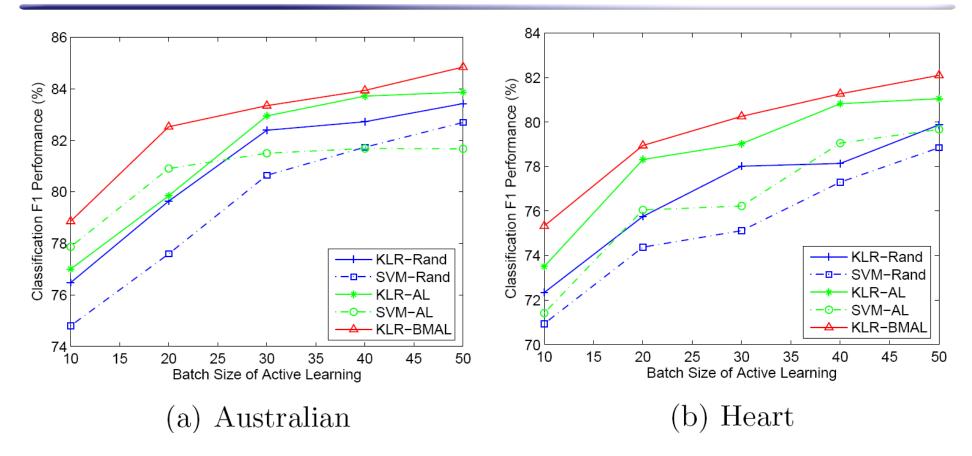
Want batch A of k points to show an expert for labeling

$$F(\mathcal{A}) = \frac{1}{\delta} \sum_{s \in \mathcal{V}} \sigma^2(s) - \sum_{s \notin \mathcal{A}} \frac{\sigma^2(s)}{\delta + \sum_{s' \in \mathcal{A}} \sigma^2(s')(s^T s')}$$

- F(A) selects examples that are
 - uncertain $[\sigma^2(s) = \pi(s) (1-\pi(s))$ is large]
 - diverse (points in A are as different as possible)
 - relevant (as close to $V \setminus A$ is possible, $s^T s'$ large)
- F(A) is submodular and monotonic!
 [approximation to improvement in Fisher-information]

Results about Active Learning

[Hoi et al, ICML'06]



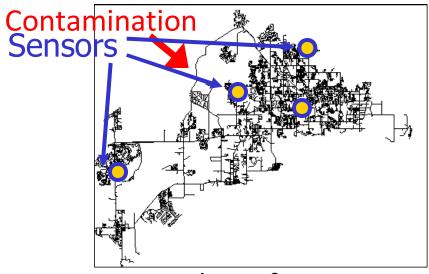
Batch mode Active Learning performs better than

- Picking k points at random
- Picking k points of highest entropy

Monitoring water networks

[Krause et al, J Wat Res Mgt 2008]

 Contamination of drinking water could affect millions of people



Simulator from EPA

Hach Sensor

Place sensors to detect contaminations

"Battle of the Water Sensor Networks" competition

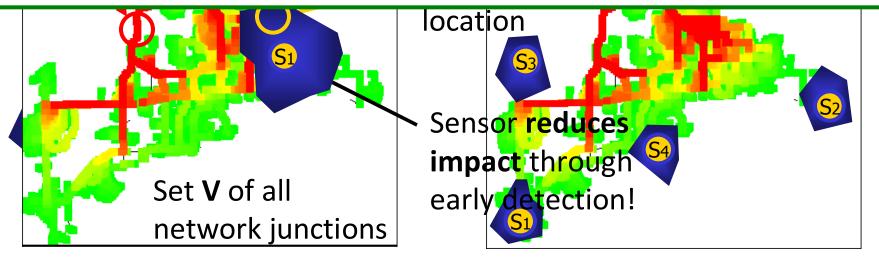
Where should we place sensors to quickly detect contamination?

Model-based sensing

- Utility of placing sensors based on model of the world
 - For water networks: Water flow simulator from EPA
- F(A)=Expected impact reduction placing sensors at A
 Model predicts
 Low impact

Theorem [Krause et al., J Wat Res Mgt '08]:

Impact reduction F(A) in water networks is submodular!

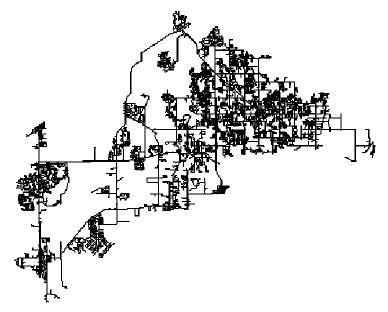


High impact reduction F(A) = 0.9

Low impact reduction F(A)=0.01

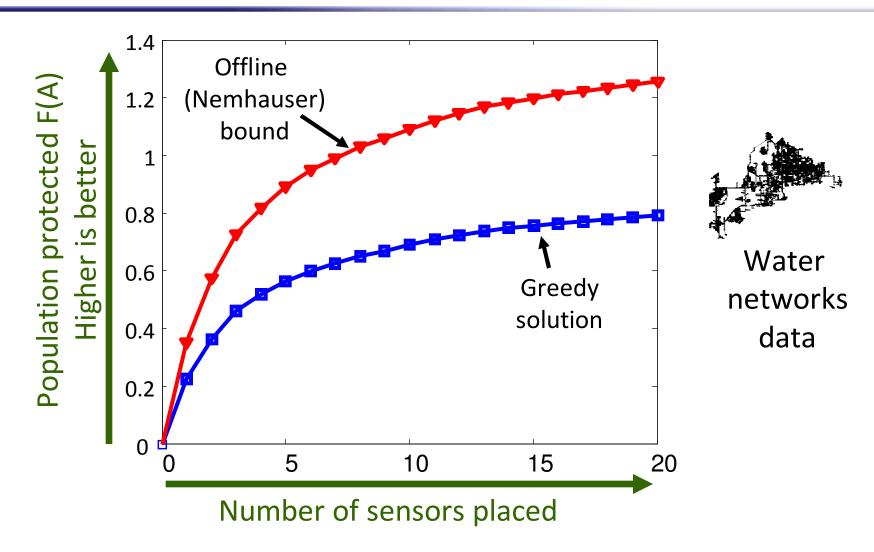
Battle of the Water Sensor Networks Competition

- Real metropolitan area network (12,527 nodes)
- Water flow simulator provided by EPA
- 3.6 million contamination events
- Multiple objectives:
 - Detection time, affected population, ...
- Place sensors that detect well "on average"



Bounds on optimal solution

[Krause et al., J Wat Res Mgt '08]



(1-1/e) bound quite loose... can we get better bounds?

Data dependent bounds [Minoux '78]

Suppose A is candidate solution to

argmax F(A) s.t.
$$|A| \le k$$

and $A^* = \{s_1,...,s_k\}$ be an optimal solution

• Then
$$F(A^*) \le F(A \cup A^*)$$

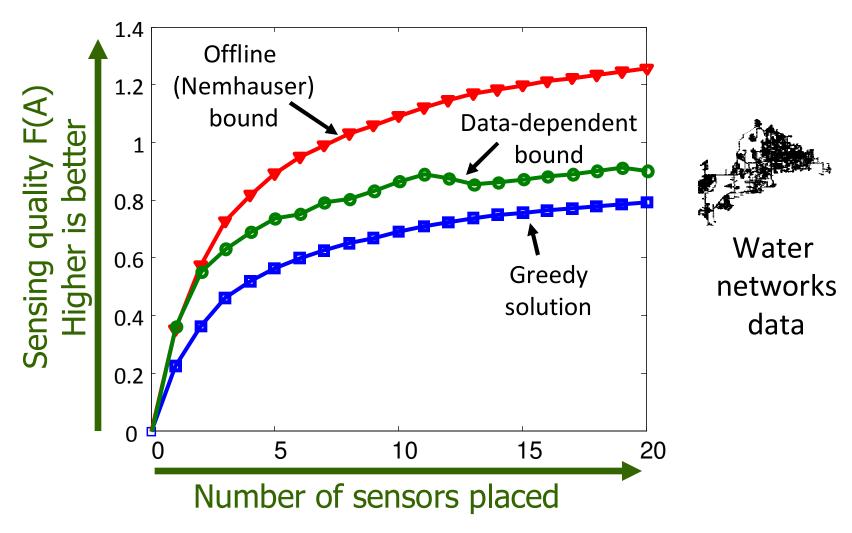
= $F(A) + \sum_i F(A \cup \{s_1, ..., s_i\}) - F(A \cup \{s_1, ..., s_{i-1}\})$
 $\le F(A) + \sum_i (F(A \cup \{s_i\}) - F(A))$
= $F(A) + \sum_i \delta_{s_i}$

For each
$$s \in V \setminus A$$
, let $\delta_s = F(A \cup \{s\}) - F(A)$ M
Order such that $\delta_1 \geq \delta_2 \geq ... \geq \delta_n$

Then:
$$F(A^*) \leq F(A) + \sum_{i=1}^k \delta_i$$

Bounds on optimal solution

[Krause et al., J Wat Res Mgt '08]



Submodularity gives data-dependent bounds on the performance of any algorithm

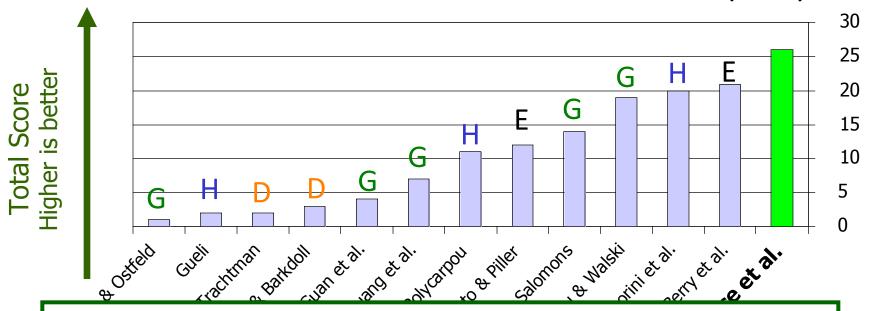
BWSN Competition results

[Ostfeld et al., J Wat Res Mgt 2008]

- 13 participants
- Performance measured in 30 different criteria

G: Genetic algorithm D: Domain knowledge

H: Other heuristic E: "Exact" method (MIP)

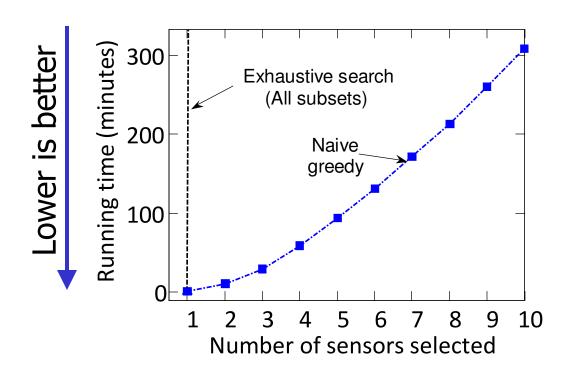


24% better performance than runner-up! ©

What was the trick?

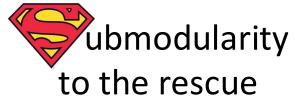
Simulated all **3.6M contaminations** on 2 weeks / 40 processors 152 GB data on disk, 16 GB in main memory (compressed)

 \rightarrow Very accurate computation of F(A) Very slow evaluation of F(A) \otimes



30 hours/20 sensors
6 weeks for all

30 settings 🙁



Scaling up greedy algorithm [Minoux '78]

In round i+1,

- have picked $A_i = \{s_1, ..., s_i\}$
- pick $s_{i+1} = argmax_s F(A_i \cup \{s\}) F(A_i)$

I.e., maximize "marginal benefit" $\delta_s(A_i)$

$$\delta_{s}(A_{i}) = F(A_{i} \cup \{s\}) - F(A_{i})$$

Key observation: Submodularity implies

$$\mathsf{i} \leq \mathsf{j} \Rightarrow \delta_{\mathsf{s}}(\mathsf{A}_{\mathsf{i}}) \geq \delta_{\mathsf{s}}(\mathsf{A}_{\mathsf{j}})$$

$$\delta_{s}(A_{i}) \geq \delta_{s}(A_{i+1})$$

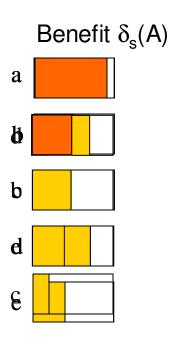
Marginal benefits can never increase!

"Lazy" greedy algorithm [Minoux '78]

Lazy greedy algorithm:

M

- First iteration as usual
- Keep an ordered list of marginal benefits δ_i from previous iteration
- Re-evaluate $\delta_{\rm i}$ only for top element
- If δ_i stays on top, use it, otherwise re-sort

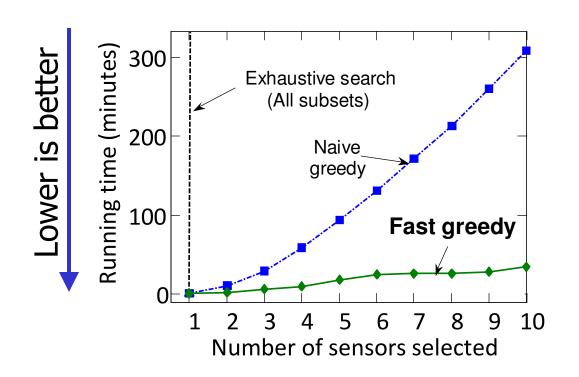


Note: Very easy to compute online bounds, lazy evaluations, etc. [Leskovec et al. '07]

Result of lazy evaluation

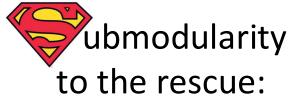
Simulated all **3.6M contaminations** on 2 weeks / 40 processors 152 GB data on disk, 16 GB in main memory (compressed)

 \rightarrow Very accurate computation of F(A) Very slow evaluation of F(A) \otimes



30 hours/20 sensors

6 weeks for all 30 settings ⊗

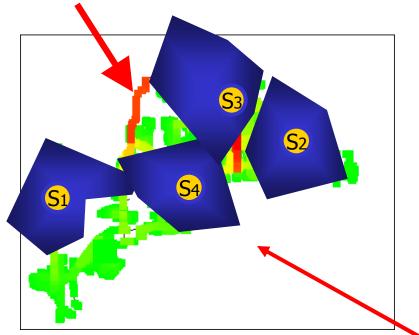


Using "lazy evaluations": 1 hour/20 sensors

Done after 2 days! ©

What about worst-case? [Krause et al., NIPS '07]

Knowing the sensor locations, an adversary contaminates here!



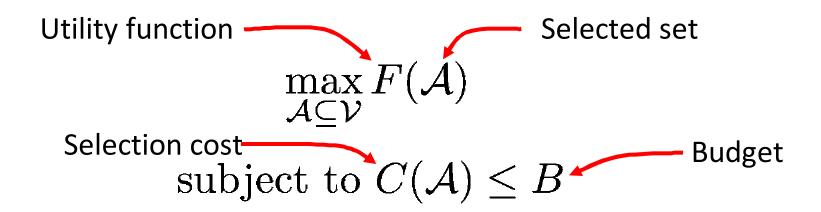
Very different average-case impact,

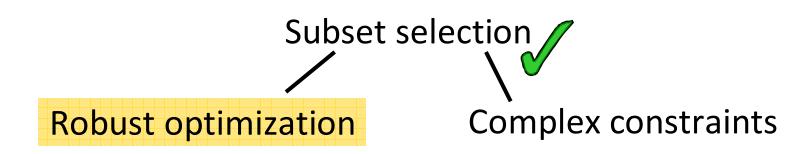
Same worst-case impact

Placement detects well on "average-case" (accidental) contamination

Where should we place sensors to quickly detect in the worst case?

Constrained maximization: Outline





Optimizing for the worst case

- Separate utility function F_i for each contamination i
- $F_i(A)$ = impact reduction by sensors A for contamination i

Want to solve

$$\mathcal{A}^* = \operatorname*{argmax} \min_{i} F_i(\mathcal{A})$$

$$|\mathcal{A}| \leq k$$

Contamination at node s

F_s(B) is high

Sensors B

Each of the F_i is submodular

Unfortunately, min; F; not submodular!

F_r(A) is high

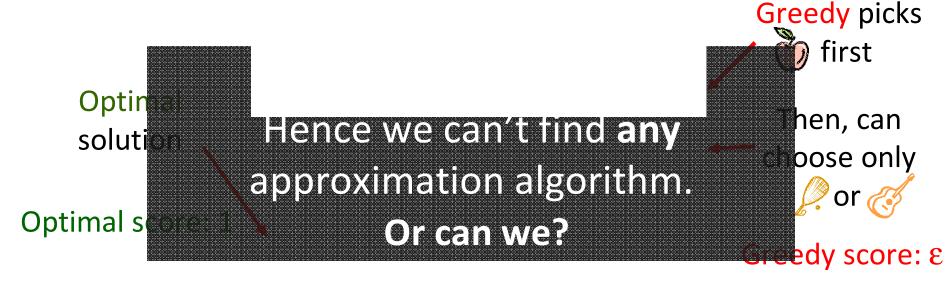
at node **r**

Contamination

How can we solve this robust optimization problem?

How does the greedy algorithm do?

Can only buy k=2



→ Greedy does arbitrarily badily. Is there something better?

Theorem [NIPS '07]: The problem $\max_{|A| \le k} \min_i F_i(A)$ does not admit **any** approximation unless **P=NP**

Alternative formulation

If somebody told us the optimal value,

$$c^* = \max_{|\mathcal{A}| \le k} \min_i F_i(\mathcal{A})$$

can we recover the optimal solution A*?

Need to find

$$\mathcal{A}^* = \underset{\mathcal{A}}{\operatorname{argmin}} |\mathcal{A}| \text{ such that } \min_i F_i(\mathcal{A}) \geq c^*$$

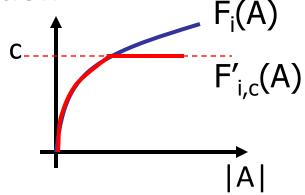
Is this any easier?

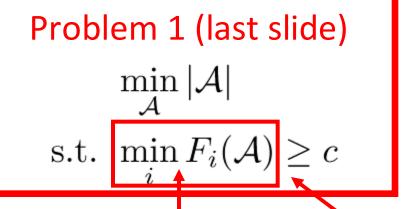
Yes, if we relax the constraint $|A| \le k$

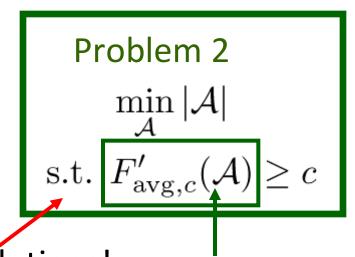
Solving the alternative problem

Trick: For each F_i and c, define truncation

Remains
$$F'_{i,c}(\mathcal{A}) = \min\{F_i(\mathcal{A}),c\}$$
 cusubmodular! $F'_{\mathrm{avg},c}(\mathcal{A}) = \frac{1}{m}\sum_i F'_{i,c}(\mathcal{A})$







Non-submodulare optimal solutions! Submodular! Don't know howelving were solves the other as constraint?

Maximization vs. coverage

Previously: Wanted

$$A^* = \operatorname{argmax} F(A) \text{ s.t. } |A| \leq k$$

Now need to solve:

$$A^* = argmin |A| s.t. F(A) \ge Q$$

Greedy algorithm:

Start with A := \emptyset ;

While F(A) < Q and |A| < n

 $s^* := \operatorname{argmax}_s F(A \cup \{s\})$

 $A := A \cup \{s^*\}$

For bound, assume F is integral.

If not, just round it.

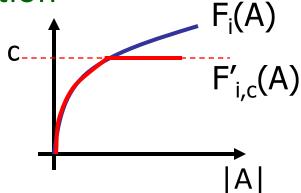
Theorem [Wolsey et al]: Greedy will return $A_{greedy} | A_{greedv}| \le (1+\log \max_s F(\{s\})) | A_{opt}|$

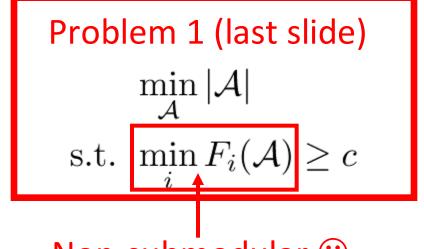
Solving the alternative problem

Trick: For each F_i and c, define truncation

$$F'_{i,c}(\mathcal{A}) = \min\{F_i(\mathcal{A}), c\}$$

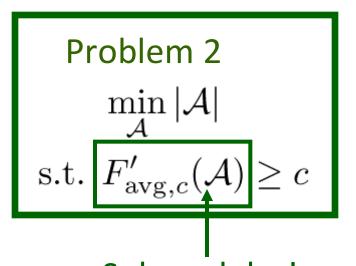
$$F'_{\text{avg},c}(\mathcal{A}) = \frac{1}{m} \sum_{i} F'_{i,c}(\mathcal{A})$$





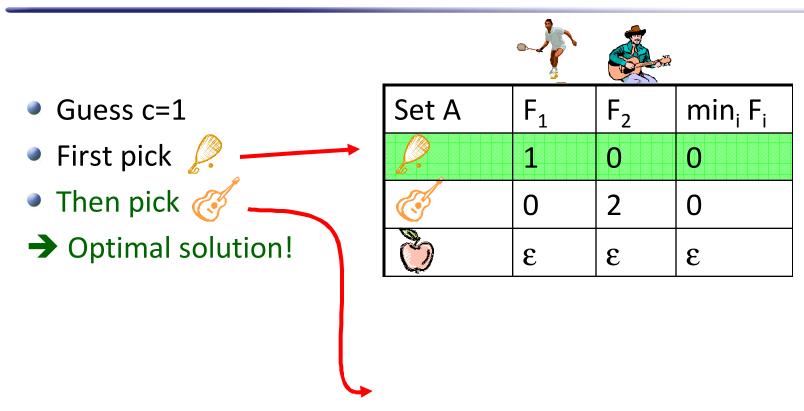
Non-submodular

Don't know how to solve



Submodular! Can use greedy algorithm!

Back to our example



How do we find c?

Do binary search!

SATURATE Algorithm

[Krause et al, NIPS '07]

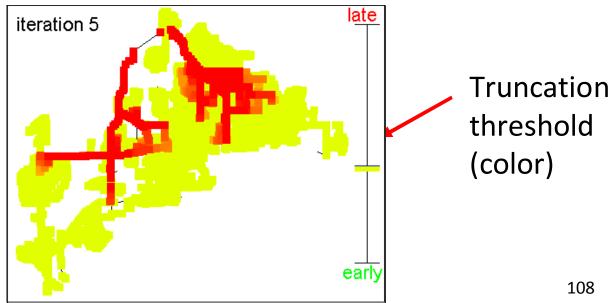
Given: set V, integer k and monotonic SFs F₁,...,F_m

Initialize $c_{min}=0$, $c_{max}=min_i F_i(V)$

Do binary search: $c = (c_{min} + c_{max})/2$

- Greedily find A_G such that $F'_{avg,c}(A_G) = c$
- If $|A_G| \le \alpha$ k: increase c_{min}
- If $|A_G| > \alpha$ k: decrease c_{max}

until convergence



Theoretical guarantees

[Krause et al, NIPS '07]

Theorem: SATURATE finds a solution A_S such that

$$\min_{i} F_i(A_s) \ge OPT_k$$
 and $|A_s| \le \alpha k$

where
$$OPT_k = \max_{|A| \le k} \min_i F_i(A)$$

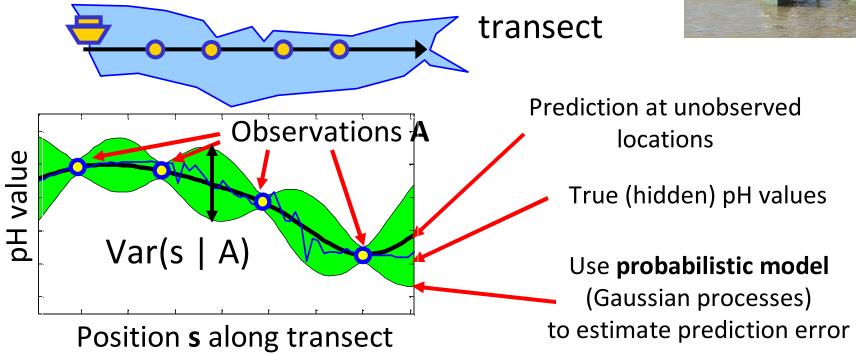
 $\alpha = 1 + \log \max_s \sum_i F_i(\{s\})$

Theorem:

If there were a polytime algorithm with better factor $\beta < \alpha$, then NP \subseteq DTIME(n^{log log n})

Example: Lake monitoring

Monitor pH values using robotic sensor



Where should we sense to minimize our maximum error?

→ Robust submodular optimization problem!

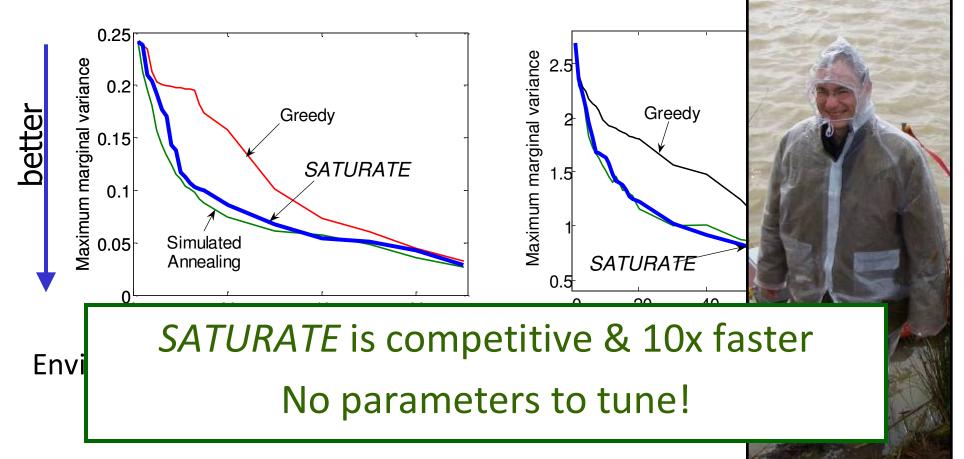
 $\min_s ext{Var}(s) - ext{Var}(s \mid \mathcal{A})$ (often) submodular
[Das & Kempe '08]₁₁₀

Comparison with state of the art

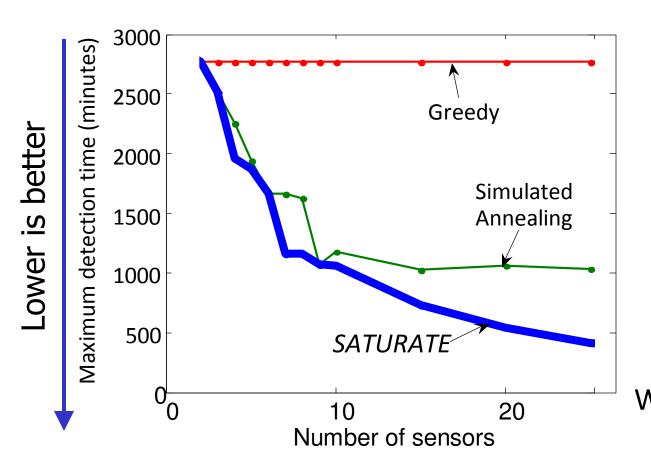
Algorithm used in geostatistics: Simulated Annealing

[Sacks & Schiller '88, van Groeningen & Stein '98, Wiens '05,...]

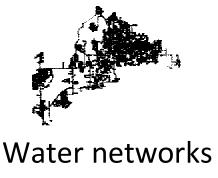
7 parameters that need to be fine-tuned



Results on water networks



No decrease until **all** contaminations detected!



60% lower worst-case detection time!

Worst- vs. average case

Given: Set V, submodular functions F₁,...,F_m

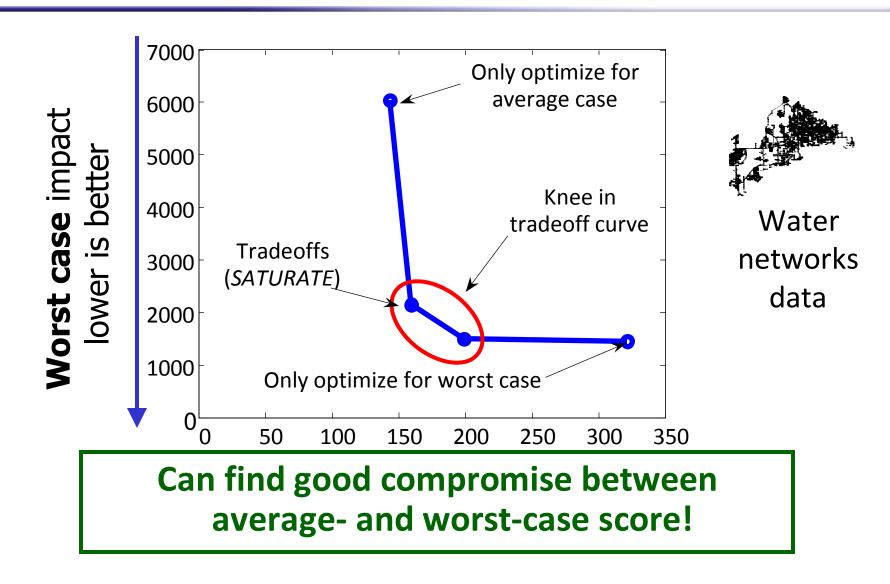
Average-case score	Worst-case score
$F_{ac}(\mathcal{A}) = \frac{1}{m} \sum_{i} F_i(\mathcal{A})$	$F_{wc}(\mathcal{A}) = \min_{i} F_i(\mathcal{A})$

Want to optimize both average- and worst-case score!

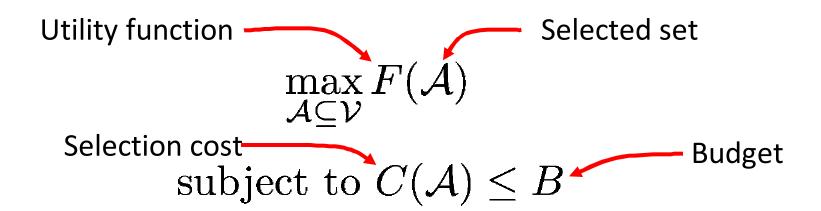
Can modify SATURATE to solve this problem!

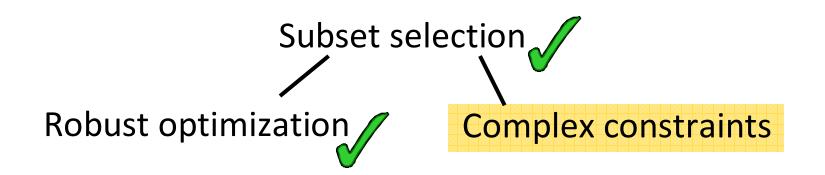
- Want: $F_{ac}(A) \ge c_{ac}$ and $F_{wc}(A) \ge c_{wc}$
- Truncate: $\min\{F_{ac}(A), c_{ac}\} + \min\{F_{wc}(A), c_{wc}\} \ge c_{ac} + c_{wc}$

Worst- vs. average case



Constrained maximization: Outline



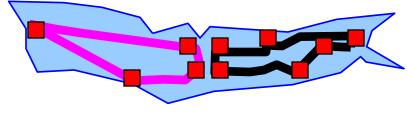


Other aspects: Complex constraints

$\max_{\mathbf{A}} F(\mathbf{A})$ or $\max_{\mathbf{A}} \min_{i} F_{i}(\mathbf{A})$ subject to

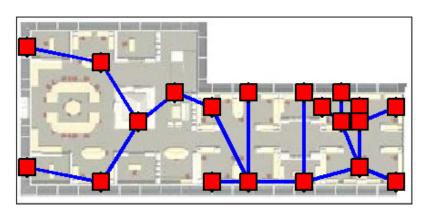
- So far: $|A| \leq k$
- In practice, more complex constraints:
- Different costs: $C(A) \leq B$

Locations need to be connected by paths [Chekuri & Pal, FOCS '05] [Singh et al, IJCAI '07]



Lake monitoring

Sensors need to communicate (form a routing tree)



Building monitoring

Non-constant cost functions

- For each s ∈ V, let c(s)>0 be its cost (e.g., feature acquisition costs, ...)
- Cost of a set C(A) = $\sum_{s \in A} c(s)$ (modular function!)
- Want to solve

$$A^* = \operatorname{argmax} F(A) \text{ s.t. } C(A) \leq B$$

Cost-benefit greedy algorithm:

Start with A := \emptyset ;

While there is an $s \in V \setminus A$ s.t. $C(A \cup \{s\}) \leq B$

$$s^* = \operatorname*{argmax}_{s:C(\mathcal{A} \cup \{s\}) \leq B} \frac{F(\mathcal{A} \cup \{s\}) - F(\mathcal{A})}{c(s)}$$

$$A := A \cup \{s^*\}$$

Performance of cost-benefit greedy

Want

 $\max_{A} F(A)$ s.t. $C(A) \leq 1$

Set A	F(A)	C(A)
{a}	2ε	3
{b}	1	1

Cost-benefit greedy picks a.

Then cannot afford b!

Cost-benefit greedy performs arbitrarily badly!

Cost-benefit optimization

[Wolsey '82, Sviridenko '04, Leskovec et al '07]

Theorem [Leskovec et al. KDD '07]

- A_{CB}: cost-benefit greedy solution and
- A_{UC}: unit-cost greedy solution (i.e., ignore costs)

Then

max {
$$F(A_{CR})$$
, $F(A_{UC})$ } $\geq \frac{1}{2}$ (1-1/e) OPT

Can still compute online bounds and speed up using lazy evaluations

Note: Can also get

(1-1/e) approximation in time O(n⁴)

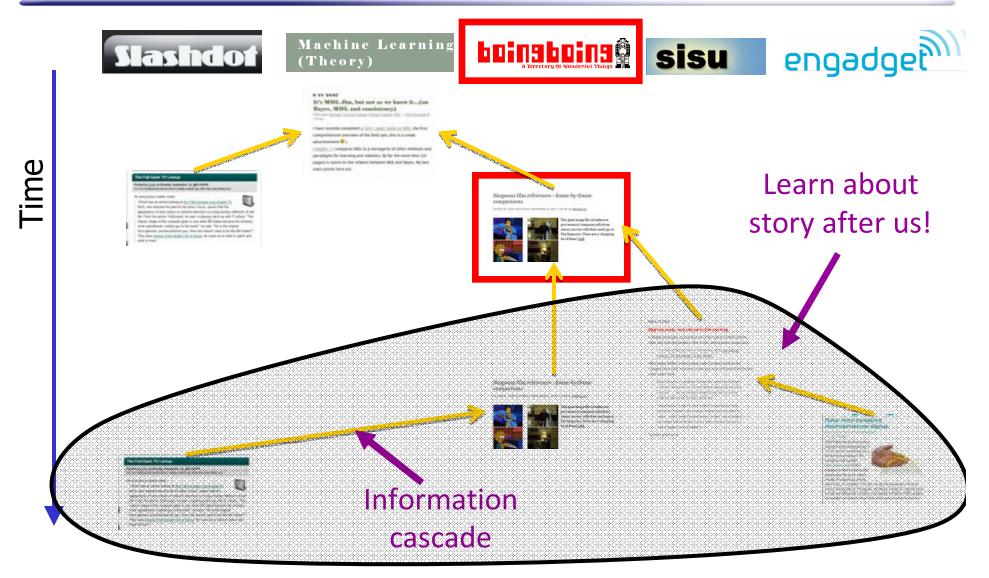
[Sviridenko '04]

Slightly better than ½ (1-1/e) in O(n²)

[Wolsey '82]

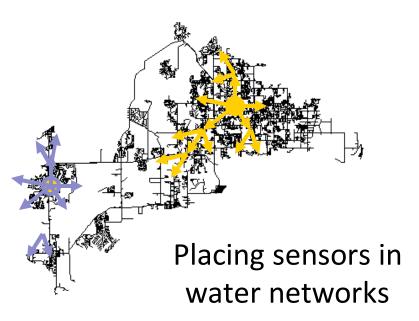
Sense Example: Cascades in the Blogosphere

[Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, Glance '07]



Which blogs should we read to learn about big cascades early? 120

Water vs. Web



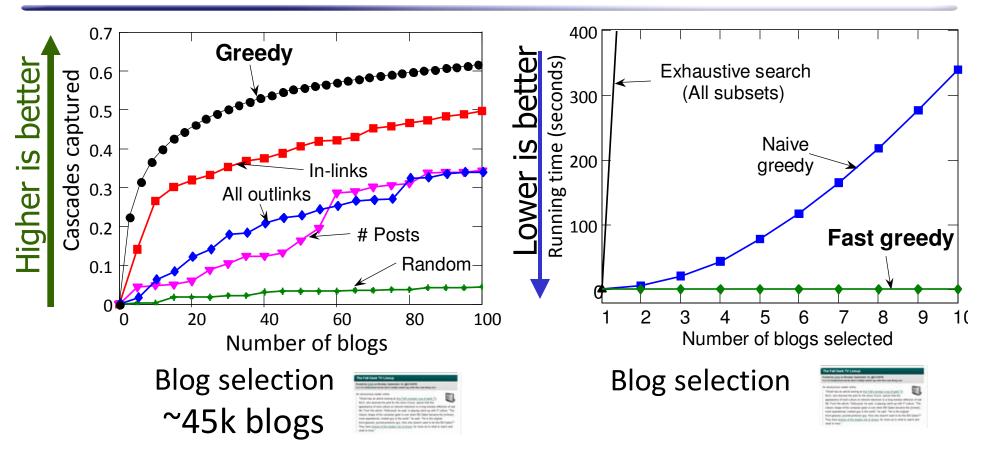
VS.

Selecting informative blogs

- In both problems we are given
 - Graph with nodes (junctions / blogs) and edges (pipes / links)
 - Cascades spreading dynamically over the graph (contamination / citations)
- Want to pick nodes to detect big cascades early

In both applications, utility functions submodular © [Generalizes Kempe et al, KDD '03]

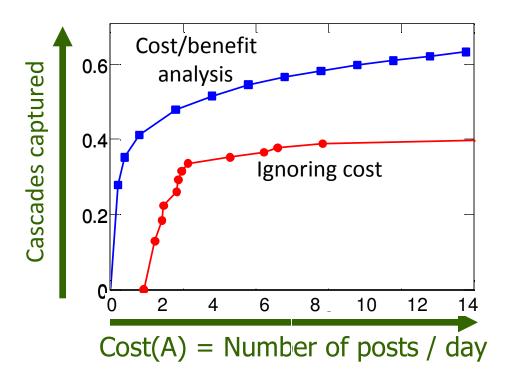
Performance on Blog selection



Outperforms state-of-the-art heuristics 700x speedup using submodularity!

Cost of reading a blog

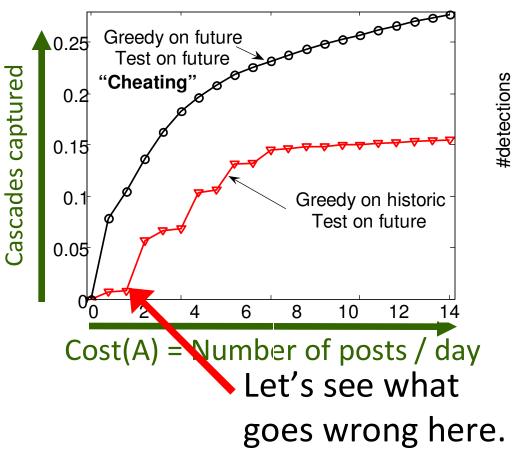
- Naïve approach: Just pick 10 best blogs
- Selects big, well known blogs (Instapundit, etc.)
- These contain many posts, take long to read!



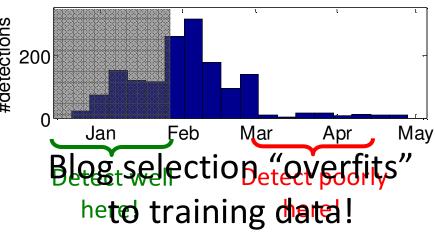
Cost-benefit optimization picks summarizer blogs!

Predicting the "hot" blogs

- Want blogs that will be informative in the future
- Split data set; train on historic, test on future



Detects on training set



Poor generalization!
Wantsblbgs?that
continue to do well!

Robust optimization

"Overfit" blog selection A

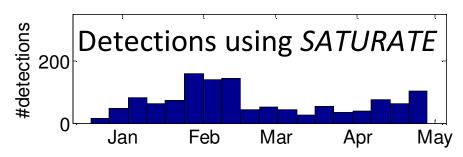
$$F_i(A)$$
 = detections
in interval i

 $F_{1}(A) = .5$ $F_{3}(A) = .6$ $F_{5}(A) = .02$ $F_{2}(A) = .8$ $F_{4}(A) = .01$

Optimize worst-case

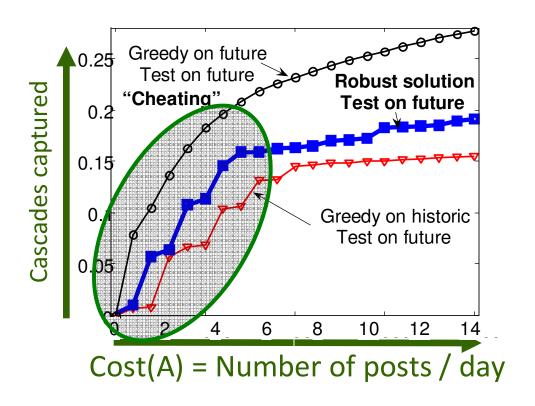
$$\mathcal{A}^* = \operatorname*{argmax} \min_{i} F_i(\mathcal{A})$$
$$|\mathcal{A}| \leq k$$

"Robust" blog selection **A***



Robust optimization Regularization!

Predicting the "hot" blogs



50% better generalization!

Other aspects: Complex constraints

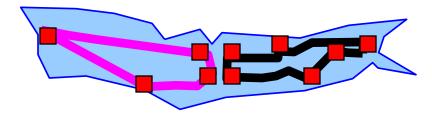
skip

$\max_{\mathbf{A}} F(\mathbf{A})$ or $\max_{\mathbf{A}} \min_{i} F_{i}(\mathbf{A})$ subject to

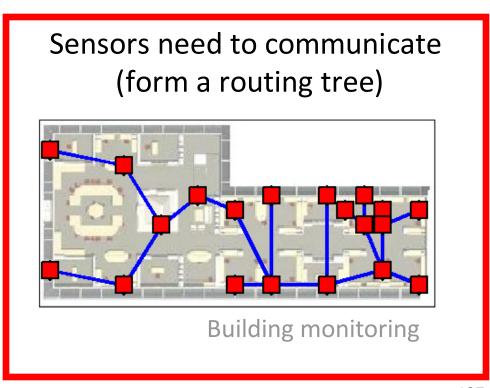
So far:

- |A| < k
- In practice, more complex constraints:
- Different costs: C(A) ≤ B

Locations need to be connected by paths [Chekuri & Pal, FOCS '05] [Singh et al, IJCAI '07]



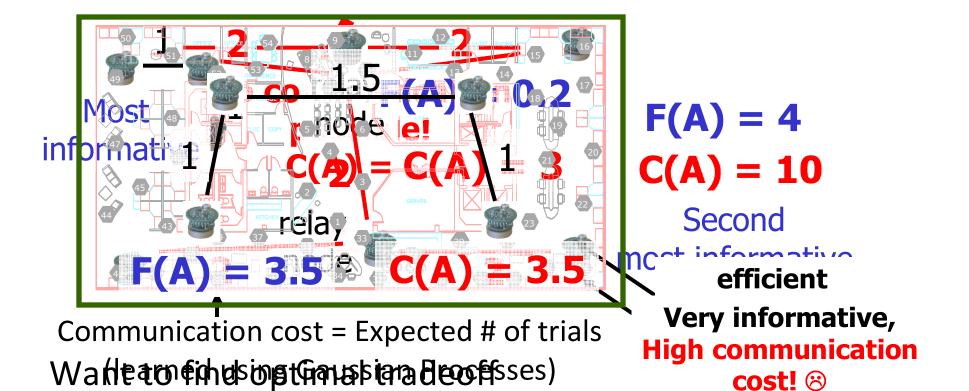
Lake monitoring



Naïve approach: Greedy-connect

long

- Simple heuristic: Greedily optimize submodular utility function F(A)
- Then add nodes to minimize communication cost C(A)



between information and communication cost

The **pSPIEL** Algorithm

[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]

 pSPIEL: Efficient nonmyopic algorithm
 (padded Sensor Placements at Informative and cost-Effective Locations)

- Decompose sensing region into small, well-separated clusters
- Solve cardinality constrained problem per cluster (greedy)
- Combine solutions using k-MST algorithm

Guarantees for *pSPIEL*

[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]

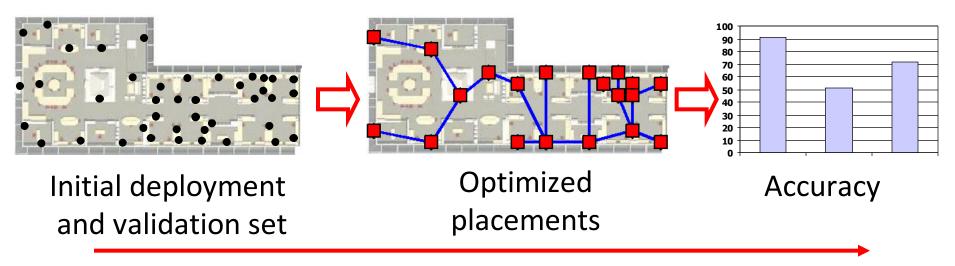
Theorem:

pSPIEL finds a tree T with

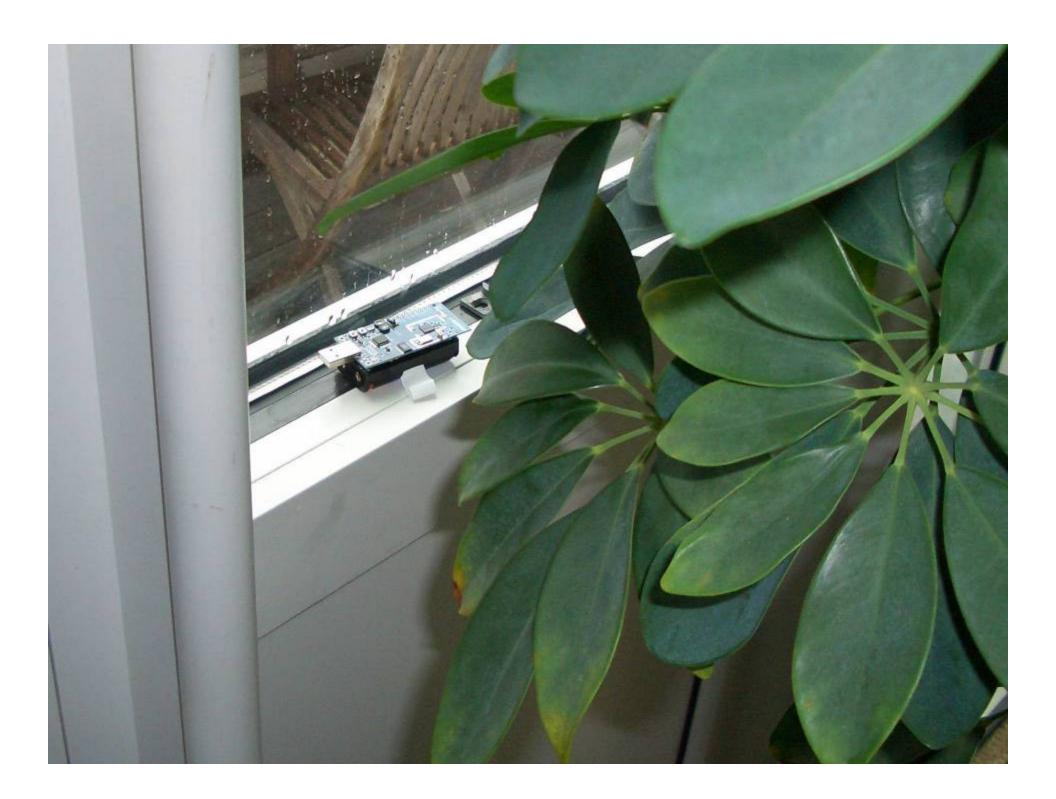
```
submodular utility F(T) \ge \Omega(1) OPT<sub>F</sub> communication cost C(T) \le O(\log |V|) OPT<sub>C</sub>
```


Proof of concept study

- Learned model from short deployment of 46 sensors at the Intelligent Workplace
- Manually selected 20 sensors;
 Used *pSPIEL* to place 12 and 19 sensors
- Compared prediction accuracy



Time



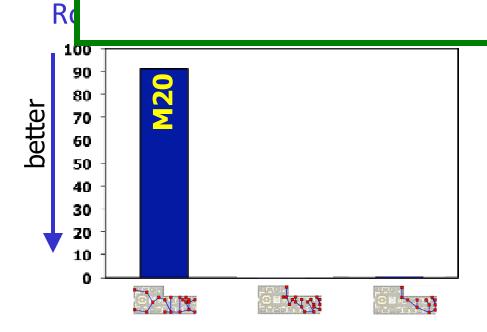
Proof of concept study

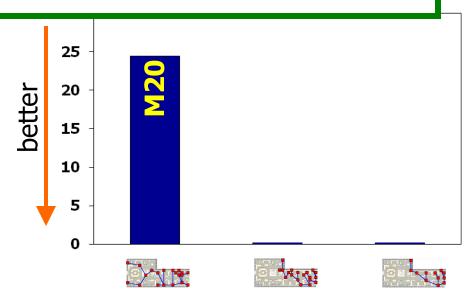
accuracy on 46 locations

pSPIEL improves solution over intuitive manual placement: 50% better prediction and 20% less communication cost, or 20% better prediction and 40% less communication cost

Poor placements can hurt a lot!

Good solution can be unintuitive

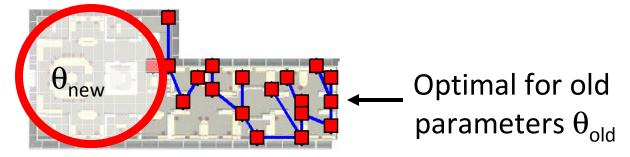




Robustness sensor placement

[Krause, McMahan, Guestrin, Gupta '07]

what if the usage pattern changes?



- ullet Want placement to do well both under all possible parameters ullet
 - \rightarrow Maximize min_{θ} $F_{\theta}(A)$
- Unified view
 - Robustness to change in parameters
 - Robust experimental design
 - Robustness to adversaries

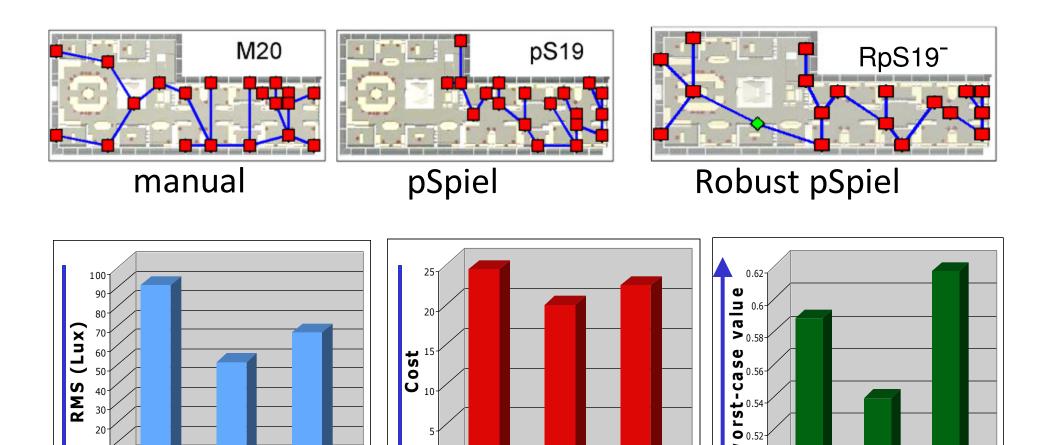
Can use SATURATE for robust sensor placement!

pS19

M20

RpS19

Robust pSpiel



Robust placement more intuitive, still better than manual! 137

pS19

RpS19

M20

pS19

RpS19

M20

Tutorial Overview

- Examples and properties of submodular functions
 - Many problems submodular (mutual information, influence, ...)
 - SFs closed under positive linear combinations; not under min, max
- Submodularity and convexity
 - Every SF induces a convex function with SAME minimum
 - Special properties: Greedy solves LP over exponential polytope
- Minimizing submodular functions
 - Minimization possible in polynomial time (but O(n⁸)...)
 - Queyranne's algorithm minimizes symmetric SFs in O(n³)
 - Useful for clustering, MAP inference, structure learning, ...
- Maximizing submodular functions
 - Greedy algorithm finds near-optimal set of k elements
 - For more complex problems (robustness, constraints) greedy fails, but there still exist good algorithms (SATURATE, pSPIEL, ...)
 - Can get online bounds, lazy evaluations, ...
 - Useful for feature selection, active learning, sensor placement, ...
- Extensions and research directions

Extensions and research directions

Learning submodular functions

[Goemans, Harvey, Kleinberg, Mirrokni, '08]

- Pick m sets, $A_1 \dots A_m$, get to see $F(A_1), \dots, F(A_m)$
- From this, want to approximate F by F' s.t.

$$1/\alpha \le F(A)/F'(A) \le \alpha$$
 for all A

Theorem: Even if

- F is monotonic
- we can pick polynomially many A_i, chosen adaptively,
 cannot approximate better than

$$\alpha = n^{\frac{1}{2}} / \log(n)$$

unless P = NP

Sequential selection [Krause, Guestrin '07]

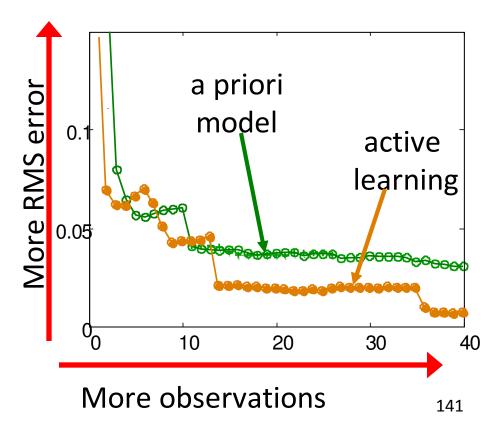
Thus far assumed know submodular function F (model of environment)

- \rightarrow Bad assumption
 - Don't know lake correlations before we go...

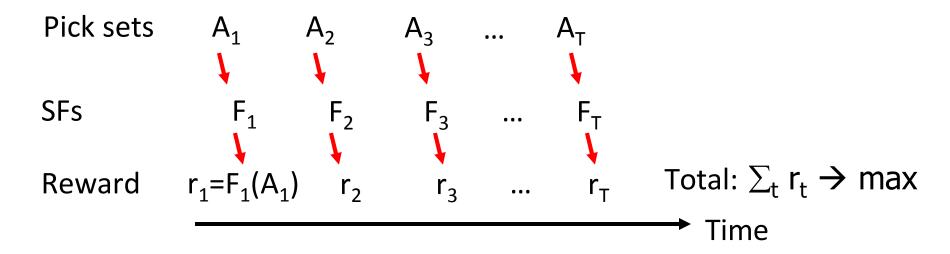
Simultaneous sensing (selection) and model (F) learning

- Can use submodularity to analyze exploration/exploitation tradeoff
- Obtain theoretical guarantees

pH data from Merced river



Online maximization of submodular functions [Golovin & Streeter '07]



Theorem

Can efficiently choose $A_1,...A_t$ s.t. in expectation

(1/T)
$$\sum_{t} F_t(A_t) \ge$$
 (1/T) (1-1/e) $\max_{|A| \le k} \sum_{t} F_t(A)$

for any sequence F_i , as $T \rightarrow \infty$

"Can asymptotically get 'no-regret' over clairvoyant greedy"

Game theoretic applications

How can we fairly distribute a set V of "unsplittable" goods to m people?

"Social welfare" problem:

- Each person i has submodular utility F_i(A)
- Want to partitition $V = A_1 \cup ... \cup A_m$ to maximize

$$F(A_1,...,A_m) = \sum_i F_i(A_i)$$

Theorem [Vondrak, STOC '08]: Can get 1-1/e approximation!

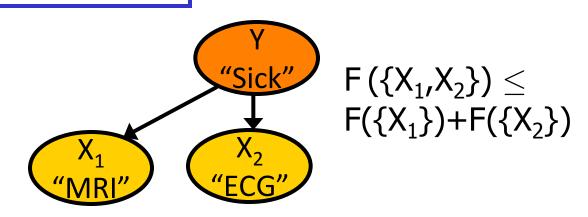
Beyond Submodularity: Other notions

- Posimodularity?
 - $F(A) + F(B) \ge F(A \setminus B) + F(B \setminus A) \ \forall A,B$
 - Strictly generalizes symmetric submodular functions
- Subadditive functions?
 - $F(A) + F(B) \ge F(A \cup B) \forall A,B$
 - Strictly generalizes monotonic submodular functions
- Crossing / intersecting submodularity?
 - $F(A) + F(B) \ge F(A \cup B) + F(A \cap B)$ holds for some sets A,B
 - Submodular functions can be defined on arbitrary lattices
- Bisubmodular functions?
 - Set functions defined on pairs (A,A') of disjoint sets of
 - $F(A,A') + F(B,B') \ge F((A,A') \lor (B,B')) + F((A,A') \land (B,B'))$
- Discrete-convex analysis (L-convexity, M-convexity, ...)
- Submodular flows
- ...

Beyond submodularity: Non-submodular functions

For F submodular and G supermodular, want

$$A^* = \operatorname{argmin}_A F(A) + G(A)$$



Example:

- –G (A) is information gain for feature selection
- F(A) is cost of computing features A, where "buying in bulk is cheaper"

In fact, any set function can be written this way!!

An analogy

For F submodular and G supermodular, want

$$A^* = \operatorname{argmin}_A F(A) + G(A)$$

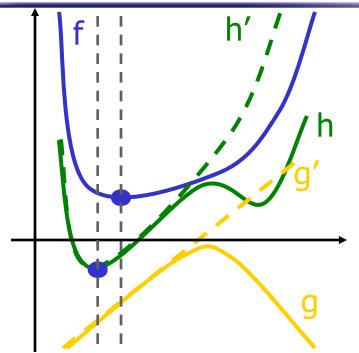
Have seen:

```
submodularity ~ convexity supermodularity ~ concavity
```

Corresponding problem: f convex, g concave

$$x^* = argmin_x f(x) + g(x)$$

DC Programming / Convex Concave Procedure [Pham Dinh Tao '85]



$$x' \leftarrow argmin f(x)$$

While not converged do

- 1.) $g' \leftarrow \text{linear upper bound of } g,$ tight at x'
- 2.) $x' \leftarrow argmin f(x)+g'(x)$

Will converge to local optimum Generalizes EM, ...

Clever idea [Narasimhan&Bilmes '05]:

Also works for submodular and supermodular functions!

Replace 1) by "modular" upper bound

M

Replace 2) by submodular function minimization

Useful e.g. for discriminative structure learning!

Many more details in their UAI '05 paper

Structure in ML / AI problems

ML last 10 years:

Convexity

Kernel machines SVMs, GPs, MLE...

ML "next 10 years:"

Submodularity ©

New structural properties

Structural insights help us solve challenging problems

Open problems / directions

Submodular optimization

- Improve on O(n⁸ log² n) algorithm for minimization?
- Algorithms for constrained minimization of SFs?
- Extend results to more general notions (subadditive, ...)?

Applications to AI/ML

- Fast / near-optimal inference?
- Active Learning
- Structured prediction?
- Understanding generalization?
- Ranking?
- Utility / Privacy?

Lots of interesting open problems!!

www.submodularity.org

- Examples and properties of submodular functions
 - Many problems submodular (mutual information, influence, ...)
 - SFs closed under positive linear combinations; not under min, max
- Submodularity and convexity
 - Every SF induces a convex function with SAME minimum
 - Special properties: Greedy solves LP over exponential polytope
- Minimizing submodular functions
 - Minimization possible in polynomial time (but O(n⁸)...)
 - Queyranne's algorithm minimizes symmetric SFs in O(n³)
 - Useful for clustering, MAP inference, structure learning,
- Maximizing submodular functions
 - Greedy algorithm finds near-optimal set of k elements
 - For more complex problems (robustness, constraints) greexist good algorithms (SATURATE, pSPIEL, ...)
 - Can get online bounds, lazy evaluations, ...
 - Useful for feature selection, active learning, sensor place
- ullet Extensions and research directions \checkmark
 - Sequential, online algorithms
 - Optimizing non-submodular functions

Check out our Matlab toolbox!

sfo_queyranne,
sfo_min_norm_point,
sfo_celf, sfo_sssp,
sfo_greedy_splitting,
sfo_greedy_lazy,
sfo_saturate,
sfo_max_dca_lazy