Jonas Rothfuss Ph.D. Student jonas.rothfuss@inf.ethz.ch OAT Y 17 +41 44 632 84 23 LinkedIn Publications 2024 Data-Efficient Task Generalization via Probabilistic Model-based Meta Reinforcement Learning A. Bhardwaj, J. Rothfuss, B. Sukhija, Y. As, M. Hutter, S. Coros, A. KrauseIn IEEE Robotics and Automation Letters, IEEE, 2024[bibtex] [abstract] [pdf] Bridging the Sim-to-Real Gap with Bayesian Inference J. Rothfuss*, B. Sukhija*, L. Treven*, F. Dörfler, S. Coros, A. KrauseIn Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2024Oral presentation[bibtex] [abstract] [pdf] 2023 Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice J. Rothfuss, M. Josifoski, V. Fortuin, A. KrauseIn Journal of Machine Learning Research, 2023[bibtex] [abstract] [pdf] Instance-Dependent Generalization Bounds via Optimal Transport S. Hou*, P. Kassraie*, A. Kratsios*, A. Krause, J. Rothfuss*In Journal of Machine Learning Research, 2023[bibtex] [abstract] [pdf] Lifelong Bandit Optimization: No Prior and No Regret F. Schur*, P. Kassraie*, J. Rothfuss, A. KrauseIn Conference on Uncertainty in Artificial Intelligence (UAI), 2023[bibtex] [abstract] [pdf] MARS: Meta-Learning as Score Matching in the Function Space K. L. Pavasovic*, J. Rothfuss*, A. KrauseIn International Conference on Learning Representations (ICLR), 2023Spotlight presentation[bibtex] [abstract] [pdf] BaCaDI: Bayesian Causal Discovery with Unknown Interventions A. Hägele, J. Rothfuss, L. Lorch, V. R. Somnath, B. Schölkopf, A. KrauseIn Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), 2023Oral presentation[bibtex] [abstract] [pdf] 2022 Amortized Inference for Causal Structure Learning L. Lorch, S. Sussex, J. Rothfuss, A. Krause, B. SchölkopfIn Proc. Neural Information Processing Systems (NeurIPS), 2022[bibtex] [abstract] [pdf] [code] Meta-Learning Priors for Safe Bayesian Optimization J. Rothfuss, C. Koenig, A. Rupenyan, A. KrauseIn Proc. Conference on Robot Learning (CoRL), 2022Oral presentation[bibtex] [abstract] [pdf] Meta-Learning Hypothesis Spaces for Sequential Decision-making P. Kassraie, J. Rothfuss, A. KrauseIn Proc. International Conference on Machine Learning (ICML), 2022[bibtex] [abstract] [pdf] 2021 Meta-Learning Reliable Priors in the Function Space J. Rothfuss, D. Heyn, J. Chen, A. KrauseIn Proc. Neural Information Processing Systems (NeurIPS), 2021[bibtex] [abstract] [pdf] [code] DiBS: Differentiable Bayesian Structure Learning L. Lorch, J. Rothfuss, B. Schölkopf, A. KrauseIn Proc. Neural Information Processing Systems (NeurIPS), 2021Spotlight presentation[bibtex] [abstract] [pdf] [code] [blog] PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees J. Rothfuss, V. Fortuin, M. Josifoski, A. KrauseIn Proc. International Conference on Machine Learning (ICML), 2021[bibtex] [abstract] [pdf] [code] Robustness to Pruning Predicts Generalization in Deep Neural Networks L. Kuhn, C. Lyle, A. N. Gomez, J. Rothfuss, Y. GalArXiv, 2021[bibtex] [abstract] [pdf] 2019 Forward-looking P M. Ulrich, S. Walther, J. Rothfuss, F. FerreiraIn SSRN, 2019[bibtex] [abstract] [pdf] Noise Regularization for Conditional Density Estimation J. Rothfuss, F. Ferreira, S. Boehm, S. Walther, M. Ulrich, T. Asfour, A. KrauseArXiv, 2019[bibtex] [abstract] [pdf] [code] ProMP: Proximal Meta-Policy Search J. Rothfuss, D. Lee, I. Clavera, T. Asfour, P. AbbeelIn International Conference on Learning Representations (ICLR), 2019[bibtex] [abstract] [pdf] Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks J. Rothfuss, F. Ferreira, S. Walther, M. UlrichArXiv, 2019[bibtex] [abstract] [pdf] 2018 Model-based reinforcement learning via meta-policy optimization I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, P. AbbeelIn Conference on Robotic Learning (CoRL), PMLR, 2018[bibtex] [abstract] [pdf] Deep episodic memory: Encoding, recalling, and predicting episodic experiences for robot action execution J. Rothfuss, F. Ferreira, E. E. Aksoy, Y. Zhou, T. AsfourIn IEEE Robotics and Automation Letters, IEEE, volume 3, 2018[bibtex] [abstract] [pdf]