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1 Background

Cooperative intelligence—the capacity to foster cooperation between humans, machines, or organizations—
hinges on the ability to take calculated risks to better understand the behavior of others. This skill is essential
in settings where outcomes are interdependent but incentives may not be fully aligned, such as in climate
negotiations (Bengio et al., 2023), monitoring agentic AI systems (Reuel et al., 2024), or even navigating traffic
in a city with different norms than what you are accustomed to. Humans are particularly good at continuously
exploring and discerning patterns in the responses of others. We use this information to construct a model
that describes how others think and act (Grosz and Kraus, 1996; Xiang et al., 2023). We then adapt accordingly
when needed, achieving mutually beneficial outcomes without inflicting harm along the way.
For artificial agents to exhibit similar behaviors, they too must be able to navigate such risks while adapting
their model of how their co-players “think”. This challenge can be framed within the paradigm of sequential
decision-making under constraints, where the objective is to refine models of other agents’ behavior while
pursuing individual goals, all while ensuring that safety and other constraints are upheld continuously during
learning. In the single-agent setting, where agents typically learn models of the environment dynamics, this
problem is known as safe exploration and has been extensively studied. Various methods have been developed
to ensure that optimal policies maintain safety throughout the learning and adaptation process, particularly
in smaller-scale environments (Sui et al., 2015; Berkenkamp et al., 2021), with recent advancements addressing
more complex, high-dimensional, and non-stationary environments (As et al., 2022, 2024).
In the multi-agent setting, despite extensive research on multi-agent constrained Markov decision processes
(CMPD, Altman, 1999; Garg et al., 2024), current approaches often struggle with scalability and with ensuring
continuous constraint satisfaction while learning. This is partly because extending existing multi-agent
frameworks to problems with non-stationary dynamics under constraints is non-trivial. A fundamental
distinction between the single- and multi-agent settings is the necessity for agents to model each other’s decision-
making and engage in higher-order reasoning (Schroeder de Witt et al., 2019; Dafoe et al., 2020). If these methods
can be effectively scaled to advanced AI systems, however, they could serve as effective tools for ensuring
safe adaptation in high-stakes environments. To take steps in this direction, we ask the following questions:
Q.1 What is an appropriate framework for extending single-agent safe exploration algorithms to multi-agent

problems, where agents must learn and adapt to behaviors of other unfamiliar agents while preventing
harmful outcomes?

Q.2 How can we use constraints in a practical and scalable manner to induce cooperation in multi-agent
settings with mixed incentives?
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Figure 1: Illustration of approach. To safely adapt to new domains, we use ActSafe from As et al. (2024) to expand
a safe set of policies by reducing our epistemic uncertainty σ. We are initially given a set of safe policies (S0) that
was obtained with the baseline dynamics. The goal is to collect safely trajectories so as to learn about how other agents
behave in new domains.

1



Our work aims to address these questions by developing a theoretically grounded foundation for artificial
agents that can safely adapt to the behavior of others in uncertain, multi-agent environments.

2 Proposal

Consider an agent that is initially trained with a baseline policy derived from some baseline dynamics, and
is ought to safely adapt when deployed in a new environment with different dynamics. For instance, a
self-driving car policy trained with data from Zurich must adjust when deployed in New York, where driving
behavior and culture differ significantly, as depicted in Figure 1. The goal is for the agent to gather new
trajectory data safely to update its dynamics model without causing accidents or critical errors.
A starting point for solving the above problem, would be to extend existing safe reinforcement learning
algorithms, such as LAMBDA or ActSafe (As et al., 2022, 2024), to multi-agent problems. In particular, we
the above problem can be simulated in a controlled environment like GPUDdrive (Kazemkhani et al., 2024),
which which provides a consistent benchmark for measuring an agent’s adaptability to various driving norms.
Through diverse datasets from different locations (Caesar et al., 2020; Ettinger et al., 2021), the adaptability
of the agent can be assessed in complex, real-world-like situations.

3 Supervision

If you are a Master’s student with
• basic knowledge in reinforcement learning, for instance, by taking Probabilistic Artificial Intelligence

or Foundations of Reinforcement Learning courses;
• strong programming background in Python,

please reach out to Yarden As or Daphne Cornelisse.
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