Navigation
  • About
  • People
  • Publications
  • Blog
  • Teaching
  • Student Projects
  • Openings
  • Contact
  • About
  • People
  • Publications
  • Blog
  • Teaching
  • Student Projects
  • Openings
  • Contact

Sequential Decision Making

How should we explore design spaces to quickly locate promising designs? How should we make recommendations in dynamic environments with large numbers of items? In general, we are interested in “closed-loop” decision making systems that interact with the environment to obtain useful information. We seek novel algorithms for such problems which are capable of accommodating complex constraints in practical setting, such as noise, uncertainty and safety, while preserving strong theoretical guarantees.

Interactive machine learning

Interactive machine learning is a paradigm to actively acquire information, and minimize unnecessary interactions with an expert. It characterizes a broad range of decision making problems arising in pattern recognition and related fields. It generalizes tasks such as Bayesian experimental design, where one needs to adaptively pick a small sets of experiments in order to estimate uncertain model parameters. For these problems, we recently introduced a structural property, adaptive submodularity, which generalizes the classical notion of submodular functions to adaptive policies. We show that if a problem satisfies this property, an efficient, adaptive greedy algorithm guarantees near-optimal policies. We further show that this property arises in diverse applications including active learning, adaptive viral marketing, active object detection, and optimizing value of information.

Exploration-exploitation

A central challenge in decision making is the explore-exploit dilemma: the need to trade exploration (i.e., collecting information) and exploitation (i.e., making decisions identified as effective in the past). For example, in recommender systems, one seeks to iteratively recommend items from a large set to a given customer, aiming to maximize the cumulative relevance of the entire set. Many problems of this kind can be formalized as multi-armed bandit problems with complex, structured decision spaces, e.g., modeled using Gaussian processes. Our goal is to design practical approaches towards solving the explore-exploit dilemma, that still enjoy strong theoretical guarantees. We evaluate our approaches on several real-world information gathering problems, including recommender systems to robotics to design space exploration.

Publications

2023
  • Open problems and fundamental limitations of reinforcement learning from human feedback
  • S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak, D. Lindner, P. Freire, T. Wang, S. Marks, C. R. Segerie, M. Carroll, A. Peng, P. Christoffersen, M. Damani, S. Slocum, U. Anwar, A. Siththaranjan, M. Nadeau, E. J. Michaud, J. Pfau, D. Krasheninnikov, X. Chen, L. Langosco, P. Hase, E. Biyik, A. Dragan, D. Krueger, D. Sadigh, D. Hadfield-Menell
  • In Transactions on Machine Learning Research, 2023
  • [bibtex] [abstract] [pdf]
  • Learning Safety Constraints from Demonstrations with Unknown Rewards
  • D. Lindner, X. Chen, S. Tschiatschek, K. Hofmann, A. Krause
  • In The 27th International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
  • [bibtex] [abstract] [pdf]
2021
  • Meta-Learning Reliable Priors in the Function Space
  • J. Rothfuss, D. Heyn, J. Chen, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2021
  • [bibtex] [abstract] [pdf] [code]
  • PopSkipJump: Decision-Based Attack for Probabilistic Classifiers
  • C. J. Simon-Gabriel, N. Sheikh, A. Krause
  • In Proc. International Conference on Machine Learning (ICML), 2021
  • [bibtex] [abstract] [pdf] [long] [code]
  • An Empirical Investigation of Representation Learning for Imitation
  • X. Chen, S. Toyer, C. Wild, S. Emmons, I. Fischer, K. H. Lee, N. Alex, S. H. Wang, P. Luo, S. Russell, others
  • In Advances in Neural Information Processing Systems, 2021
  • [bibtex] [abstract] [pdf]
  • Bayesian Optimization with Safety Constraints: Safe and Automatic Parameter Tuning in Robotics
  • F. Berkenkamp, A. Krause, A. P. Schoellig
  • In Machine Learning Journal, Special Issue on Robust Machine Learning, 2021
  • [bibtex] [abstract] [pdf] [code] [video] [doi]
2020
  • Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
  • S. Curi, F. Berkenkamp, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2020
  • Spotlight presentation
  • [bibtex] [abstract] [pdf] [poster] [code]
  • Structured Variational Inference in Partially Observable Unstable Gaussian Process State Space Models
  • S. Curi, S. Melchior, F. Berkenkamp, A. Krause
  • In Proc. Conference on Learning for Dynamics and Control (L4DC), 2020
  • [bibtex] [abstract] [pdf]
2019
  • Safe Exploration for Interactive Machine Learning
  • M. Turchetta, F. Berkenkamp, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2019
  • [bibtex] [abstract] [pdf]
  • Teaching Multiple Concepts to a Forgetful Learner
  • A. Hunziker, Y. Chen, O. M. Aodha, M. G. Rodriguez, A. Krause, P. Perona, Y. Yue, A. Singla
  • In Proc. Neural Information Processing Systems (NeurIPS), 2019
  • [bibtex] [abstract] [pdf]
  • Information-Directed Exploration for Deep Reinforcement Learning
  • N. Nikolov, J. Kirschner, F. Berkenkamp, A. Krause
  • In Proc. International Conference on Learning Representations (ICLR), 2019
  • [bibtex] [abstract] [pdf] [poster]
  • No-Regret Bayesian Optimization with Unknown Hyperparameters
  • F. Berkenkamp, A. P. Schoellig, A. Krause
  • In Journal of Machine Learning Research (JMLR), volume 20, 2019
  • [bibtex] [abstract] [pdf]
2018
  • Learning-based Model Predictive Control for Safe Exploration
  • T. Koller, F. Berkenkamp, M. Turchetta, A. Krause
  • In Proc. of the IEEE Conference on Decision and Control (CDC), 2018
  • [bibtex] [abstract] [pdf] [code]
  • The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems
  • S. M. Richards, F. Berkenkamp, A. Krause
  • In Proceedings of The 2nd Conference on Robot Learning, PMLR, volume 87, 2018
  • Oral presentation
  • [bibtex] [abstract] [pdf] [code] [video]
  • Discrete Sampling using Semigradient-based Product Mixtures
  • A. Gotovos, H. Hassani, A. Krause, S. Jegelka
  • In Conference on Uncertainty in Artificial Intelligence (UAI), 2018
  • Oral presentation
  • [bibtex] [abstract] [pdf] [long] [talk] [poster]
  • Learning to Interact with Learning Agents
  • A. Singla, H. Hassani, A. Krause
  • In Proc. Conference on Artificial Intelligence (AAAI), 2018
  • [bibtex] [abstract] [pdf] [long]
2017
  • Near-optimal Bayesian active Learning with correlated and noisy tests
  • Y. Chen, S. H. Hassani, A. Krause
  • In Electronic Journal of Statistics, The Institute of Mathematical Statistics and the Bernoulli Society, volume 11, 2017
  • [bibtex] [abstract] [pdf] [doi]
  • Stochastic Submodular Maximization: The Case of Coverage Functions
  • M. R. Karimi, M. Lucic, H. Hassani, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2017
  • [bibtex] [abstract] [pdf]
  • Interactive Submodular Bandit
  • L. Chen, A. Krause, A. Karbasi
  • In Neural Information Processing Systems (NeurIPS), 2017
  • [bibtex] [abstract] [pdf]
  • Safe Model-based Reinforcement Learning with Stability Guarantees
  • F. Berkenkamp, M. Turchetta, A. P. Schoellig, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2017
  • [bibtex] [abstract] [pdf] [code] [video]
  • Efficient Online Learning for Optimizing Value of Information: Theory and Application to Interactive Troubleshooting
  • Y. Chen, J. M. Renders, M. H. Chehreghani, A. Krause
  • In Conference on Uncertainty in Artificial Intelligence (UAI), 2017
  • [bibtex] [abstract] [pdf]
  • Uniform Deviation Bounds for k-Means Clustering
  • O. Bachem, M. Lucic, S. H. Hassani, A. Krause
  • In Proc. International Conference on Machine Learning (ICML), 2017
  • [bibtex] [abstract] [pdf]
  • Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization
  • A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause, S. Schaal, S. Trimpe
  • In Proc. of the International Conference on Robotics and Automation (ICRA), 2017
  • [bibtex] [abstract] [pdf]
  • Near-optimal Bayesian Active Learning with Correlated and Noisy Tests
  • Y. Chen, S. H. Hassani, A. Krause
  • In Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), 2017
  • [bibtex] [abstract] [pdf] [long]
  • Near-optimal Adaptive Information Acquisition: Theory and Applications
  • Y. Chen
  • PhD thesis, ETH Zurich, 2017
  • [bibtex] [abstract] [pdf]
2016
  • Fast and Provably Good Seedings for k-Means
  • O. Bachem, M. Lucic, S. H. Hassani, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2016
  • Oral presentation
  • [bibtex] [abstract] [pdf] [code] [video]
  • Safe Exploration in Finite Markov Decision Processes with Gaussian Processes
  • M. Turchetta, F. Berkenkamp, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2016
  • [bibtex] [abstract] [pdf] [code] [video]
  • Safe Learning of Regions of Attraction for Uncertain, Nonlinear Systems with Gaussian Processes
  • F. Berkenkamp, R. Moriconi, A. P. Schoellig, A. Krause
  • In Proc. of the IEEE Conference on Decision and Control (CDC), 2016
  • [bibtex] [abstract] [pdf] [talk] [code]
  • Bayesian Optimization for Maximum Power Point Tracking in Photovoltaic Power Plants
  • H. Abdelrahman, F. Berkenkamp, J. Poland, A. Krause
  • In Proc. European Control Conference (ECC), 2016
  • Best Application Paper Award
  • [bibtex] [abstract] [pdf]
  • Safe Controller Optimization for Quadrotors with Gaussian Processes
  • F. Berkenkamp, A. P. Schoellig, A. Krause
  • In Proc. of the International Conference on Robotics and Automation (ICRA), 2016
  • [bibtex] [abstract] [pdf] [code] [video]
  • Approximate K-Means++ in Sublinear Time
  • O. Bachem, M. Lucic, S. H. Hassani, A. Krause
  • In Proc. Conference on Artificial Intelligence (AAAI), 2016
  • [bibtex] [abstract] [pdf]
  • Bounds for Random Constraint Satisfaction Problems via Spatial Coupling
  • D. Achlioptas, S. H. Hassani, N. Macris, R. Urbanke
  • In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016
  • [bibtex] [abstract]
2015
  • Sampling from Probabilistic Submodular Models
  • A. Gotovos, S. H. Hassani, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2015
  • Oral presentation
  • [bibtex] [abstract] [pdf] [long] [talk] [poster] [video]
  • Sequential Information Maximization: When is Greedy Near-optimal?
  • Y. Chen, S. H. Hassani, A. Karbasi, A. Krause
  • In Proc. Conference on Learning Theory (COLT), 2015
  • [bibtex] [abstract] [pdf]
  • Submodular Surrogates for Value of Information
  • Y. Chen, S. Javdani, A. Karbasi, J. A. Bagnell, S. Srinivasa, A. Krause
  • In Proc. Conference on Artificial Intelligence (AAAI), 2015
  • [bibtex] [abstract] [pdf] [long]
  • Discovering Valuable Items from Massive Data
  • H. Vanchinathan, A. Marfurt, C. A. Robelin, D. Kossmann, A. Krause
  • In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2015
  • [bibtex] [abstract] [pdf] [long]
  • Alignment of Polarized Sets
  • J. M. Renes, D. Sutter, S. H. Hassani
  • In International Symposium on Information Theory (ISIT), 2015
  • [bibtex] [abstract] [pdf] [long]
  • Unified Scaling of Polar Codes: Error Exponent, Scaling Exponent, Moderate Deviations, and Error Floors
  • M. Mondelli, S. H. Hassani, R. Urbanke
  • In International Symposium on Information Theory (ISIT), 2015
  • Best Student Paper Award
  • [bibtex] [abstract] [pdf] [long]
  • Learning to Recommend: Interactive Learning with Limited Feedback
  • H. Vanchinathan
  • PhD thesis, ETH Zurich, 2015
  • [bibtex] [abstract] [pdf]
  • Kickback cuts Backprop’s red-tape: Biologically plausible credit assignment in neural networks
  • D. Balduzzi, H. Vanchinathan, J. Buhmann
  • In Proc. Conference on Artificial Intelligence (AAAI), 2015
  • [bibtex] [abstract] [pdf]
  • Growing a Graph Matching from a Handful of Seeds
  • E. Kazemi, S. H. Hassani, M. Grossglauser
  • In Very Large Data Bases (VLDB), 2015
  • [bibtex] [abstract] [pdf] [long]
2014
  • Sequential Decision Making in Computational Sustainability Through Adaptive Submodularity
  • A. Krause, D. Golovin, S. Converse
  • In AI Magazine, 2014
  • [bibtex] [abstract] [pdf]
  • Community Sense and Response Systems: Your Phone as Quake Detector
  • M. Faulkner, R. Clayton, T. Heaton, K. M. Chandy, M. Kohler, J. Bunn, R. Guy, A. Liu, M. Olson, M. Cheng, A. Krause
  • In Communications of the ACM, volume 57, 2014
  • Cover Feature
  • [bibtex] [abstract] [doi]
  • Active Detection via Adaptive Submodularity
  • Y. Chen, H. Shioi, C. F. Montesinos, L. P. Koh, S. Wich, A. Krause
  • In Proc. International Conference on Machine Learning (ICML), 2014
  • [bibtex] [abstract] [pdf] [long] [talk]
  • Near-Optimal Bayesian Active Learning for Decision Making
  • S. Javdani, Y. Chen, A. Karbasi, A. Krause, J. A. Bagnell, S. Srinivasa
  • In In Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), 2014
  • [bibtex] [abstract] [pdf] [long]
  • Submodular Function Maximization
  • A. Krause, D. Golovin
  • Chapter in Tractability: Practical Approaches to Hard Problems, Cambridge University Press, 2014
  • (The draft is for personal use only. No further distribution without permission)
  • [bibtex] [abstract] [pdf]
  • Online Submodular Maximization under a Matroid Constraint with Application to Learning Assignments
  • D. Golovin, A. Krause, M. Streeter
  • Technical report, arXiv, 2014
  • [bibtex] [abstract] [pdf]
  • Explore-Exploit in Top-N Recommender Systems via Gaussian Processes
  • H. Vanchinathan, I. Nikolic, F. D. Bona, A. Krause
  • In Proc. ACM Recommender Systems Conference (RecSys), 2014
  • [bibtex] [abstract] [pdf]
  • Efficient Partial Monitoring with Prior Information
  • H. Vanchinathan, G. Bartók, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2014
  • [bibtex] [abstract] [pdf] [long]
2013
  • Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization
  • Y. Chen, A. Krause
  • In International Conference on Machine Learning (ICML), 2013
  • [bibtex] [abstract] [pdf] [long]
2012
  • Joint Optimization and Variable Selection of High-dimensional Gaussian Processes
  • B. Chen, R. Castro, A. Krause
  • In Proc. International Conference on Machine Learning (ICML), 2012
  • [bibtex] [abstract] [pdf] [long] [code]
2011
  • Dynamic Resource Allocation in Conservation Planning
  • D. Golovin, A. Krause, B. Gardner, S. Converse, S. Morey
  • In Conference on Artificial Intelligence (AAAI), 2011
  • Winner of the Outstanding Paper Award
  • [bibtex] [abstract] [pdf] [talk]
  • Adaptive Submodular Optimization under Matroid Constraints
  • D. Golovin, A. Krause
  • Technical report, arXiv, 2011
  • [bibtex] [abstract] [pdf]
  • Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization
  • D. Golovin, A. Krause
  • In Journal of Artificial Intelligence Research (JAIR), volume 42, 2011
  • IJCAI-JAIR Best Paper Award 2013
  • [bibtex] [abstract] [pdf]
  • Community Seismic Network
  • R. Clayton, T. Heaton, M. Chandy, A. Krause, M. Kohler, J. Bunn, M. Olson, M. Faulkner, M. Cheng, L. Strand, R. Chandy, D. Obenshain, A. Liu, M. Aivazis, R. Guy
  • In Annals of Geophysics, volume 54, 2011
  • [bibtex] [abstract] [pdf]
  • Randomized Sensing in Adversarial Environments
  • A. Krause, A. Roper, D. Golovin
  • In Proc. International Joint Conference on Artificial Intelligence (IJCAI), 2011
  • [bibtex] [abstract] [pdf] [talk]
  • Contextual Gaussian Process Bandit Optimization
  • A. Krause, C. S. Ong
  • In Proc. Neural Information Processing Systems (NeurIPS), 2011
  • [bibtex] [abstract] [pdf] [long] [poster]
2010
  • Near-Optimal Bayesian Active Learning with Noisy Observations
  • D. Golovin, A. Krause, D. Ray
  • In Proc. Neural Information Processing Systems (NeurIPS), 2010
  • [bibtex] [abstract] [pdf] [long] [poster]
  • Online Distributed Sensor Selection
  • D. Golovin, M. Faulkner, A. Krause
  • In Proc. ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 2010
  • [bibtex] [abstract] [pdf] [long] [talk]
  • Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization
  • D. Golovin, A. Krause
  • In Proc. Conference on Learning Theory (COLT), 2010
  • [bibtex] [abstract] [pdf] [talk]
2009
  • Online Learning of Assignments
  • M. Streeter, D. Golovin, A. Krause
  • In Proc. Neural Information Processing Systems (NeurIPS), 2009
  • [bibtex] [abstract] [pdf] [poster]
2004
  • Mobile decision support for transplantation patient data
  • A. Krause, D. Hartl, F. Theis, M. Stangl, K. Gerauer, A. Mehlhorn
  • In International Journal of Medical Informatics, volume 73, 2004
  • [bibtex] [abstract] [doi]
  • About
  • People
  • Publications
  • Blog
  • Teaching
  • Student Projects
  • Openings
  • Contact

Learning & Adaptive Systems Group | Institute for Machine Learning | © 2025 ETH Zurich