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Motivation

Designing molecules with targeted properties is crucial for applications ranging from drug-
design to designing sustainable chemical processes [Bilodeau et al., 2022]. Recently, gener-
ative models such as diffusion or flow matching models have succeeded in producing molecules
with similarity to existing chemical datasets [Hoogeboom et al., 2022, Runcie and Mey, 2023].
While diffusion models are promising to sample complex (high-dimensional or combinato-
rial) spaces, they do not naturally lead to designs optimizing a specific property via online
feedback. Meanwhile, Bayesian optimization techniques lead to good property maximiz-
ers but do not scale easily to complex domains. Hence the question: can we combine the
ability of generative models to produce promising molecules while achieving property im-
provements over the sequence of generated molecules according to a notion of optimality?
We have recently started to answer this question by leveraging diffusion models similarly
to [Yuan et al., 2024, Uehara et al., 2024] and designed algorithms for Bayesian optimization
via diffusion models. Now we aim to specialize these ideas into a practical method and test
it on a real-world de novo molecular design problem.

Scope of the Project

Starting from a principled algorithm for generative Bayesian optimization, we wish to build
a more practical method and adapt it for real-world molecular design problems.

Ideal Candidate

The project is focused on applying and adapting the derived methodology to molecular de-
sign, without emphasis on theoretical derivations. A good candidate will have a mix of the
following.

• Understanding of Bayesian optimization and/or diffusion models.

• Coding experience with Bayesian optimization and/or diffusion (generative) models.

Notice that a background in molecular design or chemistry is not required, however a will-
ingness to learn working with molecular datasets and equivariant diffusion models is crucial.

Contact

If you are interested, please contact Riccardo De Santi (rdesanti@ethz.ch) and Luca Schaufel-
berger (schaluca@ethz.ch) with a short description of your motivation and a CV.
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This project is a collaboration between the Learning & Adaptive Systems Group (Prof.
Andreas Krause) and the Digital Chemistry Laboratory (Prof. Kjell Jorner).
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